Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstruction of global surface ocean pCO2 using region-specific predictors based on a stepwise FFNN regression algorithm
Guorong Zhong
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
University of Chinese Academy of Sciences, Beijing 101407, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
University of Chinese Academy of Sciences, Beijing 101407, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Jinming Song
CORRESPONDING AUTHOR
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
University of Chinese Academy of Sciences, Beijing 101407, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Baoxiao Qu
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Fan Wang
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
University of Chinese Academy of Sciences, Beijing 101407, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Yanjun Wang
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Bin Zhang
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Xiaoxia Sun
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
University of Chinese Academy of Sciences, Beijing 101407, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Wuchang Zhang
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Zhenyan Wang
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Jun Ma
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Huamao Yuan
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
University of Chinese Academy of Sciences, Beijing 101407, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Liqin Duan
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
University of Chinese Academy of Sciences, Beijing 101407, China
Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Related authors
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025, https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. This pH change has been globally documented in the surface ocean, but information is limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years from 1992 to 2020 and depths from 0 to 2000 m.
Detong Tian, Xuegang Li, Jinming Song, Jun Ma, Huamao Yuan, and Liqin Duan
Ocean Sci., 21, 1627–1639, https://doi.org/10.5194/os-21-1627-2025, https://doi.org/10.5194/os-21-1627-2025, 2025
Short summary
Short summary
Particulate organic carbon plays a vital role in the ocean's carbon cycle, yet its transformation involves complex processes that are not fully understood. This study examines the vertical distribution of stable carbon isotopes in the Tropical Northwestern Pacific, identifying three distinct biogeochemical layers of POC transformation, and contributes to a deeper understanding of the ocean's carbon cycle.
Shujin Guo, Mingliang Zhu, Wenlong Xu, Shan Zheng, Sumei Liu, Ying Wu, Juan Du, Chenhao Zhao, and Xiaoxia Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-2034, https://doi.org/10.5194/egusphere-2025-2034, 2025
Short summary
Short summary
We studied how tiny particles in the ocean help move carbon from surface waters to the deep sea along the South China Sea slope. Using underwater cameras, we found that large particles, although fewer in number, carry most of the carbon downward. Ocean eddies strongly influenced this process. Our research helps explain how the ocean naturally stores carbon and why this process varies across regions and depths.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025, https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. This pH change has been globally documented in the surface ocean, but information is limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years from 1992 to 2020 and depths from 0 to 2000 m.
Shan-Shan Liu, Jie Ni, Jin-Ming Song, Xu-Xu Gao, Zhen He, and Gui-Peng Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-251, https://doi.org/10.5194/egusphere-2025-251, 2025
Short summary
Short summary
Volatile chlorinated hydrocarbons (VCHCs) harm the ozone layer and climate, but the role of the Western Pacific in their atmospheric budget is unclear. This study showed ocean ventilation and terrestrial transport shape VCHCs levels. The Western Pacific emits some VCHCs while absorbing CCl4, helping reduce its levels in Eastern Asia. These findings highlight the ocean’s key role in regulating atmospheric VCHCs and provide essential data to refine global estimates of VCHCs atmospheric budgets.
Chaofeng Wang, Zhiqiang Xu, Guangfu Luo, Xiaoyu Wang, Yan He, Musheng Lan, Tiancheng Zhang, and Wuchang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3888, https://doi.org/10.5194/egusphere-2024-3888, 2024
Short summary
Short summary
Our study provides a comprehensive assessment of microzooplankton ciliate trait structure, focusing on size spectrum, biodiversity, and biotic-abiotic interplay based on 175 stations (1117 samples) across five temperature zones, which offered an ideal paradigm for study the plankton response to future climate change. The study is full fill the scope of the Ocean Science in the ocean's physical, biogeochemical and biological and ecosystem properties and processes.
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Short summary
Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and socioeconomic developments. This study provides an update of an ocean subsurface temperature and ocean heat content gridded product, named the IAPv4 data product, which is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1955) for monthly and 1° × 1° temporal and spatial resolutions.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Chaofeng Wang, Yi Dong, Michel Denis, Li Zhao, Haibo Li, Shan Zheng, Wuchang Zhang, and Tian Xiao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-151, https://doi.org/10.5194/bg-2022-151, 2022
Revised manuscript not accepted
Short summary
Short summary
The present study reported on diel variations of planktonic ciliate community structure in the nSCS and tWP, and ciliate do preformed diel vertical migrations. In both the nSCS and tWP, abundance proportions of large size-fraction aloricate ciliates in night were higher than in day. While for tintinnids, abundance proportion of large lorica oral diameter in night were lower than in day.
Cited articles
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bates, N. R.: Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades, J. Geophys. Res.-Oceans, 112, C09013, https://doi.org/10.1029/2006JC003759, 2007.
Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Seidov, D., and Smolyar, I. V.: World Ocean Atlas 2018 [Dissolved Inorganic Nutrients and Dissolved Oxygen], NOAA National Centers for Environmental Information [data set], https://accession.nodc.noaa.gov/NCEI-WOA18 (last access: 4 August 2020), 2018.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M., Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.: A global monthly climatology of total alkalinity: a neural network approach, Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, 2019.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., Santana-Casiano, J. M., and Kozyr, A.: A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach, Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, 2020.
Chen, L. Q., Xu, S. Q., Gao, Z. Y., Chen, H. Y., Zhang, Y. H., Zhan, J. Q., and Li, W.:
Estimation of monthly air–sea CO2 flux in the southern Atlantic and Indian Ocean using in-situ and remotely sensed data,
Remote Sens. Environ.,
115, 1935–1941, https://doi.org/10.1016/j.rse.2011.03.016, 2011.
Chen, S., Hu, C., Barnes, B. B., Wanninkhof, R., Cai, W.-J., Barbero, L., and Pierrot, D.:
A machine learning approach to estimate surface ocean pCO2 from satellite measurements,
Remote Sens. Environ.,
228, 203–226, https://doi.org/10.1016/j.rse.2019.04.019, 2019.
Chen, S. L., Hu, C. M., Byrne, R. H., Robbins, L. L., and Yang, B.:
Remote estimation of surface pCO2 on the West Florida Shelf,
Cont. Shelf Res.,
128, 10–25, https://doi.org/10.1016/j.csr.2016.09.004, 2016.
Chen, S. L., Hu, C. M., Cai, W. J., and Yang, B.:
Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use?,
Cont. Shelf Res.,
151, 94–110, https://doi.org/10.1016/j.csr.2017.10.013, 2017.
Cheng, L. and Zhu, J.:
Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variation,
J. Climate,
29, 5393–5416, https://doi.org/10.1175/JCLI-D-15-0730.1, 2016.
Cheng, L., Trenberth, K., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv., 3, 3, https://doi.org/10.1126/sciadv.1601545, 2017.
Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J., Li, G., Mann, M. E., Zhao, X., and Zhu, J.:
Improved estimates of changes in upper ocean salinity and the hydrological cycle,
J. Climate,
33, 10357–10381, https://doi.org/10.1175/JCLI-D-20-0366.1, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Denvil-Sommer, A., Gehlen, M., Vrac, M., and Mejia, C.: LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean, Geosci. Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-2091-2019, 2019.
Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.:
Physical and biogeochemical modulation of ocean acidification in the central North Pacific,
P. Natl. Acad. Sci. USA,
106, 12235–12240, 2009.
Friedrich, T. and Oschlies, A.:
Neural network-based estimates of North Atlantic surface pCO2 from satellite data: A methodological study,
J. Geophys. Res.-Oceans,
114, C03020, https://doi.org/10.1029/2007jc004646, 2009.
GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project – Carbon Dioxide CD-ROM, NOAA ESRL, Boulder, Colorado, available via anonymous FTP to ftp://ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW (last access: 5 January 2013), 2011.
González-Dávila, M. and Santana-Casiano, J. M.: Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from METEOR, POSEIDON and others in the North Atlantic Ocean from 1995-10-02 to 2009-11-25 (NCEI Accession 0100064), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.tsm_estoc, 2012.
Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.: A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall?, Geosci. Model Dev., 12, 5113–5136, https://doi.org/10.5194/gmd-12-5113-2019, 2019.
Hales, B., Strutton, P. G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., Sabine, C., and Chavez, F.:
Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,
Prog. Oceanogr.,
103, 1–15, https://doi.org/10.1016/j.pocean.2012.03.001, 2012.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.:
Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons,
J. Climate,
30, 8179–8205, 2017.
Iida, Y., Kojima, A., Takatani, Y., Nakano, T., Midorikawa, T., and Ishii, M.:
Trends in pCO2 and sea-air CO2 flux over the global open oceans for the last two decades,
J. Oceanogr.,
71, 637–661, https://doi.org/10.1007/s10872-015-0306-4, 2015.
Jo, Y. H., Dai, M. H., Zhai, W. D., Yan, X. H., and Shang, S. L.:
On the variations of sea surface pCO2 in the northern South China Sea: A remote sensing based neural network approach,
J. Geophys. Res.-Oceans,
117, C08022, https://doi.org/10.1029/2011jc007745, 2012.
Körtzinger, A.: Determination of carbon dioxide partial pressure (pCO2), in: Methods of Seawater Analysis, 3rd Edn., edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M., Wiley-VCH Verlag GmbH, Weinheim, Germany, https://doi.org/10.1002/9783527613984.ch9, 1999.
Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink, Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, 2013.
Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.:
Recent variability of the global ocean carbon sink,
Global Biogeochem. Cy.,
28, 927–949, https://doi.org/10.1002/2014gb004853, 2014.
Landschützer, P., Gruber, N., and Bakker, D. C. E.:
Decadal variations and trends of the global ocean carbon sink,
Global Biogeochem. Cy.,
30, 1396–1417, https://doi.org/10.1002/2015gb005359, 2016.
Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, 2020.
Laruelle, G. G., Landschützer, P., Gruber, N., Tison, J.-L., Delille, B., and Regnier, P.: Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation, Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, 2017.
Marrec, P., Cariou, T., Macé, E., Morin, P., Salt, L. A., Vernet, M., Taylor, B., Paxman, K., and Bozec, Y.: Dynamics of air–sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations, Biogeosciences, 12, 5371–5391, https://doi.org/10.5194/bg-12-5371-2015, 2015.
Marshall, G. J.:
Trends in the Southern Annular Mode from observations and reanalyses,
J. Climate,
16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003.
Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., and Zhang, H.: ECCO2: High resolution global ocean and sea ice data synthesis, Mercator Ocean Quarterly Newsletter, 31, 13–21, 2008.
Moussa, H., Benallal, M. A., Goyet, C., and Lefevre, N.:
Satellite-derived CO2 fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network,
Int. J. Remote Sens.,
37, 580–598, https://doi.org/10.1080/01431161.2015.1131872, 2016.
Nakaoka, S., Telszewski, M., Nojiri, Y., Yasunaka, S., Miyazaki, C., Mukai, H., and Usui, N.: Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique, Biogeosciences, 10, 6093–6106, https://doi.org/10.5194/bg-10-6093-2013, 2013.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group:
Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data, 2018 Reprocessing,
NASA OB.DAAC, Greenbelt, MD, USA, https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2018, 2018.
NOAA National Geophysical Data Center: 2-minute Gridded Global Relief Data (ETOPO2) v2, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5J1012Q, 2006.
Rödenbeck, C., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., Cassar, N., Reum, F., Keeling, R. F., and Heimann, M.: Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme, Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bg-11-4599-2014, 2014.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T., and Rios, A. F.:
The oceanic sink for anthropogenic CO2,
Science,
305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Sarma, V. V. S. S., Saino, T., Sasaoka, K., Nojiri, Y., Ono, T., Ishii, M., Inoue, H. Y., and Matsumoto, K.:
Basin-scale pCO2 distribution using satellite sea surface temperature, Chl a, and climatological salinity in the North Pacific in spring and summer,
Global Biogeochem. Cy.,
20, Gb3005, https://doi.org/10.1029/2005gb002594, 2006.
Shadwick, E. H., Thomas, H., Comeau, A., Craig, S. E., Hunt, C. W., and Salisbury, J. E.: Air-Sea CO2 fluxes on the Scotian Shelf: seasonal to multi-annual variability, Biogeosciences, 7, 3851–3867, https://doi.org/10.5194/bg-7-3851-2010, 2010.
Signorini, S. R., Mannino, A., Najjar, R. G., Friedrichs, M. A. M., Cai, W. J., Salisbury, J., Wang, Z. A., Thomas, H., and Shadwick, E.:
Surface ocean pCO2 seasonality and sea-air CO2 flux estimates for the North American east coast,
J. Geophys. Res.-Oceans,
118, 5439–5460, https://doi.org/10.1002/jgrc.20369, 2013.
Takahashi, T., Sutherland, S. C., Feely, R. A., and Wanninkhof, R.:
Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations,
J. Geophys. Res.-Oceans,
111, C07s05, https://doi.org/10.1029/2005jc003074, 2006.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans,
Deep-Sea Res. Pt. II,
56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin, C., Bakker, D. C. E., González-Dávila, M., Johannessen, T., Körtzinger, A., Lüger, H., Olsen, A., Omar, A., Padin, X. A., Ríos, A. F., Steinhoff, T., Santana-Casiano, M., Wallace, D. W. R., and Wanninkhof, R.: Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network, Biogeosciences, 6, 1405–1421, https://doi.org/10.5194/bg-6-1405-2009, 2009.
Wang, Y., Li, X., Song, J., Zhong, G., and Zhang, B.: Carbon Sinks and Variations of pCO2 in the Southern Ocean From 1998 to 2018 Based on a Deep Learning Approach, IEEE J. Sel. Top. Appl., 14, 3495–3503, https://doi.org/10.1109/JSTARS.2021.3066552, 2021.
Weiss, R. F.:
Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
Mar. Chem.,
2, 203–215, 1974.
Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., and Nakaoka, S.:
A Global Surface Ocean fCO2 Climatology Based on a Feed-Forward Neural Network,
J. Atmos. Ocean. Tech.,
31, 1838–1849, https://doi.org/10.1175/jtech-d-13-00137.1, 2014.
Zeng, J., Matsunaga, T., Saigusa, N., Shirai, T., Nakaoka, S., and Tan, Z.-H.: Technical note: Evaluation of three machine learning models for surface ocean CO2 mapping, Ocean Sci., 13, 303–313, https://doi.org/10.5194/os-13-303-2017, 2017.
Zeng, J. Y., Nojiri, Y., Nakaoka, S., Nakajima, H., and Shirai, T.:
Surface ocean CO2 in 1990–2011 modelled using a feed-forward neural network,
Geosci. Data J.,
2, 47–51, https://doi.org/10.1002/gdj3.26, 2015.
Zhong, G.: Global surface ocean pCO2 product based on a stepwise FFNN algorithm, Chinese Academy of Sciences Marine Science Data Center [data set, code], https://doi.org/10.12157/iocas.2021.0022, 2021.
Zhong, G., Li, X., Qu, B., Wang, Y., Yuan, H, and Song, J.:
A General Regression Neural Network approach to reconstruct global 1∘ × 1∘ resolution sea surface pCO2,
Acta Oceanol Sin.,
10, 70–79, 2020.
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
A predictor selection algorithm was constructed to decrease the predicting error in the surface...
Altmetrics
Final-revised paper
Preprint