Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-845-2022
https://doi.org/10.5194/bg-19-845-2022
Research article
 | 
10 Feb 2022
Research article |  | 10 Feb 2022

Reconstruction of global surface ocean pCO2 using region-specific predictors based on a stepwise FFNN regression algorithm

Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan

Related authors

A global monthly 3D field of seawater pH over 3 decades: a machine learning approach
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025,https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary

Related subject area

Biogeochemistry: Open Ocean
Spatial distributions of iron and manganese in surface waters of the Arctic's Laptev and East Siberian seas
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
Biogeosciences, 22, 1057–1076, https://doi.org/10.5194/bg-22-1057-2025,https://doi.org/10.5194/bg-22-1057-2025, 2025
Short summary
Climate-driven shifts in Southern Ocean primary producers and biogeochemistry in CMIP6 models
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences, 22, 975–994, https://doi.org/10.5194/bg-22-975-2025,https://doi.org/10.5194/bg-22-975-2025, 2025
Short summary
Ocean acidification trends and carbonate system dynamics across the North Atlantic subpolar gyre water masses during 2009–2019
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 5561–5589, https://doi.org/10.5194/bg-21-5561-2024,https://doi.org/10.5194/bg-21-5561-2024, 2024
Short summary
Sedimentary organic matter signature hints at the phytoplankton-driven biological carbon pump in the central Arabian Sea
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024,https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Hydrological cycle amplification imposes spatial patterns on the climate change response of ocean pH and carbonate chemistry
Allison Hogikyan and Laure Resplandy
Biogeosciences, 21, 4621–4636, https://doi.org/10.5194/bg-21-4621-2024,https://doi.org/10.5194/bg-21-4621-2024, 2024
Short summary

Cited articles

Bates, N. R.: Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades, J. Geophys. Res.-Oceans, 112, C09013, https://doi.org/10.1029/2006JC003759, 2007. 
Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Seidov, D., and Smolyar, I. V.: World Ocean Atlas 2018 [Dissolved Inorganic Nutrients and Dissolved Oxygen], NOAA National Centers for Environmental Information [data set], https://accession.nodc.noaa.gov/NCEI-WOA18 (last access: 4 August 2020), 2018. 
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M., Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.: A global monthly climatology of total alkalinity: a neural network approach, Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, 2019. 
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., Santana-Casiano, J. M., and Kozyr, A.: A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach, Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, 2020. 
Download
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
Share
Altmetrics
Final-revised paper
Preprint