Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-957-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-957-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc)
Potsdam Institute for Climate Impact Research, Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Department of Agricultural Economics, Humboldt University of Berlin,
Unter den Linden 6, 10099 Berlin, Germany
Susanne Rolinski
Potsdam Institute for Climate Impact Research, Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Jens Heinke
Potsdam Institute for Climate Impact Research, Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Werner von Bloh
Potsdam Institute for Climate Impact Research, Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Sibyll Schaphoff
Potsdam Institute for Climate Impact Research, Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Christoph Müller
Potsdam Institute for Climate Impact Research, Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Related authors
No articles found.
Heindriken Dahlmann, Lauren S. Andersen, Sibyll Schaphoff, Fabian Stenzel, Johanna Braun, Christoph Müller, and Dieter Gerten
EGUsphere, https://doi.org/10.5194/egusphere-2025-3817, https://doi.org/10.5194/egusphere-2025-3817, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Green water stress can negatively affect agricultural production and is often alleviated through irrigation. In this global modelling study, we investigate where and to what extent the implementation of irrigation helps to decrease green water stress but in the same time leads to an increase in blue water scarcity. Our findings highlight the need to consider both water stresses together, along with their dynamic interactions for sustainable water management.
Lily-belle Sweet, Christoph Müller, Jonas Jägermeyr, and Jakob Zscheischler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3006, https://doi.org/10.5194/egusphere-2025-3006, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study presents a method to identify climate drivers of an impact, such as agricultural yield failure, from high-resolution weather data. The approach systematically generates, selects and combines predictors that generalise across different environments. Tested on crop model simulations, the identified drivers are used to create parsimonious models that achieve high predictive performance over long time horizons, offering a more interpretable alternative to black-box models.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan Cornelis Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Paul Oliver Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
Earth Syst. Dynam., 16, 753–801, https://doi.org/10.5194/esd-16-753-2025, https://doi.org/10.5194/esd-16-753-2025, 2025
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic–climate scenarios' largest effect on variance starting in 2030.
Jéssica Schüler, Sarah Bereswill, Werner von Bloh, Maik Billing, Boris Sakschewski, Luke Oberhagemann, Kirsten Thonicke, and Mercedes M. C. Bustamante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2225, https://doi.org/10.5194/egusphere-2025-2225, 2025
Short summary
Short summary
We introduced a new plant type into a global vegetation model to better represent the ecology of the Cerrado, South America's second largest biome. This improved the model’s ability to simulate vegetation structure, root systems, and fire dynamics, aligning more closely with observations. Our results enhance understanding of tropical savannas and provide a stronger basis for studying their responses to fire and climate change at regional and global scales.
Marie Brunel, Stephen Wirth, Markus Drüke, Kirsten Thonicke, Henrique Barbosa, Jens Heinke, and Susanne Rolinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-922, https://doi.org/10.5194/egusphere-2025-922, 2025
Short summary
Short summary
Farmers often use fire to clear dead pasture biomass, impacting vegetation and soil nutrients. This study integrates fire management into a DGVM to assess its effects, focusing on Brazil. The results show that combining grazing and fire management reduces vegetation carbon and soil nitrogen over time. The research highlights the need to include these practices in models to improve pasture management assessments and calls for better data on fire usage and its long-term effects.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023, https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Jens Heinke, Susanne Rolinski, and Christoph Müller
Geosci. Model Dev., 16, 2455–2475, https://doi.org/10.5194/gmd-16-2455-2023, https://doi.org/10.5194/gmd-16-2455-2023, 2023
Short summary
Short summary
We develop a livestock module for the global vegetation model LPJmL5.0 to simulate the impact of grazing dairy cattle on carbon and nitrogen cycles in grasslands. A novelty of the approach is that it accounts for the effect of feed quality on feed uptake and feed utilization by animals. The portioning of dietary nitrogen into milk, feces, and urine shows very good agreement with estimates obtained from animal trials.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Tobias Herzfeld, Jens Heinke, Susanne Rolinski, and Christoph Müller
Earth Syst. Dynam., 12, 1037–1055, https://doi.org/10.5194/esd-12-1037-2021, https://doi.org/10.5194/esd-12-1037-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration on cropland has been proposed as a climate change mitigation strategy. We simulate different agricultural management practices under climate change scenarios using a global biophysical model. We find that at the global aggregated level, agricultural management practices are not capable of enhancing total carbon storage in the soil, yet for some climate regions, we find that there is potential to enhance the carbon content in cropland soils.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Yvonne Jans, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Hydrol. Earth Syst. Sci., 25, 2027–2044, https://doi.org/10.5194/hess-25-2027-2021, https://doi.org/10.5194/hess-25-2027-2021, 2021
Short summary
Short summary
Growth of and irrigation water demand on cotton may be challenged by future climate change. To analyze the global cotton production and irrigation water consumption under spatially varying present and future climatic conditions, we use the global terrestrial biosphere model LPJmL. Our simulation results suggest that the beneficial effects of elevated [CO2] on cotton yields overcompensate yield losses from direct climate change impacts, i.e., without the beneficial effect of [CO2] fertilization.
Bruno Ringeval, Christoph Müller, Thomas A. M. Pugh, Nathaniel D. Mueller, Philippe Ciais, Christian Folberth, Wenfeng Liu, Philippe Debaeke, and Sylvain Pellerin
Geosci. Model Dev., 14, 1639–1656, https://doi.org/10.5194/gmd-14-1639-2021, https://doi.org/10.5194/gmd-14-1639-2021, 2021
Short summary
Short summary
We assess how and why global gridded crop models (GGCMs) differ in their simulation of potential yield. We build a GCCM emulator based on generic formalism and fit its parameters against aboveground biomass and yield at harvest simulated by eight GGCMs. Despite huge differences between GGCMs, we show that the calibration of a few key parameters allows the emulator to reproduce the GGCM simulations. Our simple but mechanistic model could help to improve the global simulation of potential yield.
Cited articles
Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M.,
Truu, J., Rees, R. M., and Smith, P.: A critical review of the impacts of
cover crops on nitrogen leaching, net greenhouse gas balance and crop
productivity, Glob. Change Biol., 25, 2530–2543, https://doi.org/10.1111/gcb.14644, 2019.
Alexander, P., Brown, C., Arneth, A., Finnigan, J., Moran, D., and
Rounsevell, M. D. A.: Losses, inefficiencies and waste in the global food
system, Agr. Syst., 153, 190–200, https://doi.org/10.1016/j.agsy.2017.01.014, 2017.
Alonso-Ayuso, M., Gabriel, J. L., and Quemada, M.: The kill date as a
management tool for cover cropping success, PLOS ONE, 9, e109587, https://doi.org/10.1371/journal.pone.0109587, 2014.
Alonso-Ayuso, M., Gabriel, J. L., Hontoria, C., Ibáñez, M. Á.,
and Quemada, M.: The cover crop termination choice to designing sustainable
cropping systems, Eur. J. Agron., 114, 126000, https://doi.org/10.1016/j.eja.2020.126000, 2020.
Batjes, N. H.: ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (version
1.1), Report 2006/02, ISRIC – World Soil Information, Wageningen
[with data set], http://www.isric.org (last access: 3 February 2022), 2006.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Blanco-Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore,
R. W., Francis, C. A., and Hergert, G. W.: Cover Crops and Ecosystem
Services: Insights from Studies in Temperate Soils, Agron. J., 107,
2449–2474, https://doi.org/10.2134/agronj15.0086, 2015.
Bodirsky, B. L., Rolinski, S., Biewald, A., Weindl, I., Popp, A., and
Lotze-Campen, H.: Global Food Demand Scenarios for the 21st Century, PLOS
ONE, 10, e0139201, https://doi.org/10.1371/journal.pone.0139201, 2015.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial
carbon balance, Glob. Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Corbeels, M., Cardinael, R., Naudin, K., Guibert, H., and Torquebiau, E.:
The 4 per 1000 goal and soil carbon storage under agroforestry and
conservation agriculture systems in sub-Saharan Africa, Soil Till.
Res., 188, 16–26, https://doi.org/10.1016/j.still.2018.02.015, 2018.
Corsi, S., Friedrich, T., Kassam, A., Pisante, M., and Sà, J. d. M.: Soil organic carbon
accumulation and greenhouse gas emission reductions from conservation agriculture: a
literature review, Integrated Crop Management Vol. 16, Food and Agriculture Organization of
the United Nations (FAO), Rome, 2012.
Dabney, S. M., Delgado, J. A., and Reeves, D. W.: Using winter cover crops
to improve soil and water quality, Commun. Soil Sci. Plan., 32, 1221–1250, https://doi.org/10.1081/CSS-100104110, 2001.
Dabney, S. M., Delgado, J. A., Meisinger, J. J., Schomberg, H. H., Liebig, M. A., Kaspar, T.,
Mitchell, J., and Reeves, W.: Using cover crops and cropping systems for nitrogen management,
in: Advances in Nitrogen Management for Water Quality, edited by: Delgado, J. A. and Follett, R. F., 9, USDA Agricultural Research Service, 2010.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q.
J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Delgado, J. A., Dillon, M. A., Sparks, R. T., and Essah, S. Y.: A decade of
advances in cover crops, J. Soil Water Conserv., 62,
110A–117A, 2007.
Dietrich, J. P., Baumstark, L., Wirth, S., Giannousakis, A., Rodrigues, R., Bodirsky, B. L., Kreidenweis, U., and Klein, D.: madratat: May All Data be
Reproducible and Transparent (MADRaT)* (Version 1.86.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.4317856, 2020.
Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C., and Sheffield, J.: The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0), Geosci. Model Dev., 8, 261–277, https://doi.org/10.5194/gmd-8-261-2015, 2015.
Erb, K.-H., Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster,
S., Kuemmerle, T., Fetzel, T., Fuchs, R., Herold, M., Haberl, H., Jones, C.
D., Marín-Spiotta, E., McCallum, I., Robertson, E., Seufert, V., Fritz,
S., Valade, A., Wiltshire, A., and Dolman, A. J.: Land management: Data
availability and process understanding for global change studies, Glob.
Change Biol., 23, 512–533, https://doi.org/10.1111/gcb.13443, 2016.
Erenstein, O.: Smallholder conservation farming in the tropics and
sub-tropics: a guide to the development and dissemination of mulching with
crop residues and cover crops, Agr. Ecosyst. Environ., 100,
17–37, https://doi.org/10.1016/S0167-8809(03)00150-6, 2003.
EUROSTAT: Agri-environmental indicator – soil cover, in: Fact sheet, Statistics explained, Statistical office of the European Union,
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_soil_cover (last access: 3 February 2022),
2018.
FAO: Conservation Agriculture, AQUASTAT Database, Food and Agriculture
Organization of the United Nations (FAO), https://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en (last access: 3 February 2022), 2016.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90,
https://doi.org/10.1007/BF00386231, 1980.
Florentín, M. A., Peñalva, M., Calegari, A., and Derpsch, R.: Greeen manure/cover crops and
crop rotation in Conservation Agriculture on small farms, Plant production and protection
division, Food and Agriculture Organisation of the United Nation (FAO), Paraguay, 2011.
Forkel, M., Carvalhais, N., Schaphoff, S., v. Bloh, W., Migliavacca, M., Thurner, M., and Thonicke, K.: Identifying environmental controls on vegetation greenness phenology through model–data integration, Biogeosciences, 11, 7025–7050, https://doi.org/10.5194/bg-11-7025-2014, 2014.
Franzluebbers, A. J.: Achieving Soil Organic Carbon Sequestration with Conservation
Agricultural Systems in the Southeastern United States, Soil Sci. Soc. Am. J., 74, 347–357,
https://doi.org/10.2136/sssaj2009.0079, 2010.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence,
D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.:
Food Security: The Challenge of Feeding 9 Billion People, Science, 327,
812–818, https://doi.org/10.1126/science.1185383, 2010.
Gonzalez-Sanchez, E. J., Veroz-Gonzalez, O., Conway, G., Moreno-Garcia, M.,
Kassam, A., Mkomwa, S., Ordoñez-Fernandez, R., Triviño-Tarradas, P.,
and Carbonell-Bojollo, R.: Meta-analysis on carbon sequestration through
Conservation Agriculture in Africa, Soil Till. Res., 190, 22–30,
https://doi.org/10.1016/j.still.2019.02.020, 2019.
Handcock, M. S.: Relative Distribution Methods, Version 1.6-6,
https://CRAN.R-project.org/package=reldist (last access: 1 August 2021), 2016.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol. [data set], 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Herzfeld, T., Heinke, J., Rolinski, S., and Müller, C.: Soil organic carbon dynamics from agricultural management practices under climate change, Earth Syst. Dynam., 12, 1037–1055, https://doi.org/10.5194/esd-12-1037-2021, 2021.
Hijmans, R. J. and van Etten, J.: Raster: Geographic analysis and modeling with raster data, R
package version 2.0-12, http://CRAN.R-project.org/package=raster (last access: 3 February 2022), 2012.
Hirsch, A. L., Prestele, R., Davin, E. L., Seneviratne, S. I., Thiery, W.,
and Verburg, P. H.: Modelled biophysical impacts of conservation agriculture
on local climates, Glob. Change Biol., 24, 4758–4774, https://doi.org/10.1111/gcb.14362, 2018.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
IPCC: Cropland, in: Good Practice Guidance for Land Use, Land-Use Change and Forestry
(LULUCF), Chapter 3.3, edited by: Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti,
R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., and Wagner, F., IPCC National
Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies (IGES),
Intergovernmental Panel on Climate Change (IPCC) Japan, 2003.
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., and Lucht, W.: Water savings potentials of irrigation systems: global simulation of processes and linkages, Hydrol. Earth Syst. Sci., 19, 3073–3091, https://doi.org/10.5194/hess-19-3073-2015, 2015.
Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., and
Rockström, J.: Integrated crop water management might sustainably halve
the global food gap, Environ. Res. Lett., 11, 025002, https://doi.org/10.1088/1748-9326/11/2/025002, 2016.
Jian, J., Du, X., Reiter, M. S., and Stewart, R. D.: A meta-analysis of
global cropland soil carbon changes due to cover cropping, Soil Biol.
Biochem., 143, 107735, https://doi.org/10.1016/j.soilbio.2020.107735, 2020.
Jolly, W. M., Nemani, R., and Running, S. W.: A generalized, bioclimatic
index to predict foliar phenology in response to climate, Glob. Change
Biol., 11, 619–632, https://doi.org/10.1111/j.1365-2486.2005.00930.x,
2005.
Kassam, A., Friedrich, T., and Derpsch, R.: Global spread of Conservation
Agriculture, Int. J. Environ. Stud., 76, 29–51, https://doi.org/10.1080/00207233.2018.1494927, 2019.
Kaye, J. P. and Quemada, M.: Using cover crops to mitigate and adapt to
climate change. A review, Agron. Sustain. Dev., 37, 4, https://doi.org/10.1007/s13593-016-0410-x, 2017.
Keestra, S., Nunes, J., Novara, A., Finger, D., and Avelar, D.: The superior
effect of nature based solutions in land management for enhancing ecosystem
services, Sci. Total Environ., 610, 997–1009, https://doi.org/10.1016/j.scitotenv.2017.08.077, 2018.
Kollas, C., Kersebaum, K. C., Nendel, C., Manevski, K., Müller, C.,
Palosuo, T., Armas-Herrera, C. M., Beaudoin, N., Bindi, M., Charfeddine, M.,
Conradt, T., Constantin, J., Eitzinger, J., Ewert, F., Ferrise, R., Gaiser,
T., Cortazar-Atauri, I. G. d., Giglio, L., Hlavinka, P., Hoffmann, H.,
Hoffmann, M. P., Launay, M., Manderscheid, R., Mary, B., Mirschel, W.,
Moriondo, M., Olesen, J. E., Öztürk, I., Pacholski, A.,
Ripoche-Wachter, D., Roggero, P. P., Roncossek, S., Rötter, R. P.,
Ruget, F., Sharif, B., Trnka, M., Ventrella, D., Waha, K., Wegehenkel, M.,
Weigel, H.-J., and Wu, L.: Crop rotation modelling – A European model
intercomparison, Eur. J. Agron., 70, 98–111, https://doi.org/10.1016/j.eja.2015.06.007, 2015.
Kowalewski, J.: The performance assessment of vegetation models – Demonstration of a benchmarking system application Master of Science (Geographical Information Science & Systems), Master Thesis,
Interfakultärer Fachbereich für GeoInformatik (Z_GIS), Paris Lodron-Universität Salzburg, http://unigis.sbg.ac.at/files/Mastertheses/Full/103250.pdf (last access: 3 February 2022),
2016.
Kuo, S. and Sainju, U. M.: Nitrogen mineralization and availability of mixed
leguminous and non-leguminous cover crop residues in soil, Biol.
Fert. Soils, 26, 346–353, 1998.
Laborde, J. P., Wortmann, C. S., Blanco-Canqui, H., Baigorria, G. A., and
Lindquist, J. L.: Identifying the drivers and predicting the outcome of
conservation agriculture globally, Agr. Syst., 177, 102692, https://doi.org/10.1016/j.agsy.2019.102692, 2020.
Lal, R.: Carbon emission from farm operations, Environ. Int.,
30, 981–990, https://doi.org/10.1016/j.envint.2004.03.005, 2004a.
Lal, R.: Soil Carbon Sequestration Impacts on Global Climate Change and Food
Security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004b.
Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes, Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013, 2013.
Lee, N. and Thierfelder, C.: Weed control under conservation agriculture in
dryland smallholder farming systems of southern Africa. A review, Agron.
Sustain. Dev., 37, 48, https://doi.org/10.1007/s13593-017-0453-7, 2017.
Lutz, F., Herzfeld, T., Heinke, J., Rolinski, S., Schaphoff, S., von Bloh, W., Stoorvogel, J. J., and Müller, C.: Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage), Geosci. Model Dev., 12, 2419–2440, https://doi.org/10.5194/gmd-12-2419-2019, 2019.
Lutz, F., Del Grosso, S., Ogle, S., Williams, S., Minoli, S., Rolinski, S., Heinke, J., Stoorvogel, J. J., and Müller, C.: The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage, Geosci. Model Dev., 13, 3905–3923, https://doi.org/10.5194/gmd-13-3905-2020, 2020.
Marcillo, G. S. and Miguez, F.: Corn yield response to winter cover crops:
An updated meta-analysis, J. Soil Water Conserv., 72,
226–239, https://doi.org/10.2489/jswc.72.3.226 2017.
McDermid, S. S., Mearns, L. O., and Ruane, A. C.: Representing agriculture
in Earth System Models: Approaches and priorities for development, J. Adv. Model. Earth Sy., 9, 2230–2265, https://doi.org/10.1002/2016MS000749, 2017.
Meyer, N., Bergez, J.-E., Constantin, J., and Justes, E.: Cover crops reduce
water drainage in temperate climates: A meta-analysis, Agron. Sustain. Dev.,
39, 3, https://doi.org/10.1007/s13593-018-0546-y, 2018.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D.,
Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J.,
Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin,
M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C.,
Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I.,
Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G.,
van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma,
292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Morais, T. G., Teixeira, R. F. M., and Domingos, T.: Detailed global
modelling of soil organic carbon in cropland, grassland and forest soils,
PLOS ONE, 14, e0222604, https://doi.org/10.1371/journal.pone.0222604, 2019.
Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.: Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, 2017.
Nachtergaele, F., Van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn, K., van Engelen, V.,
Fischer, G., Jones, A., Montanarella, L., and Petri, M.: Harmonized World Soil Database
(version 1.1), Food and Agriculture Organization of the United Nations (FAO) [data set], Rome,
and IIASA, Laxenburg, 2009.
Nouri, A., Lee, J., Yoder, D. C., Jagadamma, S., Walker, F. R., Yin, X., and
Arelli, P.: Management duration controls the synergistic effect of tillage,
cover crop, and nitrogen rate on cotton yield and yield stability,
Agr. Ecosyst. Environ., 301, 107007, https://doi.org/10.1016/j.agee.2020.107007, 2020.
Nyawira, S. S., Nabel, J. E. M. S., Don, A., Brovkin, V., and Pongratz, J.: Soil carbon response to land-use change: evaluation of a global vegetation model using observational meta-analyses, Biogeosciences, 13, 5661–5675, https://doi.org/10.5194/bg-13-5661-2016, 2016.
Olin, S., Lindeskog, M., Pugh, T. A. M., Schurgers, G., Wårlind, D., Mishurov, M., Zaehle, S., Stocker, B. D., Smith, B., and Arneth, A.: Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching, Earth Syst. Dynam., 6, 745–768, https://doi.org/10.5194/esd-6-745-2015, 2015.
Paulsen, H. M. (Ed.): Integrating cover crops, in: Inventory of techniques for carbon sequestration in
agricultural soils, Interreg. North Sea Region,
Thünen-Institute of Organic Farming, Germany, https://northsearegion.eu/carbon-farming/ (last access: 3 February 2022), 2020.
Pierce, D.: Interface to Unidata netCDF (version 4 or earlier), Format Data Files, R package
version 1.15, https://cran.r-project.org/package=ncdf4 (last access: 3 February 2022), 2015.
Pittelkow, C. M., Liang, X., Linquist, B. A., van Groenigen, K. J., Lee, J.,
Lundy, M. E., van Gestel, N., Six, J., Venterea, R. T., and van Kessel, C.:
Productivity limits and potentials of the principles of conservation
agriculture, Nature, 517, 365–368, https://doi.org/10.1038/nature13809,
2015.
Poeplau, C. and Don, A.: Carbon sequestration in agricultural soils via
cultivation of cover crops – A meta-analysis, Agr. Ecosyst.
Environ., 200, 33–41, https://doi.org/10.1016/j.agee.2014.10.024,
2015.
Pongratz, J., Dolman, H., Don, A., Erb, K.-H., Fuchs, R., Herold, M., Jones,
C., Kuemmerle, T., Luyssaert, S., Meyfroidt, P., and Naudts, K.: Models meet
data: Challenges and opportunities in implementing land management in Earth
system models, Glob. Change Biol., 24, 1470–1487, https://doi.org/10.1111/gcb.13988,
2018.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling, Global Biogeochem.
Cy., 24, GB1011, https://doi.org/10.1029/2008GB003435, 2010.
Porwollik, V., Rolinski, S., Heinke, J., and Müller, C.: Generating a rule-based global gridded tillage dataset, Earth Syst. Sci. Data, 11, 823–843, https://doi.org/10.5194/essd-11-823-2019, 2019.
Porwollik, V., Rolinski, S., Heinke, J., von Bloh, W., Schaphoff, S., Herzfeld, T., and Müller,
C.: LPJmL5.0-tillage-cc model source code, management simulation outputs, and R script for
post-processing data (1.0.1), Zenodo [code, data set], https://doi.org/10.5281/zenodo.5178070, 2021.
Prestele, R., Hirsch, A. L., Davin, E. L., Seneviratne, S. I., and Verburg,
P. H.: A spatially explicit representation of conservation agriculture for
application in global change studies, Glob. Change Biol., 24, 4038–4053, https://doi.org/10.1111/gcb.14307, 2018.
Pugh, T. A. M., Arneth, A., Olin, S., Ahlström, A., Bayer, A. D., Klein
Goldewijk, K., Lindeskog, M., and Schurgers, G.: Simulated carbon emissions
from land-use change are substantially enhanced by accounting for
agricultural management, Environ. Res. Lett., 10, 124008, https://doi.org/10.1088/1748-9326/10/12/124008, 2015.
Quemada, M., Baranski, M., Nobel-de Lange, M. N. J., Vallejo, A., and
Cooper, J. M.: Meta-analysis of strategies to control nitrate leaching in
irrigated agricultural systems and their effects on crop yield, Agr.
Ecosyst. Environ., 174, 1–10,
https://doi.org/10.1016/j.agee.2013.04.018, 2013.
Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A.: Farming the
planet: 1. Geographic distribution of global agricultural lands in the year
2000, Global Biogeochem. Cy., 22, GB1003, https://doi.org/10.1029/2007GB002952,
2008.
Ranaivoson, L., Naudin, K., Ripoche, A., Rabeharisoa, L., and Corbeels, M.:
Effectiveness of conservation agriculture in increasing crop productivity in
low-input rainfed rice cropping systems under humid subtropical climate,
Field Crop. Res., 239, 104–113, https://doi.org/10.1016/j.fcr.2019.05.002, 2019.
R Development Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 3 February 2022), 2016.
Rohwer, J., Gerten, D., and Lucht, W.: Development of functional irrigation types for improved
global crop modelling, edited by: Gerstengarbe, F. W., PIK Report, 104, Potsdam Institute for
Climate Impact Research (PIK), Potsdam, 2007.
Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., and Thonicke, K.: Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6, Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, 2018.
Rosegrant, M. W., Koo, J., Cenacchi, N., Ringler, C., Robertson, R. D., Fisher, M., Cox, C. M.,
Garrett, K., Perez, N. D., and Sabbagh, P.: Food security in a world of natural resource scarcity:
The role of agricultural technologies, International Food Policy Research Institute (IFPRI),
Washington, D.C., https://doi.org/10.2499/9780896298477, 2014.
Rosenzweig, C., Mbow, C., Barioni, L. G., Benton, T. G., Herrero, M.,
Krishnapillai, M., Liwenga, E. T., Pradhan, P., Rivera-Ferre, M. G.,
Sapkota, T., Tubiello, F. N., Xu, Y., Mencos Contreras, E., and
Portugal-Pereira, J.: Climate change responses benefit from a global food
system approach, Nature Food, 1, 94–97, https://doi.org/10.1038/s43016-020-0031-z, 2020.
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting
dates: an analysis of global patterns, Global Ecol. Biogeogr., 19,
607–620, https://doi.org/10.1111/j.1466-8238.2010.00551.x, 2010.
SARE: Cover Crop Economics-Opportunities to Improve Your Bottom Line in Row Crops,
Agriculture Innovation, Technical Bulletin, Sustainable Agriculture Research and Education
(SARE), USA, 2019.
Schaphoff, S., Forkel, M., Müller, C., Knauer, J., von Bloh, W., Gerten, D., Jägermeyr, J., Lucht, W., Rammig, A., Thonicke, K., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation, Geosci. Model Dev., 11, 1377–1403, https://doi.org/10.5194/gmd-11-1377-2018, 2018a.
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description, Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, 2018b.
Scopel, E., Triomphe, B., Affholder, F., Da Silva, F. A. M., Corbeels, M.,
Xavier, J. H. V., Lahmar, R., Recous, S., Bernoux, M., Blanchart, E., de
Carvalho Mendes, I., and De Tourdonnet, S.: Conservation agriculture
cropping systems in temperate and tropical conditions, performances and
impacts. A review, Agron. Sustain. Dev., 33, 113–130, https://doi.org/10.1007/s13593-012-0106-9, 2013.
Siebert, S., Portmann, F. T., and Döll, P.: Global Patterns of Cropland
Use Intensity, Remote Sensing, 2, 1625–1643, https://doi.org/10.3390/rs2071625, 2010.
Smith, P.: Soil carbon sequestration and biochar as negative emission
technologies, Glob. Change Biol., 22, 1315–1324, https://doi.org/10.1111/gcb.13178, 2016.
Sommer, R. and Bossio, D.: Dynamics and climate change mitigation potential
of soil organic carbon sequestration, J. Environ. Manage.,
144, 83–87, https://doi.org/10.1016/j.jenvman.2014.05.017, 2014.
Springmann, M., Clark, M., Mason-D'Croz, D., Wiebe, K., Bodirsky, B. L.,
Lassaletta, L., de Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M.,
Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R.,
Scarborough, P., Rayner, M., Loken, B., Fanzo, J., Godfray, H. C. J.,
Tilman, D., Rockström, J., and Willett, W.: Options for keeping the food
system within environmental limits, Nature, 562, 519–525, https://doi.org/10.1038/s41586-018-0594-0, 2018.
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi,
N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. d. R. d.,
Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M.,
Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O'Donnell,
A. G., Parton, W. J., Whitehead, D., and Zimmermann, M.: The knowns, known
unknowns and unknowns of sequestration of soil organic carbon, Agr.
Ecosyst. Environ., 164, 80–99, https://doi.org/10.1016/j.agee.2012.10.001, 2013.
Su, Y., Gabrielle, B., and Makowski, D.: A global dataset for crop
production under conventional tillage and no tillage systems, Scientific
Data, 8, 33, https://doi.org/10.1038/s41597-021-00817-x, 2021.
Tans, P. and Keeling, R.: Trends in Atmospheric Carbon Dioxide National Oceanic &
Atmospheric Administration and Earth System Research Laboratory (NOAA/ESRL), U.S.
Department of Commerce [data set], US, 2015.
Thapa, R., Mirsky, S. B., and Tully, K. L.: Cover Crops Reduce Nitrate
Leaching in Agroecosystems: A Global Meta-Analysis, J. Environ.
Qual., 47, 1400–1411, https://doi.org/10.2134/jeq2018.03.0107, 2018.
Thierfelder, C., Baudron, F., Setimela, P., Nyagumbo, I., Mupangwa, W.,
Mhlanga, B., Lee, N., and Gérard, B.: Complementary practices supporting
conservation agriculture in southern Africa. A review, Agron. Sustain. Dev.,
38, 16, https://doi.org/10.1007/s13593-018-0492-8, 2018.
Tittonell, P., Scopel, E., Andrieu, N., Posthumus, H., Mapfumo, P.,
Corbeels, M., van Halsema, G. E., Lahmar, R., Lugandu, S., Rakotoarisoa, J.,
Mtambanengwe, F., Pound, B., Chikowo, R., Naudin, K., Triomphe, B., and
Mkomwa, S.: Agroecology-based aggradation-conservation agriculture (ABACO):
Targeting innovations to combat soil degradation and food insecurity in
semi-arid Africa, Field Crop. Res., 132, 168–174, https://doi.org/10.1016/j.fcr.2011.12.011, 2012.
Tonitto, C., David, M. B., and Drinkwater, L.: Replacing Bare Fallows with
Cover Crops in Fertilizer-Intensive Cropping Systems: A Meta-Analysis of
Crop Yield and N Dynamics, Agr. Ecosyst. Environ., 112,
58–72, https://doi.org/10.1016/j.agee.2005.07.003, 2006.
Valkama, E., Lemola, R., Känkänen, H., and Turtola, E.:
Meta-analysis of the effects of undersown catch crops on nitrogen leaching
loss and grain yields in the Nordic countries, Agr. Ecosyst.
Environ., 203, 93–101, https://doi.org/10.1016/j.agee.2015.01.023,
2015.
von Bloh, W., Schaphoff, S., Müller, C., Rolinski, S., Waha, K., and Zaehle, S.: Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0), Geosci. Model Dev., 11, 2789–2812, https://doi.org/10.5194/gmd-11-2789-2018, 2018.
Waha, K., Dietrich, J. P., Portmann, F. T., Siebert, S., Thornton, P. K.,
Bondeau, A., and Herrero, M.: Multiple cropping systems of the world and the
potential for increasing cropping intensity, Global Environ. Chang.,
64, 102131, https://doi.org/10.1016/j.gloenvcha.2020.102131, 2020.
West, T. O. and Six, J.: Considering the influence of sequestration duration
and carbon saturation on estimates of soil carbon capacity, Climatic Change,
80, 25–41, https://doi.org/10.1007/s10584-006-9173-8, 2007.
West, T. O., Marland, G., King, A. W., Post, W. M., Jain, A. K., and
Andrasko, K.: Carbon Management Response Curves: Estimates of Temporal Soil
Carbon Dynamics, Environ. Manage., 33, 507–518, https://doi.org/10.1007/s00267-003-9108-3, 2004.
Wittwer, R. A., Dorn, B., Jossi, W., and van der Heijden, M. G. A.: Cover
crops support ecological intensification of arable cropping systems,
Sci. Rep.-UK, 7, 41911, https://doi.org/10.1038/srep41911, 2017.
Zhang, B., Tian, H., Lu, C., Dangal, S. R. S., Yang, J., and Pan, S.: Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for Earth system modeling, Earth Syst. Sci. Data, 9, 667–678, https://doi.org/10.5194/essd-9-667-2017, 2017.
Zhu, B., Yi, L., Guo, L., Chen, G., Hu, Y., Tang, H., Xiao, C., Xiao, X., Yang, G., Acharya, S.
N., and Zeng, Z.: Performance of two winter cover
crops and their impacts on soil properties and two subsequent rice crops in
Dongting Lake Plain, Hunan, China, Soil Till. Res., 124, 95–101, https://doi.org/10.1016/j.still.2012.05.007, 2012.
Zomer, R. J., Bossio, D. A., Sommer, R., and Verchot, L. V.: Global
Sequestration Potential of Increased Organic Carbon in Cropland Soils,
Sci. Rep.-UK, 7, 15554, https://doi.org/10.1038/s41598-017-15794-8, 2017.
Short summary
The study assesses impacts of grass cover crop cultivation on cropland during main-crop off-season periods applying the global vegetation model LPJmL (V.5.0-tillage-cc). Compared to simulated bare-soil fallowing practices, cover crops led to increased soil carbon content and reduced nitrogen leaching rates on the majority of global cropland. Yield responses of main crops following cover crops vary with location, duration of altered management, crop type, water regime, and tillage practice.
The study assesses impacts of grass cover crop cultivation on cropland during main-crop...
Altmetrics
Final-revised paper
Preprint