Articles | Volume 20, issue 9
https://doi.org/10.5194/bg-20-1725-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1725-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Amanda Gerotto
CORRESPONDING AUTHOR
Oceanographic Institute, University of São Paulo, São Paulo,
Brazil
Center for Marine Studies, Federal University of Paraná, Pontal do
Paraná, Brazil
Geological Institute, ETH Zurich, Zurich, Switzerland
Renata Hanae Nagai
Center for Marine Studies, Federal University of Paraná, Pontal do
Paraná, Brazil
Heather M. Stoll
Geological Institute, ETH Zurich, Zurich, Switzerland
Rubens César Lopes Figueira
Oceanographic Institute, University of São Paulo, São Paulo,
Brazil
Chuanlian Liu
State Key Laboratory of Marine Geology, Tongji
University, Shanghai, China
Iván Hernández-Almeida
Geological Institute, ETH Zurich, Zurich, Switzerland
Related authors
No articles found.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Laura Endres, Carlos Pérez-Mejías, Ruza Ivanovic, Lauren Gregoire, Anna L. C. Hughes, Hai Cheng, and Heather Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2025-3911, https://doi.org/10.5194/egusphere-2025-3911, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Stable isotope data of a precisely dated stalagmite from northwestern Iberia indicate gradual North Atlantic meltwater input during the last glacial maximum, followed by abrupt surges early in the last deglaciation. The first abrupt surge was followed by cooling about 850 years later – unlike later events – which reveals that the Atlantic circulation’s sensitivity to meltwater is variable and related to the evolving background climate boundary conditions.
Heather Stoll, Clara Bolton, Madalina Jaggi, Alfredo Martinez-Garcia, and Stefano Bernasconi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2449, https://doi.org/10.5194/egusphere-2025-2449, 2025
Short summary
Short summary
In periods of high atmospheric CO2 many proxies suggest more extreme past polar warming than is simulated by current coupled climate models. Providing new data on high latitude temperatures in the South Atlantic over the last 15 million years using clumped isotope thermometry, we show that absolute temperatures may not have been as warm as indicated by some biomarker based proxy climate records.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Nicolas Tapia, Laura Endres, Madalina Jaggi, and Heather Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2025-1000, https://doi.org/10.5194/egusphere-2025-1000, 2025
Short summary
Short summary
We use stalagmites to study past changes in the terrestrial P cycle. Our P records from multiple, coeval stalagmites from NW Spain, show that past abrupt cooling events are characterized by multi-century reproducible peaks in stalagmite P which reflect higher groundwater P/Ca concentrations and enhanced P export, potentially resulting from increased freeze-thaw frequency and more intense infiltration from snowmelt.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
José Guitián, Samuel R. Phelps, Reto S. Wijker, Pratigya J. Polissar, Laura Arnold, and Heather M. Stoll
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-65, https://doi.org/10.5194/cp-2024-65, 2024
Preprint under review for CP
Short summary
Short summary
We reconstructed from sediments of different ocean sites phytoplankton carbon isotopic fractionation (εp), mainly linked to CO2 variations, during the Oligocene to early Miocene. Records confirm long-term trends but show contrasting relationships with the sea surface temperatures evolution. We evaluate the role of non-CO2 physiological factors such as temperature and nutrients at each site εp, highlighting the complexity of interpreting climate dynamics and CO2 reconstructions.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Nikita Kaushal, Carlos Perez-Mejias, and Heather M. Stoll
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-37, https://doi.org/10.5194/cp-2024-37, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Terminations are large magnitude rapid events triggered in the North Atlantic region that manifest across the global climate system. They provide key examples of climatic teleconnections and dynamics. In this study, we use the SISAL global speleothem database and find that there are sufficient climatic records from key locations to make speleothems a valuable archive for studying Terminations and provide instances for more targeted work on speleothem research.
Yuji Kato, Iván Hernández-Almeida, and Lara F. Pérez
J. Micropalaeontol., 43, 93–119, https://doi.org/10.5194/jm-43-93-2024, https://doi.org/10.5194/jm-43-93-2024, 2024
Short summary
Short summary
In this study, we propose an age framework for an interval of 4.8–3.1 million years ago, using fossil records of marine plankton such as diatoms and radiolarians derived from a sediment core collected in the Southern Ocean. Specifically, a total of 19 bioevents (i.e., extinction/appearance events of selected age marker species) were detected, and their precise ages were calculated. The updated biostratigraphy will contribute to future paleoceanographic work in the Southern Ocean.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Paula Diz, Víctor González-Guitián, Rita González-Villanueva, Aida Ovejero, and Iván Hernández-Almeida
Earth Syst. Sci. Data, 15, 697–722, https://doi.org/10.5194/essd-15-697-2023, https://doi.org/10.5194/essd-15-697-2023, 2023
Short summary
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Michel Michaelovitch de Mahiques, Roberto Violante, Paula Franco-Fraguas, Leticia Burone, Cesar Barbedo Rocha, Leonardo Ortega, Rosangela Felicio dos Santos, Bianca Sung Mi Kim, Rubens Cesar Lopes Figueira, and Marcia Caruso Bícego
Ocean Sci., 17, 1213–1229, https://doi.org/10.5194/os-17-1213-2021, https://doi.org/10.5194/os-17-1213-2021, 2021
Short summary
Short summary
In this work we used a concept called geochemical fingerprinting, with isotopes of neodymium and lead as tools to recognize the main sources and the physical processes responsible for the transport and deposition of sediments on a large area of the South Atlantic margin. Distinct sources, such as Antarctica, the Andean Cordillera, the Río de la Plata basin, and old rocks from the Brazilian shield, are identified.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Hongrui Zhang, Chuanlian Liu, Luz María Mejía, and Heather Stoll
Biogeosciences, 18, 1909–1916, https://doi.org/10.5194/bg-18-1909-2021, https://doi.org/10.5194/bg-18-1909-2021, 2021
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Cited articles
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the
glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38,
159–189, https://doi.org/10.1029/1999RG000066, 2000.
Barker, S. and Elderfield, H.: Foraminiferal calcification response to
glacial-interglacial changes in atmospheric CO2, Science, 297,
833–836, https://doi.org/10.1126/science.1072815, 2002.
Båtvik, H., Heimdal, B. R., Fagerbakke, K. M., and Green, J. C.: Effects of
unbalanced nutrient regime on coccolith morphology and size in Emiliania huxleyi (Prymnesiophyceae),
Eur. J. Phycol., 32, 155–165,
https://doi.org/10.1080/09670269710001737089, 1997.
Beaufort, L.: Weight estimates of coccoliths using the optical properties
(birefringence) of calcite, Micropaleontology, 51, 289–297,
https://doi.org/10.2113/gsmicropal.51.4.289, 2005.
Beaufort, L., Probert, I., and Buchet, N.: Effects of acidification and
primary production on coccolith weight: Implications for carbonate transfer
from the surface to the deep ocean, Geochem. Geophy. Geosy., 8, 1–18,
https://doi.org/10.1029/2006GC001493, 2007.
Beaufort, L., Probert, I., De Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino,
D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., and de Vargas, C.: Sensitivity of coccolithophores to carbonate chemistry
and ocean acidification, Nature, 476, 80–83,
https://doi.org/10.1038/nature10295, 2011.
Beaufort, L., Gally, Y., Suchéras-Marx, B., Ferrand, P., and Duboisset, J.: Technical note: A universal method for measuring the thickness of microscopic calcite crystals, based on bidirectional circular polarization, Biogeosciences, 18, 775–785, https://doi.org/10.5194/bg-18-775-2021, 2021.
Beaufort, L., Bolton, C. T., Sarr, A. C., Suchéras-Marx, B., Rosenthal, Y., Donnadieu, Y., Barbarin, N., Bova, S., Cornuault, P., Gally, Y., Gray, E., Mazur, J. C., and Tetard, M.: Cyclic evolution of
phytoplankton forced by changes in tropical seasonality, Nature, 601,
79–84, https://doi.org/10.1038/s41586-021-04195-7, 2022.
Bollmann, J.: Technical Note: Weight approximation of coccoliths using a circular polarizer and interference colour derived retardation estimates – (The CPR Method), Biogeosciences, 11, 1899–1910, https://doi.org/10.5194/bg-11-1899-2014, 2014.
Bollmann, J. and Herrle, J. O.: Morphological variation of Emiliania huxleyi and sea surface
salinity, Earth Planet. Sc. Lett., 255, 273–288,
https://doi.org/10.1016/j.epsl.2006.12.029, 2007.
Bolton, C. T., Hernández-Sánchez, M. T., Fuertes, M. Á.,
González-Lemos, S., Abrevaya, L., Mendez-Vicente, A., Flores, J.-A., Probert, I., Giosan, L., Johnson, J., and Stoll, H. M.: Decrease in
coccolithophore calcification and CO2 since the middle Miocene, Nat.
Commun., 7, 10284, https://doi.org/10.1038/ncomms10284, 2016.
Bordiga, M., Bartol, M., and Henderiks, J.: Absolute nannofossil abundance
estimates: Quantifying the pros and cons of different techniques, Rev.
Micropaleontol., 58, 155–165, https://https://doi.org/10.1016/j.revmic.2015.05.002,
2015.
Broecker, W. S. and Clark, E.: Glacial-to-Holocene Redistribution of
Carbonate Ion in the Deep Sea, Science, 294, 2152–2155,
http://www.jstor.org/stable/3085356 (last access: 22 October 2022), 2001.
Broerse, A. T. C., Ziveri, P., and Honjo, S.: Coccolithophore (-CaCO3)
flux in the Sea of Okhotsk: Seasonality, settling and alteration processes,
Mar. Micropaleontol., 39, 179–200,
https://doi.org/10.1016/S0377-8398(00)00020-7, 2000.
Buiteveld, H.: A model for calculation of diffuse light attenuation (PAR) and
Secchi depth, Neth. J. Aquat. Ecol., 29, 55–65,
https://doi.org/10.1007/BF02061789, 1995.
Charalampopoulou, A., Poulton, A. J., Bakker, D. C. E., Lucas, M. I., Stinchcombe, M. C., and Tyrrell, T.: Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean), Biogeosciences, 13, 5917–5935, https://doi.org/10.5194/bg-13-5917-2016, 2016.
Chen, C. T. A., Wang, S. L., Wang, B. J., and Pai, S. C.: Nutrient budgets
for the South China sea basin, Mar. Chem., 75, 281–300,
https://doi.org/10.1016/S0304-4203(01)00041-X, 2001.
Chen, C. T. A., Wang, S. L., Chou, W. C., and Sheu, D. D.: Carbonate
chemistry and projected future changes in pH and CaCO3 saturation state of
the South China Sea, Mar. Chem., 101, 277–305,
https://doi.org/10.1016/j.marchem.2006.01.007, 2006.
Chen, Y. L. L.: Spatial and seasonal variations of nitrate-based new
production and primary production in the South China Sea, Deep-Sea Res. Pt.
I, 52, 319–340, https://doi.org/10.1016/j.dsr.2004.11.001, 2005.
Chen, Y. L. L., Chen, H. Y., and Chung, C. W.: Seasonal variability of
coccolithophore abundance and assemblage in the northern South China Sea,
Deep-Sea Res. Pt. II, 54, 1617–1633,
https://doi.org/10.1016/j.dsr2.2007.05.005, 2007.
Chou, W. C., Sheu, D. D., Lee, B. S., Tseng, C. M., Chen, C. T. A., Wang, S.
L., and Wong, G. T. F.: Depth distributions of alkalinity, TCO2 and
δ13 CTCO2 at SEATS time-series site in the northern South
China Sea, Deep-Sea Res. Pt. II, 54,
1469–1485, https://doi.org/10.1016/j.dsr2.2007.05.002, 2007.
Conkright, M. E., Locarnini, R. A., Garcia, H. E., O'Brien, T. D., Boyer, T.
P., Stephens, C., and Antonov, J. I.: World Ocean Atlas 2001: Objective Analyses,
Data Statistics, and Figures, CD-ROM Documentation, National Oceanographic
Data Center, Silver Spring, MD, 17 pp., 2002.
Emerson, S. R. and Archer, D. Calcium carbonate preservation in the ocean,
Philos. T. R. Soc. A, 331, 29–40,
https://doi.org/10.1098/rsta.1990.0054, 1990.
Eppley, R. W., Rogers, J. N., and Mccarthy, J. J.: Half-saturation constants
for uptake of nitrate and ammonia, Limnol. Oceanogr., 14, 912–920,
https://doi.org/10.4319/lo.1969.14.6.0912, 1969.
Feldmeijer, W., Metcalfe, B., Scussolini, P., and Arthur, K.: The effect of
chemical pretreatment of sediment upon foraminiferal-based
proxies, Geochem. Geophy., Geosy., 14, 3996–4014,
https://doi.org/10.1002/ggge.20233, 2013.
Fernando, A. G. S., Peleo-Alampay, A. M., Lucero, E. S., and Wiesner, M. G.:
Surface sediment distribution of Florisphaera profunda in the South China Sea: an effect of
dissolution?, J. Nannoplankton Res., 29, 102–07, 2007a.
Flores, J. A., Marino, M., Sierro, F. J., Hodell, D. A., and Charles, C. D.:
Calcareous plankton dissolution pattern and coccolithophore assemblages
during the last 600 kyr at ODP Site 1089 (Cape Basin, South Atlantic):
Paleoceanographic implications, Palaeogeogr. Palaeocl., 196, 409–426,
https://doi.org/10.1016/S0031-0182(03)00467-X, 2003.
Fuertes, M. Á., Flores, J. A., and Sierro, F. J.: The use of circularly
polarized light for biometry, identification and estimation of mass of
coccoliths, Mar. Micropaleontol., 113, 44–55,
https://doi.org/10.1016/j.marmicro.2014.08.007, 2014.
Gerotto, A., Zhang, H., Nagai, R. H., Stoll, H. M., Figueira, R. C. L.,
Chuanlian, L., and Hernández-Almeida, I.: Morphological measurements of coccoliths from surface samples of South China Sea, Zenodo [data set],
https://doi.org/10.5281/zenodo.7271441, 2022.
Gerotto, A., Zhang, H., Nagai, R. H., Stoll, H. M., Figueira, R. C. L.,
Chuanlian, L., and Hernández-Almeida, I.: Morphological measurements of
coccoliths from surface samples of R/V SONNE cruise
SO95, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.954015, 2023a.
Gerotto, A., Zhang, H., Nagai, R. H., Stoll, H. M., Figueira, R. C. L.,
Chuanlian, L., and Hernández-Almeida, I.: Coccolith dissolution
experiment from one sample of ODP Hole
130-807A, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.954016, 2023b.
González-Lemos, S., Guitián, J., Fuertes, M.-Á., Flores, J.-A., and Stoll, H. M.: Technical note: An empirical method for absolute calibration of coccolith thickness, Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, 2018.
Goyet, C., Healy, R. J., and Ryan, J. P.: Global distribution of total
inorganic carbon and total alkalinity below the deepest winter mixed layer
depths, ORNL/CDIAC-127, NDP-076, Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
Tennessee, 40 pp., https://doi.org/10.2172/760546, 2000.
Guitián, J., Dunkley Jones, T., Hernández-Almeida, I., Löffel,
T., and Stoll, H. M.: Adaptations of coccolithophore size to selective
pressures during the Oligocene to Early Miocene high CO2 world,
Paleoceanogr. Paleocl., 35, e2020PA003918,
https://doi.org/10.1029/2020PA003918, 2020.
Guitián, J., Fuertes, M. Á., Flores, J.-A., Hernández-Almeida, I., and Stoll, H.: Variation in calcification of Reticulofenestra coccoliths over the Oligocene–Early Miocene, Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, 2022.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for Education and Data Analysis, Palaeontol.
Electron., 4, 1–9, https://doi.org/10.1016/j.bcp.2008.05.025, 2001.
Hay, W. W.: Carbonate fluxes and calcareous nannoplankton, in: Coccolithophores: From Molecular Processes
to Global Impact, edited by: Thierstein, H. and Young, J., Springer, Berlin, 509–528, 2004.
Henderiks, J. and Pagani, M.: Refining ancient carbon dioxide estimates:
Significance of coccolithophore cell size for alkenone-based pCO2
records, Paleoceanography, 22, 1–12,
https://doi.org/10.1029/2006PA001399, 2007.
Holcová, K. and Scheiner, F.: An experimental study on post-mortem
dissolution and overgrowth processes affecting coccolith assemblages: A
rapid and complex process, Geobiology, 21, 193–209,
https://doi.org/10.1111/gbi.12528, 2023.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J.,
Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto Jr., T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B.: The geological record of ocean acidification, Science,
335, 1058–1063, https://doi.org/10.1126/science.1208277, 2012.
Huang, W. and Wang, P.: Sediment mass and distribution in the South China
Sea since the Oligocene, Sci. China Ser. D, 49, 1147–1155,
https://https://doi.org/10.1007/s11430-006-2019-4, 2006.
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R.,
Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., Dassow, P. V., Rehm, E., Armbrust, E. V., and Boessenkool, K. P.: Phytoplankton calcification in
a high-CO2 world, Science, 320, 336–340,
https://doi.org/10.1126/science.1154122, 2008.
IPCC: Climate Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R.,
Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O.,
Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M.,
Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J.,
Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., in press,
2019.
Iwasaki, S., Kimoto, K., Sasaki, O., Kano, H., Honda, M. C., and Okazaki, Y.:
Observation of the dissolution process of Globigerina bulloides tests (planktic foraminifera) by
X-ray microcomputed tomography, Paleoceanography, 30, 317–331,
https://doi.org/10.1002/2014PA002639, 2015.
Iwasaki, S., Kimoto, K., Okazaki, Y., and Ikehara, M.: Micro-CT scanning of
tests of three planktic foraminiferal species to clarify dissolution process
and progress, Geochem. Geophy. Geosy., 20, 6051–6065,
https://doi.org/10.1029/2019GC008456, 2019.
Johnsen, S. L. and Bollmann, J.: Segmentation, retardation and mass
approximation of birefringent particles on a standard light microscope, J.
Microsc., 280, 30–50, https://doi.org/10.1111/jmi.12932, 2020.
Jin, X., Liu, C., Poulton, A. J., Dai, M., and Guo, X.: Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content, Biogeosciences, 13, 4843–4861, https://doi.org/10.5194/bg-13-4843-2016, 2016.
Jin, X., Liu, C., and Zhang, H.: Coccolith morphological and assemblage
responses to dissolution in the recent sediments of the East China Sea, Mar.
Micropaleontol., 152, 101709,
https://doi.org/10.1016/j.marmicro.2018.09.001, 2019.
Jin, X., Liu, C., Xu, J., and Guo, X.: Coccolithophore abundance, degree of
calcification, and their contribution to particulate inorganic carbon in the
South China Sea, J. Geophys. Res.-Biogeo., 127, e2021JG006657,
https://doi.org/10.1029/2021JG006657, 2022a.
Jin, X., Ma, W., and Liu, C.: Origin of the long-term increase in coccolith
size and its implication for carbon cycle and climate over the past 2 Myr, Quaternary Sci. Rev., 290, 107642,
https://doi.org/10.1016/j.quascirev.2022.107642, 2022b.
Le, J. and Shackleton, N. J.: Carbonate dissolution fluctuations in the
western equatorial Pacific during the late Quaternary, Paleoceanography, 7,
21–42, https://doi.org/10.1029/91PA02854, 1992.
Libes, S. M.: An Introduction to Marine Biogeochemistry, 2nd Edn., edited by: Noone, K., Sumaila, R., and Diaz, R. J., Burlington,
MA,
Academic Press, Valuing the
Oceans, Stockholm Environmental Institute, 928 pp., ISBN 9780080916644, 2009.
Lin, J., Lee, Z., Ondrusek, M., and Du, K.: Remote sensing of normalized
diffuse
attenuation coefficient of downwelling irradiance, J. Geophys. Res.-Oceans,
121, 6717–6730, https://doi.org/10.1002/2016JC011895, 2016.
Liu, J., Xiang, R., Chen, M., Chen, Z., Yan, W., and Liu, F.: Influence of
the Kuroshio current intrusion on depositional environment in the Northern
South China Sea: Evidence from surface sediment records, Mar. Geol.,
285, 59–68, https://doi.org/10.1016/j.margeo.2011.05.010, 2011.
Lohman, G. P.: A model for variation in the chemistry of planktonic
foraminifera due to secondary calcification and selective dissolution,
Paleoceanogr. Paleocl., 10, 445–457,
https://doi.org/10.1029/95PA00059, 1995.
Luo, Y., Kienast, M., and Boudreau, B. P.: Invariance of the carbonate
chemistry of the South China Sea from the glacial period to the Holocene and
its implications to the Pacific Ocean carbonate system, Earth Planet. Sc.
Lett., 492, 112–120, https://doi.org/10.1016/j.epsl.2018.04.005, 2018.
Marsaglia, K., Milliken, K., Leckie, R., M., Tentori, D., Doran, L. IODP
Smear Slide Digital Reference for Sediment Analysis of Marine Mud. Part 2:
Methodology and Atlas of Biogenic Components, IODP Technical Note 2, International Ocean Discovery Program, 382 pp.,
https://doi.org/10.14379/iodp.tn.2.2015, 2015.
Murtugudde, R., Beauchamp, J., McClain, C. R., Lewis, M., and Busalacchi, A.:
Effects of penetrative radiation on the upper tropical ocean circulation, J.
Climate, 15, 470–486, https://doi.org/10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2, 2002.
Olson, H. C. and Smart, C. W.: Pleistocene climatic history reflected in planktonic foraminifera from ODP Site 1073 (Leg 174A), New Jersey margin, NW Atlantic Ocean, Mar. Micropaleontol., 51, 213–238, https://doi.org/10.1016/j.marmicro.2003.11.002, 2004.
Paasche, E.: Roles of nitrogen and phosphorus in coccolith formation in
Emiliania huxleyi (Prymnesiophyceae), Eur. J. Phycol., 33, 33–42,
https://doi.org/10.1080/09670269810001736513, 1998.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Helen, K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The heartbeat of the Oligocene climate system, Science,
314, 1894–1898, https://doi.org/10.1126/science.1133822, 2006.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K.,
Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S.M., Bown, P., Busch, W., Channell, J. E. T., Chun, C. O. J., Delaney, M., Dewangan, P., Jones, T. D., Edgar, K. M., Evans, H., Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C., Hayashi, H., Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore, T. C., Murphy, B. H., Murphy, D. P., Nakamura, H., Organe, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.: A Cenozoic record of the equatorial Pacific carbonate compensation
depth, Nature, 488, 609–614, https://doi.org/10.1038/nature11360,
2012.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel Program Developed for
CO2 System Calculations – version 2.1, ORNL/CDIAC-105a, Carbon Dioxide
Information Analysis Center, Oak Ridge National Laboratory, U.S. Department
of Energy, Oak Ridge, Tennessee,
https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_XLS_v2.1/ (last access: 28 July 2021), 2006.
Qu, T., Girton, J. B., and Whitehead, J. A.: Deepwater overflow through Luzon
Strait, J. Geophys. Res., 111, C01002,
https://doi.org/10.1029/2005JC003139, 2006.
Qu, T., Song, Y. T., and Yamagata, T.: An introduction to the South China Sea
throughflow: Its dynamics, variability, and application for climate, Dynam.
Atmos. Oceans, 47, 3–14,
https://doi.org/10.1016/j.dynatmoce.2008.05.001, 2009.
Rae, J. W. B., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M., and
Whiteford, R. D. M.: Atmospheric CO2 over the past 66 million years from
marine archives, Annu. Rev. Earth Pl. Sc., 49, 609–641,
https://doi.org/10.1146/annurev-earth-082420-063026, 2021.
Raven, J. A. and Crawfurd, K.: Environmental controls on coccolithophore
calcification, Mar. Ecol.-Prog. Ser., 470, 137–166, https://doi.org/10.3354/meps09993, 2012.
Rhodes, L. L., Peake, B. M., MacKenzie, A. L., and Marwick, S.:
Coccolithophores Gephyrocapsa oceanica and Emiliania huxleyi (Prymnesiophyceae = Haptophyceae) in New Zealand's
coastal waters: Characteristics of blooms and growth in laboratory culture,
New Zeal. J. Mar. Fresh., 29, 345–357,
https://doi.org/10.1080/00288330.1995.9516669, 1995.
Rickaby, R. E. M., Bard, E., Sonzogni, C., Rostek, F., Beaufort, L., Barker,
S., Rees, G., and Schrag, D. P.: Coccolith chemistry reveals secular variations in the global
ocean carbon cycle?, Earth Planet. Sc. Lett., 253, 83–95,
https://doi.org/10.1016/j.epsl.2006.10.016, 2007.
Ridgwell, A. and Zeebe, R. E.: The role of the global carbonate cycle in the
regulation and evolution of the Earth system, Earth Planet. Sc. Lett.,
234, 299–315, https://doi.org/10.1016/j.epsl.2005.03.006, 2005.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and
Morel, F. M. M.: Reduced calcification of marine plankton in response to
increased atmospheric CO2, Nature, 407, 364–367,
https://doi.org/10.1038/35030078, 2000.
Rigual-Hernández, A. S., Trull, T. W., Nodder, S. D., Flores, J. A., Bostock, H., Abrantes, F., Eriksen, R. S., Sierro, F. J., Davies, D. M., Ballegeer, A.-M., Fuertes, M. A., and Northcote, L. C.: Coccolithophore biodiversity controls carbonate export in the Southern Ocean, Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, 2020a.
Rigual-Hernández, A. S., Sánchez-Santos, J. M., Eriksen, R., Moy, A.
D., Sierro, F. J., Flores, J. A., Abrantes, F., Bostock, H., Nodder, S. D., González-Lanchas, A., and Trull, T. W.: Limited variability in the
phytoplankton Emiliania huxleyi since the pre-industrial era in the Subantarctic Southern
Ocean, Anthropocene, 31, 100254,
https://doi.org/10.1016/j.ancene.2020.100254, 2020b.
Roth, P. H. and Berger, W. H.: Distribution and dissolution of coccoliths in the South and Central Pacific, in: Dissolution of Deep-Sea Carbonates, edited by: Sliter, W. V., Be, A. W. H., and Berger, W. H., Cushman Foundation Foraminiferal Research, Spec. Publ., 13, 87–113, ISBN 9781970168075, 1975.
Roth, P. H. and Coulbourn, W. T.: Floral and solution patterns of coccoliths
in surface sediments of the North Pacific, Mar. Micropaleontol., 7, 1–52,
https://doi.org/10.1016/0377-8398(82)90014-7, 1982.
Sarmiento, J. L. and Gruber, N. (Eds.): Ocean Biogeochemical dynamics, Princeton, NJ,
Woodstock, Princeton University Press, 528 pp., ISBN 0691017077, 2006.
Schlitzer, R.: Ocean data View, https://odv.awi.de (last access: 28 June 2021), 2019.
Smart, C. W.: Abyssal NE Atlantic benthic foraminifera during the last 15 kyr: Relation to variations in seasonality of productivity, Mar. Micropaleontol., 69, 193–211, https://doi.org/10.1016/j.marmicro.2008.07.007, 2008.
Stoll, H. M. and Ziveri, P.: Separation of monospecific and restricted coccolith
assemblages from sediments using differential settling velocity, Mar.
Micropaleontol., 46, 209–221,
https://doi.org/10.1016/S0377-8398(02)00040-3, 2002.
Su, X., Liu, C., and Beaufort, L.: Late Quaternary coccolith weight
variations in the northern South China Sea and their environmental controls,
Mar. Micropaleontol., 154, 101798,
https://doi.org/10.1016/j.marmicro.2019.101798, 2020.
Subhas, A. V., Dong, S., Naviaux, J. D., Rollins, N. E., Ziveri, P., Gray,
W., Rae, J. W. B., Liu, X., Byrne, R. H., Chen, S., Moore, C., Martell-Bonet, L., Steiner, Z., Antler, G., Hu, H., Lunstrum, A., Hou, Y., Kemnitz, N., Stutsman, J., Pallacks, S., Dugenne, M., Quay, P. D., Berelson, W. M., and Adkins, J. F.: Shallow calcium carbonate cycling in the North Pacific Ocean,
Global Biogeochem. Cy., 36, 1–22, https://doi.org/10.1029/2022GB007388,
2022.
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic,
B. K., and Key, R. M.: Current CaCO3 dissolution at the seafloor caused
by anthropogenic CO2, P. Natl. Acad. Sci. USA, 115, 11700–11705,
https://doi.org/10.1073/pnas.1804250115, 2018.
Sulpis, O., Jeansson, E., Dinauer, A., Lauvset, S. K., and Middelburg, J. J.:
Calcium carbonate dissolution patterns in the ocean, Nat. Geosci., 14,
423–428, https://doi.org/10.1038/s41561-021-00743-y, 2021.
Thunell, R. C., Qingmin, M., Calvert, S. E., and Pedersen, T. F.:
Glacial-Holocene biogenic sedimentation patterns in the South China Sea:
Productivity variations and surface water pCO2, Paleoceanography, 7,
143–162, https://doi.org/10.1029/92PA00278, 1992.
Tian, J., Huang, E., and Pak, D. K.: East Asian winter monsoon variability
over the last glacial cycle: Insights from a latitudinal sea-surface
temperature gradient across the South China Sea, Palaeogeogr. Palaeocl.,
292, 319–324, https://doi.org/10.1016/j.palaeo.2010.04.005, 2010.
USGCRP: Climate Science Special Report: Fourth National Climate Assessment,
Volume I, edited by: Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., Dokken, D. J.,
Stewart, B. C., and Maycock, T. K., U.S. Global Change Research
Program, Washington, DC, USA, 470 pp., https://doi.org/10.7930/J0J964J6, 2017.
Vollmar, N. M., Baumann, K.-H., Saavedra-Pellitero, M., and Hernández-Almeida, I.: Distribution of coccoliths in surface sediments across the Drake Passage and calcification of Emiliania huxleyi morphotypes, Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, 2022.
Wan, S. and Jian, Z.: Deep water exchanges between the South China Sea and
the Pacific since the last glacial period, Paleoceanography, 29,
1162–1178, https://doi.org/10.1002/2013PA002578, 2014.
Wan, S., Jian, Z., and Dang, H.: Deep Hhydrography of the South China Sea and
deep water circulation in the Pacific since the Last Glacial Maximum,
Geochem. Geophy. Geosy., 19, 1447–1463,
https://doi.org/10.1029/2017GC007377, 2018.
Wan, S., Jian, Z., Gong, X., Dang, H., Wu, J., and Qiao, P.: Deep water
[CO ] and circulation in the South China Sea over the last
glacial cycle, Quaternary Sci. Rev., 243, 106499,
https://doi.org/10.1016/j.quascirev.2020.106499, 2020.
Wang, N., Huang, B.-Q., and Li, H.: Deep-water carbonate dissolution in the
northern South China Sea during Marine Isotope Stage 3, J. Palaeogeogr.,
5, 100–107, https://doi.org/10.1016/j.jop.2015.11.004, 2016.
Wang, P., Wang, L., Bian, Y., and Jian, Z.: Late Quaternary paleoceanography
of the South China Sea: surface circulation and carbonate cycles, Mar.
Geol., 127, 145–165, https://doi.org/10.1016/0025-3227(95)00008-M,
1995.
Wang, P., Li, Q., and Dai, M.: The South China Sea Deep: Introduction,
Deep-Sea Res. Pt. II, 122, 1–5,
https://doi.org/10.1016/j.dsr2.2015.11.004, 2015.
Wang, P. X. and Li, Q. Y. (Eds.): The South China Sea: Paleoceanography and
Sedimentology, Springer, Berlin, Heidelberg, New York, 506 pp., ISBN 140209744, 2009.
Young, J. R. and Ziveri, P.: Calculation of coccolith volume and its use in
calibration of carbonate flux estimates, Deep-Sea Res. Pt. II, 47, 1679–1700,
https://doi.org/10.1016/S0967-0645(00)00003-5, 2000.
Yu, J. and Elderfield, H.: Benthic foraminiferal ratios reflect deep
water carbonate saturation state, Earth Planet. Sc. Lett., 258,
73–86, https://doi.org/10.1016/j.epsl.2007.03.025, 2007.
Yu, J., Menviel, L., Jin, Z. D., Thornalley, D. J. R., Barker, S.,
Marino, G., Rohling, E. J., Cai, Y., Zhang, F., Wang, X., Dai, Y., Chen, P., and Broecker, W. S.: Sequestration of carbon in the deep Atlantic during the
last glaciation, Nat. Geosci., 9, 319–324, https://doi.org/10.1038/ngeo2657,
2016.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A.,
Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., Mccarren, H., and Kroon, D.: Paleoclimate: Rapid acidification of the ocean during
the Paleocene-Eocene thermal maximum, Science, 308, 1611–1615,
https://doi.org/10.1126/science.1109004, 2005.
Zhang, H., Liu, C., Jin, X., Shi, J., Zhao, S., and Jian, Z.: Dynamics of
primary productivity in the northern South China Sea over the past 24,000
years, Geochem. Geophy. Geosy., 17, 4878–4891,
https://doi.org/10.1002/2016GC006602, 2016.
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Based on the analysis of the response of coccolithophores’ morphological attributes in a...
Altmetrics
Final-revised paper
Preprint