Articles | Volume 20, issue 10
https://doi.org/10.5194/bg-20-1863-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1863-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
Koramanghat Unnikrishnan Jayakrishnan
CORRESPONDING AUTHOR
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore-560012, India
Govindasamy Bala
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore-560012, India
Related authors
No articles found.
Sina Loriani, Yevgeny Aksenov, David I. Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano Mazur Chiessi, Henk A. Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura C. Jackson, Kai Kornhuber, Gabriele Messori, Francesco S. R. Pausata, Stefanie Rynders, Jean-Baptiste Sallée, Bablu Sinha, Steven C. Sherwood, Didier Swingedouw, and Thejna Tharammal
Earth Syst. Dynam., 16, 1611–1653, https://doi.org/10.5194/esd-16-1611-2025, https://doi.org/10.5194/esd-16-1611-2025, 2025
Short summary
Short summary
In this work, we draw on palaeo-records, observations, and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems, and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is regarded as conceivable but is currently not sufficiently supported by evidence.
Thejna Tharammal, Govindasamy Bala, and Jesse Nusbaumer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4468, https://doi.org/10.5194/egusphere-2025-4468, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
During the Last Glacial Maximum (LGM), the Indian monsoon rainfall was 15 % lower than the pre-industrial period due to global cooling and changes in atmospheric circulation. The isotopic composition of rainfall, more positive during the LGM, is not directly linked to the rain amount. It is influenced by a reduced contribution of moisture from distant sources and less rainouts during transport from the Indian Ocean. Hence, Isotopic proxies may be better indicators of atmospheric circulation.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Sneha Santy, Pradeep Mujumdar, and Govindasamy Bala
EGUsphere, https://doi.org/10.5194/egusphere-2022-796, https://doi.org/10.5194/egusphere-2022-796, 2022
Preprint archived
Short summary
Short summary
The percentage contribution of climate change, land use, population and industry to Ganga pollution is quantified using a coupled hydrological-water quality simulation model. Climate change is identified as the prominent driver with a percentage contribution above 70 %. Hence, due to the added pollution load from climate change, land use projections, and industrial growth, the proposed treatment for Ganga in mid 21st century is not sufficient to bring down Ganga pollution.
Cited articles
Alfieri, L., Burek, P., Feyen, L., and Forzieri, G.:
Global warming increases the frequency of river floods in Europe, Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, 2015.
Ali, H., Modi, P., and Mishra, V.:
Increased flood risk in Indian sub-continent under the warming climate, Weather Clim. Extrem., 25, 100212, https://doi.org/10.1016/J.WACE.2019.100212, 2019.
Alkama, R. and Cescatti, A.:
Biophysical climate impacts of recent changes in global forest cover, Science (80-), 351, 600–604, 2016.
Allan, R. P. and Soden, B. J.:
Atmospheric warming and the amplification of precipitation extremes, Science (80-), 321, 1481–1484, https://doi.org/10.1126/science.1160787, 2008.
Anderson, R. G., Canadell, J. G., Randerson, J. T., Jackson, R. B., Hungate, B. A., Baldocchi, D. D., Ban-Weiss, G. A., Bonan, G. B., Caldeira, K., Cao, L., Diffenbaugh, N. S., Gurney, K. R., Kueppers, L. M., Law, B. E., Luyssaert, S., and O'Halloran, T. L.:
Biophysical considerations in forestry for climate protection, Front. Ecol. Environ., 9, 174–182, https://doi.org/10.1890/090179, 2011.
Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., and Mirin, A.:
Combined climate and carbon-cycle effects of large-scale deforestation, P. Natl. Acad. Sci. USA, 104, 6550–6555, https://doi.org/10.1073/PNAS.0608998104, 2007.
Bonan, G. B.:
Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science (80-), 320, 1444–1449, 2008.
Boysen, L. R., Brovkin, V., Pongratz, J., Lawrence, D. M., Lawrence, P., Vuichard, N., Peylin, P., Liddicoat, S., Hajima, T., Zhang, Y., Rocher, M., Delire, C., Séférian, R., Arora, V. K., Nieradzik, L., Anthoni, P., Thiery, W., Laguë, M. M., Lawrence, D., and Lo, M.-H.:
Global climate response to idealized deforestation in CMIP6 models, Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, 2020.
Canadell, J. G., Meyer, C. P. (Mick.), Cook, G. D., Dowdy, A., Briggs, P. R., Knauer, J., Pepler, A., and Haverd, V.:
Multi-decadal increase of forest burned area in Australia is linked to climate change, Nat. Commun., 121, 1–11, https://doi.org/10.1038/s41467-021-27225-4, 2021.
Cao, L. and Jiang, J.:
Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering, Geophys. Res. Lett., 44, 12484–12491, https://doi.org/10.1002/2017GL076546, 2017.
Cao, L., Bala, G., Caldeira, K., Nemani, R., and Ban-Weiss, G.:
Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0), Geophys. Res. Lett., 36, L10402, https://doi.org/10.1029/2009GL037724, 2009.
Cao, L., Bala, G., Caldeira, K., Nemani, R., and Ban-Weiss, G.:
Importance of carbon dioxide physiological forcing to future climate change, P. Natl. Acad. Sci. USA, 107, 9513–9518, 2010.
Chen, G. S., Notaro, M., Liu, Z., and Liu, Y.:
Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer, J. Climate, 25, 4511–4522, https://doi.org/10.1175/JCLI-D-11-00317.1, 2012.
Chini, L. P., Hurtt, G. C., and Frolking, S.:
LUH1: Harmonized Global Land Use for Years 1500–2100, V1, ORNL DAAC, 2014.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., and Heimann, M.: Carbon and other biogeochemical cycles, in: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 465–570, 2014.
Cox, P. M.:
Description of the “TRIFFID” Dynamic Global Vegetation Model, Hadley Centre Technical Note, 24, 1–16, 2001.
Cox, P. M., Betts, R. A., Bunton, C. B., Essery, R. L. H., Rowntree, P. R., and Smith, J.:
The impact of new land surface physics on the GCM simulation of climate and climate sensitivity, Clim. Dynam., 153, 183–203, https://doi.org/10.1007/S003820050276, 1999.
Crowley, T. J.:
Causes of climate change over the past 1000 years, Science, 289, 270–277, https://doi.org/10.1126/science.289.5477.270, 2000.
De Hertog, S. J., Havermann, F., Vanderkelen, I., Guo, S., Luo, F., Manola, I., Coumou, D., Davin, E. L., Duveiller, G., Lejeune, Q., Pongratz, J., Schleussner, C.-F., Seneviratne, S. I., and Thiery, W.:
The biogeophysical effects of idealized land cover and land management changes in Earth system models, Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, 2022.
Devaraju, N., de Noblet-Ducoudré, N., Quesada, B., and Bala, G.:
Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections, J. Climate, 31, 3811–3829, 2018.
DeVries, T.:
The Ocean Carbon Cycle, Annu. Rev. Env. Resour., 47, 317–341, 2022.
Duan, Z. and Sun, R.:
An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol., 193, 257–271, 2003.
Duveiller, G., Hooker, J., and Cescatti, A.:
The mark of vegetation change on Earth's surface energy balance, Nat. Commun., 9, 679, https://doi.org/10.1038/s41467-017-02810-8, 2018.
Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J., and Weaver, A. J.:
Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO2 and Surface Temperature Perturbations, J. Climate, 22, 2501–2511, https://doi.org/10.1175/2008JCLI2554.1, 2009.
Gao, F., Schaaf, C. B., Strahler, A. H., Roesch, A., Lucht, W., and Dickinson, R.:
MODIS bidirectional reflectance distribution function and albedo Climate Modeling Grid products and the variability of albedo for major global vegetation types, J. Geophys. Res.-Atmos., 110, 1–13, https://doi.org/10.1029/2004JD005190, 2005.
Gopalakrishnan, R., Bala, G., Jayaraman, M., Cao, L., Nemani, R., and Ravindranath, N. H.:
Sensitivity of terrestrial water and energy budgets to CO2-physiological forcing: An investigation using an offline land model, Environ. Res. Lett., 6, 44013, https://doi.org/10.1088/1748-9326/6/4/044013, 2011.
Henderson-Sellers, A. and Wilson, M. F.:
Surface albedo data for climatic modeling, Rev. Geophys., 21, 1743–1778, https://doi.org/10.1029/RG021I008P01743, 1983.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.:
Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Houldcroft, C. J., Grey, W. M. F., Barnsley, M., Taylor, C. M., Los, S. O., and North, P. R. J.:
New Vegetation Albedo Parameters and Global Fields of Soil Background Albedo Derived from MODIS for Use in a Climate Model, J. Hydrometeorol., 10, 183–198, https://doi.org/10.1175/2008JHM1021.1, 2009.
Huang, L., Zhai, J., Liu, J., and Sun, C.:
The moderating or amplifying biophysical effects of afforestation on CO2-induced cooling depend on the local background climate regimes in China, Agr. Forest Meteorol., 260–261, 193–203, https://doi.org/10.1016/J.AGRFORMET.2018.05.020, 2018.
Jayakrishnan, K. U. and Bala, G.: A comparison of the climate and carbon cycle effects of carbon removal by Afforestation and Reduction of Fossil fuel emissions, Zenodo [data set], https://doi.org/10.5281/zenodo.7321684, 2022.
Jayakrishnan, K. U., Bala, G., Cao, L., and Caldeira, K.:
Contrasting climate and carbon-cycle consequences of fossil-fuel use versus deforestation disturbance, Environ. Res. Lett., 17, 064020, https://doi.org/10.1088/1748-9326/AC69FD, 2022.
Keller, D. P., Oschlies, A., and Eby, M.:
A new marine ecosystem model for the University of Victoria Earth System Climate Model, Geosci. Model Dev., 5, 1195–1220, https://doi.org/10.5194/gmd-5-1195-2012, 2012.
Kirschbaum, M. U. F. and McMillan, A. M. S.:
Warming and elevated CO2 have opposing influences on transpiration. Which is more important?, Curr. For. Reports, 4, 51–71, 2018.
Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., and Wang, K.:
Potential and actual impacts of deforestation and afforestation on land surface temperature, J. Geophys. Res.-Atmos., 121, 14–372, 2016.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M. I.:
Climate change 2021: the physical science basis, Contrib. Work. Gr. I to sixth Assess. Rep. Intergov. panel Clim. Chang., 2, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021.
Matthews, H. D., Weaver, A. J., Meissner, K. J., Gillett, N. P., and Eby, M.:
Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle, Clim. Dynam., 22, 461–479, https://doi.org/10.1007/s00382-004-0392-2, 2004.
Matthews, H. D., Weaver, A. J., and Meissner, K. J.:
Terrestrial carbon cycle dynamics under recent and future climate change, J. Climate, 18, 1609–1628, 2005.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.:
The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Meissner, K. J., Weaver, A. J., Matthews, H. D., and Cox, P. M.:
The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model, Clim. Dynam., 21, 515–537, https://doi.org/10.1007/s00382-003-0352-2, 2003.
Mengis, N., Keller, D. P., Eby, M., and Oschlies, A.:
Uncertainty in the response of transpiration to CO2 and implications for climate change, Environ. Res. Lett., 10, 94001, https://doi.org/10.1088/1748-9326/10/9/094001, 2015.
Middelburg, J. J., Soetaert, K., and Hagens, M.:
Ocean alkalinity, buffering and biogeochemical processes, Rev. Geophys., 58, e2019RG000681, https://doi.org/10.1029/2019RG000681, 2020.
Pacala, S. and Socolow, R.:
Stabilization wedges: solving the climate problem for the next 50 years with current technologies, Science (80-), 305, 968–972, 2004.
Papalexiou, S. M. and Montanari, A.:
Global and Regional Increase of Precipitation Extremes Under Global Warming, Water Resour. Res., 55, 4901–4914, https://doi.org/10.1029/2018WR024067, 2019.
Portmann, R., Beyerle, U., Davin, E., Fischer, E. M., De Hertog, S., and Schemm, S.:
Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation, Nat. Commun., 13, 5569, https://doi.org/10.1038/s41467-022-33279-9, 2022.
Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., and Zimmermann, N. E.:
Plant functional type mapping for earth system models, Geosci. Model Dev., 4, 993–1010, https://doi.org/10.5194/gmd-4-993-2011, 2011.
Psarras, P., Krutka, H., Fajardy, M., Zhang, Z., Liguori, S., Dowell, N. Mac, and Wilcox, J.:
Slicing the pie: how big could carbon dioxide removal be?, WIREs. Energy Environ., 6, e253, https://doi.org/10.1002/wene.253, 2017.
Shen, W., He, J., He, T., Hu, X., Tao, X., and Huang, C.:
Biophysical Effects of Afforestation on Land Surface Temperature in Guangdong Province, Southern China, J. Geophys. Res.-Biogeo., 127, e2022JG006913, https://doi.org/10.1029/2022JG006913, 2022.
Simmons, C. T. and Matthews, H. D.:
Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions, Environ. Res. Lett., 11, 035001, https://doi.org/10.1088/1748-9326/11/3/035001, 2016.
Skvortsov, A., Eby, M., and Weaver, A.:
Snow cover validation and sensitivity to CO2 in the UVic ESCM, Atmos.-Ocean, 47, 224–237, https://doi.org/10.3137/AO929.2009, 2010.
van Kooten, G. C.:
How effective are forests in mitigating climate change?, Forest Policy Econ., 120, 102295, 2020.
Wang, Y., Yan, X., and Wang, Z.:
The biogeophysical effects of extreme afforestation in modeling future climate, Theor. Appl. Climatol., 118, 511–521, https://doi.org/10.1007/S00704-013-1085-8, 2014.
Weaver, A. J., Eby, M., Wiebe, E. C., Ewen, T. L., Fanning, A. F., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Yoshimori, M., Bitz, C. M., Holland, M. M., Duffy, P. B., and Wang, H.:
The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates, Atmos. Ocean, 39, 361–428, https://doi.org/10.1080/07055900.2001.9649686, 2001.
Winckler, J., Reick, C. H., Bright, R. M., and Pongratz, J.:
Importance of surface roughness for the local biogeophysical effects of deforestation, J. Geophys. Res.-Atmos., 124, 8605–8618, 2019a.
Winckler, J., Lejeune, Q., Reick, C. H., and Pongratz, J.:
Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation, Geophys. Res. Lett., 46, 745–755, 2019b.
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to...
Altmetrics
Final-revised paper
Preprint