Articles | Volume 20, issue 11
https://doi.org/10.5194/bg-20-2161-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2161-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Examination of the parameters controlling the triple oxygen isotope composition of grass leaf water and phytoliths at a Mediterranean site: a model–data approach
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545
Aix-en-Provence, France
present address: Department of Biology and
Geology, University of Almería, 04120 Cañada de San Urbano, Almería, Spain
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545
Aix-en-Provence, France
Ilja M. Reiter
Research Federation ECCOREV, FR3098, CNRS, 13545 Aix-en-Provence,
France
Jean-Philippe Orts
IMBE, CNRS, Université d'Avignon, Aix-Marseille Université,
IRD, 13397 Marseille, France
Christine Vallet-Coulomb
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545
Aix-en-Provence, France
Clément Piel
ECOTRON Européen de Montpellier, UAR 3248, CNRS, Campus de
Baillarguet, 34980 Montferrier-sur-Lez, France
Jean-Charles Mazur
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545
Aix-en-Provence, France
Julie C. Aleman
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545
Aix-en-Provence, France
Corinne Sonzogni
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545
Aix-en-Provence, France
Helene Miche
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545
Aix-en-Provence, France
Jérôme Ogée
INRAE, Bordeaux Sciences Agro, UMR ISPA, 33140 Villenave-d'Ornon,
France
Related authors
Claudia Voigt, Fernando Gázquez, Lucía Martegani, Ana Isabel Sánchez Villanueva, Antonio Medina, Rosario Jiménez-Espinosa, Juan Jiménez-Millán, and Miguel Rodríguez-Rodríguez
Hydrol. Earth Syst. Sci., 29, 1783–1806, https://doi.org/10.5194/hess-29-1783-2025, https://doi.org/10.5194/hess-29-1783-2025, 2025
Short summary
Short summary
This research explores the use of a new isotope tracer, 17O excess, to better understand how hydrological processes drive large seasonal water level changes in small lakes in semiarid regions. The study shows that triple oxygen isotopes offer a more detailed understanding of these changes compared to traditional methods. These findings are valuable for reconstructing past climates and predicting how climate change, influenced by human activity, will affect small lakes in these dry areas.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Claudia Voigt, Daniel Herwartz, Cristina Dorador, and Michael Staubwasser
Hydrol. Earth Syst. Sci., 25, 1211–1228, https://doi.org/10.5194/hess-25-1211-2021, https://doi.org/10.5194/hess-25-1211-2021, 2021
Short summary
Short summary
Evaporation trends in the stable isotope composition (18O/16O, 17O/16O, 2H/1H) of throughflow ponds in a hydrologically complex and seasonally dynamic lake system can be reliably predicted by the classic Craig–Gordon isotope evaporation model. We demonstrate that the novel 17O-excess parameter is capable of resolving different types of evaporation with and without recharge and of identifying mixing processes that cannot be resolved using the classic δ2H–δ18O system alone.
Claudia Voigt, Christine Vallet-Coulomb, Clément Piel, Joana Sauze, Ilja M. Reiter, Jean-Philippe Orts, Françoise Chalié, Christophe Cassou, Irène Xueref-Remy, and Anne Alexandre
EGUsphere, https://doi.org/10.5194/egusphere-2025-5879, https://doi.org/10.5194/egusphere-2025-5879, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Triple oxygen isotopes (17O-excess) are an upcoming tool in hydrological studies. We present the first one-year high-resolution record of 17O-excess in atmospheric water vapor from a Mediterranean forest site. The dataset provides insights into the processes driving variability of 17O-excess in atmospheric water vapor and precipitation across seasonal, diurnal, and event scales. These findings support model validation efforts and enhance the interpretation of paleoclimate archives.
Claudia Voigt, Fernando Gázquez, Lucía Martegani, Ana Isabel Sánchez Villanueva, Antonio Medina, Rosario Jiménez-Espinosa, Juan Jiménez-Millán, and Miguel Rodríguez-Rodríguez
Hydrol. Earth Syst. Sci., 29, 1783–1806, https://doi.org/10.5194/hess-29-1783-2025, https://doi.org/10.5194/hess-29-1783-2025, 2025
Short summary
Short summary
This research explores the use of a new isotope tracer, 17O excess, to better understand how hydrological processes drive large seasonal water level changes in small lakes in semiarid regions. The study shows that triple oxygen isotopes offer a more detailed understanding of these changes compared to traditional methods. These findings are valuable for reconstructing past climates and predicting how climate change, influenced by human activity, will affect small lakes in these dry areas.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024, https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Short summary
The approach presented is original in its coupling between field observations and airborne lidar observations. It has been applied to an instrumented reference forest site in the south of France, which is heavily impacted by climate change. It leads to the evaluation of tree heights and ends with assessments of aerial and root carbon stocks. A detailed assessment of uncertainties is presented to add a level of reliability to the scientific products delivered.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Jérôme Texier, Julio Gonçalvès, Thomas Stieglitz, Christine Vallet-Coulomb, Jérôme Labille, Vincent Marc, Angélique Poulain, and Philippe Dussouillez
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-239, https://doi.org/10.5194/hess-2023-239, 2024
Manuscript not accepted for further review
Short summary
Short summary
Understanding the relationship between rivers and alluvial aquifers is crucial, yet challenging. Through a combined approach of tracing and modeling in a French Rhône River site, we reveal significant insights. We quantify the impact of pumping on water flow and identify the primary water sources. Our findings aid sustainable water management in regions facing similar challenges, offering practical guidance for policymakers on groundwater use.
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary
Short summary
Recently, studies have been reporting mismatches in the water isotopic composition of plants and soils. In this work, we reviewed worldwide isotopic composition data of field and laboratory studies to see if the mismatch is generalised, and we found it to be true. This contradicts theoretical expectations and may underlie an non-described phenomenon that should be forward investigated and implemented in ecohydrological models to avoid erroneous estimations of water sources used by vegetation.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Sam P. Jones, Aurore Kaisermann, Jérôme Ogée, Steven Wohl, Alexander W. Cheesman, Lucas A. Cernusak, and Lisa Wingate
SOIL, 7, 145–159, https://doi.org/10.5194/soil-7-145-2021, https://doi.org/10.5194/soil-7-145-2021, 2021
Short summary
Short summary
Understanding how the rate of oxygen isotope exchange between water and CO2 varies in soils is key for using the oxygen isotope composition of atmospheric CO2 as a tracer of biosphere CO2 fluxes at large scales. Across 44 diverse soils the rate of this exchange responded to pH, nitrate and microbial biomass, which are hypothesised to alter activity of the enzyme carbonic anhydrase in soils. Using these three soil traits, it is now possible to predict how this isotopic exchange varies spatially.
Claudia Voigt, Daniel Herwartz, Cristina Dorador, and Michael Staubwasser
Hydrol. Earth Syst. Sci., 25, 1211–1228, https://doi.org/10.5194/hess-25-1211-2021, https://doi.org/10.5194/hess-25-1211-2021, 2021
Short summary
Short summary
Evaporation trends in the stable isotope composition (18O/16O, 17O/16O, 2H/1H) of throughflow ponds in a hydrologically complex and seasonally dynamic lake system can be reliably predicted by the classic Craig–Gordon isotope evaporation model. We demonstrate that the novel 17O-excess parameter is capable of resolving different types of evaporation with and without recharge and of identifying mixing processes that cannot be resolved using the classic δ2H–δ18O system alone.
Cited articles
Aemisegger, F., Spiegel, J. K., Pfahl, S., Sodemann, H., Eugster, W., and
Wernli, H.: Isotope meteorology of cold front passages: A case study
combining observations and modeling, Geophys. Res. Lett., 42, 5652–5660,
https://doi.org/10.1002/2015GL063988, 2015.
Aleman, J., Leys, B., Apema, R., Bentaleb, I., Dubois, M. A., Lamba, B.,
Lebamba, J., Martin, C., Ngomanda, A., Truc, L., Yangakola, J. M., Favier,
C., and Bremond, L.: Reconstructing savanna tree cover from pollen,
phytoliths and stable carbon isotopes, J. Veg. Sci., 23,
187–197, https://doi.org/10.1111/j.1654-1103.2011.01335.x, 2012.
Alexandre, A., Basile-Doelsch, I., Sonzogni, C., Sylvestre, F., Parron, C.,
Meunier, J. D., and Colin, F.: Oxygen isotope analyses of fine silica grains
using laser-extraction technique: Comparison with oxygen isotope data
obtained from ion microprobe analyses and application to quartzite and
silcrete cement investigation, Geochim. Cosmochim. Ac., 70, 2827–2835,
https://doi.org/10.1016/j.gca.2006.03.003, 2006.
Alexandre, A., Bouvet, M., and Abbadie, L.: The role of savannas in the
terrestrial Si cycle: A case-study from Lamto, Ivory Coast, Glob. Planet.
Change, 78, 162–169, https://doi.org/10.1016/j.gloplacha.2011.06.007, 2011.
Alexandre, A., Crespin, J., Sylvestre, F., Sonzogni, C., and Hilbert, D. W.:
The oxygen isotopic composition of phytolith assemblages from tropical
rainforest soil tops (Queensland, Australia): Validation of a new
paleoenvironmental tool, Clim. Past, 8, 307–324,
https://doi.org/10.5194/cp-8-307-2012, 2012.
Alexandre, A., Landais, A., Vallet-Coulomb, C., Piel, C., Devidal, S.,
Pauchet, S., Sonzogni, C., Couapel, M., Pasturel, M., Cornuault, P., Xin,
J., Mazur, J. C., Prié, F., Bentaleb, I., Webb, E., Chalié, F., and
Roy, J.: The triple oxygen isotope composition of phytoliths as a proxy of
continental atmospheric humidity: Insights from climate chamber and climate
transect calibrations, Biogeosciences, 15, 3223–3241,
https://doi.org/10.5194/bg-15-3223-2018, 2018.
Alexandre, A., Webb, E., Landais, A., Piel, C., Devidal, S., Sonzogni, C.,
Couapel, M., Mazur, J., Pierre, M., Prié, F., Vallet-Coulomb, C.,
Outrequin, C., and Roy, J.: Effects of leaf length and development stage on
the triple oxygen isotope signature of grass leaf water and phytoliths:
insights for a proxy of continental atmospheric humidity, Biogeosciences,
16, 4613–4625, https://doi.org/10.5194/bg-16-4613-2019, 2019.
Aron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H.,
Pelletier, E. M., Poulsen, C. J., Winkelstern, I. Z., and Yarian, D. A.:
Triple oxygen isotopes in the water cycle, Chem. Geol., 565, 120026,
https://doi.org/10.1016/j.chemgeo.2020.120026, 2021.
Barbeta, A., Burlett, R., Martín-Gómez, P., Fréjaville, B.,
Devert, N., Wingate, L., Domec, J. C., and Ogée, J.: Evidence for
distinct isotopic compositions of sap and tissue water in tree stems:
consequences for plant water source identification, New Phytol., 233,
1121–1132, https://doi.org/10.1111/nph.17857, 2022.
Barbour, M. M., Loucos, K. E., Lockhart, E. L., Shrestha, A., McCallum, D.,
Simonin, K. A., Song, X., Griffani, D. S., and Farquhar, G. D.: Can
hydraulic design explain patterns of leaf water isotopic enrichment in
C3 plants?, Plant Cell Environ., 44, 432–444,
https://doi.org/10.1111/pce.13943, 2021.
Barkan, E. and Luz, B.: High precision measurements of 17O/16O and
18O 16O ratios in H2O, Rapid Commun. Mass
Sp., 19, 3737–3742, https://doi.org/10.1002/rcm.2250, 2005.
Barkan, E. and Luz, B.: Diffusivity fractionations of
H O H O and H O H O in air
and their implications for isotope hydrology, Rapid Commun. Mass
Sp., 21, 2999–3005, https://doi.org/10.1002/rcm.3180, 2007.
Belviso, S., Reiter, I. M., Loubet, B., Gros, V., Lathière, J.,
Montagne, D., Delmotte, M., Ramonet, M., Kalogridis, C., Lebegue, B.,
Bonnaire, N., Kazan, V., Gauquelin, T., Fernandez, C., and Genty, B.: A
top-down approach of surface carbonyl sulfide exchange by a Mediterranean
oak forest ecosystem in southern France, Atmos. Chem. Phys., 16, 14909–14923,
https://doi.org/10.5194/acp-16-14909-2016, 2016.
Benson, L. V. and White, J. W. C.: Stable isotopes of oxygen and hydrogen in
the Truckee River-Pyramid Lake surface-water system, 3. Source of water
vapor overlying Pyramid Lake, Limnol. Oceanogr., 39, 1945–1958,
https://doi.org/10.4319/lo.1994.39.8.1945, 1994.
Blonder, B. and Michaletz, S. T.: A model for leaf temperature decoupling
from air temperature, Agr. Forest. Meteorol., 262, 354–360,
https://doi.org/10.1016/j.agrformet.2018.07.012, 2018.
Bögelein, R., Thomas, F. M., and Kahmen, A.: Leaf water 18O and
2H enrichment along vertical canopy profiles in a broadleaved and a
conifer forest tree, Plant Cell Environ., 40, 1086–1103,
https://doi.org/10.1111/pce.12895, 2017.
Brandriss, M. E., O'Neil, J. R., Edlund, M. B., and Stoermer, E. F.: Oxygen
isotope fractionation between diatomaceous silica and water, Geochim.
Cosmochim. Ac., 62, 1119–1125,
https://doi.org/10.1016/S0016-7037(98)00054-4, 1998.
Bremond, L., Alexandre, A., Peyron, O., and Guiot, J.: Grass water stress
estimated from phytoliths in West Africa, J. Biogeogr., 32, 311–327,
https://doi.org/10.1111/j.1365-2699.2004.01162.x, 2005.
Buhay, W. M., Edwards, T. W. D., and Aravena, R.: Evaluating kinetic
fractionation factors used for reconstructions from oxgen and hydrogen
isotope ratios in plant water and cellulose, Geochim. Cosmochim. Ac., 60,
2209–2218, https://doi.org/10.1016/0016-7037(96)00073-7, 1996.
Bush, R. T., Berke, M. A., and Jacobson, A. D.: Plant Water δD and
δ18O of Tundra Species from West Greenland, Arct. Antarct. Alp
Res., 49, 341–358, https://doi.org/10.1657/AAAR0016-025, 2017.
Cao, X. and Liu, Y.: Equilibrium mass-dependent fractionation relationships
for triple oxygen isotopes, Geochim. Cosmochim. Ac., 75, 7435–7445,
https://doi.org/10.1016/j.gca.2011.09.048, 2011.
Cernusak, L. A., Pate, J. S., and Farquhar, G. D.: Diurnal variation in the
stable isotope composition of water and dry matter in fruiting Lupinus
angustifolius under field conditions, Plant Cell Environ., 25, 893–907,
https://doi.org/10.1046/j.1365-3040.2002.00875.x, 2002.
Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N.
B., Feild, T. S., Helliker, B. R., Holloway-Phillips, M. M., Holtum, J. A.
M., Kahmen, A., Mcinerney, F. A., Munksgaard, N. C., Simonin, K. A., Song,
X., Stuart-Williams, H., West, J. B., and Farquhar, G. D.: Stable isotopes
in leaf water of terrestrial plants, Plant Cell Environ., 39, 1087–1102,
https://doi.org/10.1111/pce.12703, 2016.
Chapligin, B., Meyer, H., Friedrichsen, H., Marent, A., Sohns, E., and
Hubberten, H.-W.: A high-performance, safer and semi-automated approach for
the δ18O analysis of diatom silica and new methods for removing
exchangeable oxygen, Rapid Commun. Mass Sp., 24,
2655–2664, https://doi.org/10.1002/rcm.4689, 2010.
Collura, L. V. and Neumann, K.: Wood and bark phytoliths of West African
woody plants, Quaternary Int., 434, 142–159,
https://doi.org/10.1016/j.quaint.2015.12.070, 2017.
Corbineau, R., Reyerson, P. E., Alexandre, A., and Santos, G. M.: Towards
producing pure phytolith concentrates from plants that are suitable for
carbon isotopic analysis, Rev. Palaeobot. Palynol., 197, 179–185,
https://doi.org/10.1016/j.revpalbo.2013.06.001, 2013.
Craig, H. and Gordon, L. I.: Deuterium and oxygen-18 variations in the ocean and the marine atmosphere, in: Stable Isotopes in Oceanographic Studies and Paleotemperatures, edited by: Tongiorgi, E., Spoleto, Consiglio Nazionale Delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, Italy, 9–130, 1965.
Crespin, J., Alexandre, A., Sylvestre, F., Sonzogni, C., Paillès, C.,
and Garreta, V.: IR laser extraction technique applied to oxygen isotope
analysis of small biogenic silica samples, Anal. Chem., 80, 2372–2378,
https://doi.org/10.1021/ac071475c, 2008.
Cuntz, M., Ogée, J., Farquhar, G. D., Peylin, P., and Cernusak, L. A.:
Modelling advection and diffusion of water isotopologues in leaves, Plant
Cell Environ., 30, 892–909,
https://doi.org/10.1111/j.1365-3040.2007.01676.x, 2007.
Diao, H., Schuler, P., Goldsmith, G. R., Siegwolf, R. T., Saurer, M., and
Lehmann, M. M.: Technical note: On uncertainties in plant water isotopic
composition following extraction by cryogenic vacuum distillation, Hydrol.
Earth Syst. Sci., 26, 5835–5847, https://doi.org/10.5194/hess-26-5835-2022,
2022.
Ding, T. P., Zhou, J. X., Wan, D. F., Chen, Z. Y., Wang, C. Y., and Zhang,
F.: Silicon isotope fractionation in bamboo and its significance to the
biogeochemical cycle of silicon, Geochim. Cosmochim. Ac., 72, 1381–1395,
https://doi.org/10.1016/j.gca.2008.01.008, 2008.
Dodd, J. P.: Oxygen isotopes in diatom silica: a new understanding of
silica-water oxygen isotope fractionation in diatom frustules and an
application of diatom δ18O values as a record of
paleohydrologic variability in a Middle-Pleistocene lacustrine core from the
Valles Caldera, New Mexico, 1–108, University of New Mexico, https://digitalrepository.unm.edu/eps_etds/17 (last access: 13 June 2023), 2011.
Dodd, J. P. and Sharp, Z. D.: A laser fluorination method for oxygen isotope
analysis of biogenic silica and a new oxygen isotope calibration of modern
diatoms in freshwater environments, Geochim. Cosmochim. Ac., 74, 1381–1390,
https://doi.org/10.1016/j.gca.2009.11.023, 2010.
Dongmann, G., Nürnberg, H. W., Förstel, H., and Wagener, K.: On the
enrichment of H O in the leaves of transpiring plants, Radiat.
Environ. Biophys., 11, 41–52, https://doi.org/10.1007/BF01323099, 1974.
Farquhar, G. D. and Cernusak, L. A.: On the isotopic composition of leaf
water in the non-steady state, Funct. Plant Biol., 32, 293–303,
https://doi.org/10.1071/FP04232, 2005.
Farquhar, G. D. and Gan, K. S.: On the progressive enrichment of the oxygen
isotopic, Plant Cell Environ., 26, 1579–1597,
https://doi.org/10.1046/j.1365-3040.2003.01013.x, 2003.
Farquhar, G. D. and Lloyd, J.: Carbon and Oxygen Isotope Effects in the
Exchange of Carbon Dioxide between Terrestrial Plants and the Atmosphere,
in: Stable Isotopes and Plant Carbon-Water Relations, Academic Press,
47–70, https://doi.org/10.1016/B978-0-08-091801-3.50011-8, 1993.
Farquhar, G. D., Cernusak, L. A., and Barnes, B.: Heavy water fractionation
during transpiration, Plant Physiol., 143, 11–18,
https://doi.org/10.1104/pp.106.093278, 2007.
Farris, F. and Strain, B. R.: The effects of water-stress on leaf
H O enrichment, Radiat. Environ. Biophys., 15, 167–202,
https://doi.org/10.1007/BF01323264, 1978.
Fiorella, R. P., West, J. B., and Bowen, G. J.: Biased estimates of the
isotope ratios of steady-state evaporation from the assumption of
equilibrium between vapour and precipitation, Hydrol. Process., 33,
2576–2590, https://doi.org/10.1002/hyp.13531, 2019.
Flanagan, L. B. and Farquhar, G. D.: Variation in the carbon and oxygen
isotope composition of plant biomass and its relationship to water-use
efficiency at the leaf- and ecosystem-scales in a northern Great Plains
grassland, Plant Cell Environ., 37, 425–438,
https://doi.org/10.1111/pce.12165, 2014.
Flanagan, L. B., Comstock, J. P., and Ehleringer, J. R.: Comparison of
Modeled and Observed Environmental Influences on the Stable Oxygen and
Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L., Plant
Physiol., 96, 588–596, https://doi.org/10.1104/pp.96.2.588, 1991.
Gan, K. S., Wong, S. C., Yong, J. W. H., and Farquhar, G. D.: 18O
Spatial Patterns of Vein Xylem Water, Leaf Water, and Dry Matter in Cotton
Leaves, Plant Physiol., 130, 1008–1021, https://doi.org/10.1104/pp.007419,
2002.
Garcin, Y., Schwab, V. F., Gleixner, G., Kahmen, A., Todou, G.,
Séné, O., Onana, J. M., Achoundong, G., and Sachse, D.: Hydrogen
isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical
African hydrology: Insights from a calibration transect across Cameroon,
Geochim. Cosmochim. Ac., 79, 106–126,
https://doi.org/10.1016/j.gca.2011.11.039, 2012.
Garcin, Y., Schefuß, E., Dargie, G. C., Hawthorne, D., Lawson, I. T.,
Sebag, D., Biddulph, G. E., Crezee, B., Bocko, Y. E., Ifo, S. A., Mampouya
Wenina, Y. E., Mbemba, M., Ewango, C. E. N., Emba, O., Bola, P., Kanyama
Tabu, J., Tyrrell, G., Young, D. M., Gassier, G., Girkin, N. T., Vane, C.
H., Adatte, T., Baird, A. J., Boom, A., Gulliver, P., Morris, P. J., Page,
S. E., Sjögersten, S., and Lewis, S. L.: Hydroclimatic vulnerability of
peat carbon in the central Congo Basin, Nature, 612, 277–282,
https://doi.org/10.1038/s41586-022-05389-3, 2022.
Graf, P., Wernli, H., Pfahl, S., and Sodemann, H.: A new interpretative
framework for below-cloud effects on stable water isotopes in vapour and
rain, Atmos. Chem. Phys., 19, 747–765,
https://doi.org/10.5194/acp-19-747-2019, 2019.
Gröning, M., Lutz, H. O., Roller-Lutz, Z., Kralik, M., Gourcy, L., and
Pöltenstein, L.: A simple rain collector preventing water re-evaporation
dedicated for δ18O and δ2H analysis of cumulative
precipitation samples, J. Hydrol., 448–449, 195–200,
https://doi.org/10.1016/j.jhydrol.2012.04.041, 2012.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to
rising vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020.
Helliker, B. R. and Ehleringer, J. R.: Establishing a grassland signature in
veins: 18O in the leaf water of C3 and C4 grasses, P. Natl. Acad. Sci. USA, 94,
7894–7898, https://doi.org/10.1073/pnas.97.14.7894, 2000.
Helliker, B. R. and Ehleringer, J. R.: Differential 18O enrichment of
leaf cellulose in C3 versus C4 grasses, Funct. Plant Biol.,
29, 435–442, https://doi.org/10.1071/PP01122, 2002a.
Helliker, B. R. and Ehleringer, J. R.: Grass blades as tree rings:
Environmentally induced changes in the oxygen isotope ratio of cellulose
along the length of grass blades, New Phytol., 155, 417–424,
https://doi.org/10.1046/j.1469-8137.2002.00480.x, 2002b.
Hirl, R. T., Schnyder, H., Ostler, U., Schäufele, R., Schleip, I.,
Vetter, S. H., Auerswald, K., Baca Cabrera, J. C., Wingate, L., Barbour, M.
M., and Ogée, J.: The 18O ecohydrology of a grassland ecosystem –
predictions and observations, Hydrol. Earth Syst. Sci., 23, 2581–2600,
https://doi.org/10.5194/hess-23-2581-2019, 2019.
Holloway-Phillips, M., Cernusak, L. A., Barbour, M., Song, X., Cheesman, A.,
Munksgaard, N., Stuart-Williams, H., and Farquhar, G. D.: Leaf vein fraction
influences the Péclet effect and 18O enrichment in leaf water,
Plant Cell Environ., 39, 2414–2427, https://doi.org/10.1111/pce.12792, 2016.
Hu, G. and Clayton, R. N.: Oxygen isotope salt effects at high pressure and
high temperature and the calibration of oxygen isotope geothermometers,
Geochim. Cosmochim. Ac., 67, 3227–3246,
https://doi.org/10.1016/S0016-7037(02)01319-4, 2003.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner,
G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 1585 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update
2015. International soil classification system for naming soils and creating
legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, ISBN 978-92-5-108369-7,
2015.
Jacob, H. and Sonntag, C.: An 8-year record of the seasonal variation of
2H and 18O in atmospheric water vapour and precipitation at
Heidelberg, Germany, Tellus B, 43 291–300,
https://doi.org/10.1034/j.1600-0889.1991.t01-2-00003.x, 1991.
Kahmen, A., Sachse, D., Arndt, S. K., Tu, K. P., Farrington, H., Vitousek,
P. M., and Dawsona, T. E.: Cellulose δ18O is an index of
leaf-to-air vapor pressure difference (VPD) in tropical plants, P. Natl. Acad. Sci. USA, 108,
1981–1986, https://doi.org/10.1073/pnas.1018906108, 2011.
Kahmen, A., Schefuß, E., and Sachse, D.: Leaf water deuterium enrichment
shapes leaf wax n-alkane δD values of angiosperm plants I:
Experimental evidence and mechanistic insights, Geochim. Cosmochim. Ac., 111,
39–49, https://doi.org/10.1016/j.gca.2012.09.003, 2013.
Knauth, L. P. and Epstein, S.: Hydrogen and oxygen isotope ratios in nodular
and bedded cherts, Geochim. Cosmochim. Ac., 40, 95–1108,
https://doi.org/10.1016/0016-7037(76)90051-X, 1976.
Krabbenhoft, D. P., Bowser, C. J., Anderson, M. P., and Valley, J. W.:
Estimating groundwater exchange with lakes: 1. The stable isotope mass
balance method, Water Resour. Res., 26, 2445–2453,
https://doi.org/10.1029/WR026i010p02445, 1990.
Kumar, S., Soukup, M., and Elbaum, R.: Silicification in grasses: Variation
between different cell types, Front. Plant Sci., 8, 1–8,
https://doi.org/10.3389/fpls.2017.00438, 2017.
Landais, A., Risi, C., Bony, S., Vimeux, F., Descroix, L., Falourd, S., and
Bouygues, A.: Combined measurements of 17Oexcess and d-excess in
African monsoon precipitation: Implications for evaluating convective
parameterizations, Earth Planet Sc. Lett., 298, 104–112,
https://doi.org/10.1016/j.epsl.2010.07.033, 2010.
Leaney, F. W., Osmond, C. B., Allison, G. B., and Ziegler, H.:
Hydrogen-isotope composition of leaf water in C3 and C4 plants:
its relationship to the hydrogen-isotope composition of dry matter, Planta,
164, 215–220, https://doi.org/10.1007/BF00396084, 1985.
Lee, X., Smith, R., and Williams, J.: Water vapour 18O 16O isotope
ratio in surface air in New England, USA, Tellus B, 58,
293–304, https://doi.org/10.1111/j.1600-0889.2006.00191.x, 2006.
Leuzinger, S. and Körner, C.: Tree species diversity affects canopy leaf
temperatures in a mature temperate forest, Agr. Forest. Meteorol., 146, 29–37,
https://doi.org/10.1016/j.agrformet.2007.05.007, 2007.
Li, S., Levin, N. E., Soderberg, K., Dennis, K. J., and Caylor, K. K.:
Triple oxygen isotope composition of leaf waters in Mpala, central Kenya,
Earth Planet Sc. Lett., 468, 38–50,
https://doi.org/10.1016/j.epsl.2017.02.015, 2017.
Liu, H. T., Schäufele, R., Gong, X. Y., and Schnyder, H.: The δ18O and δ2H of water in the leaf
growth-and-differentiation zone of grasses is close to source water in both
humid and dry atmospheres, New Phytol., 214, 1423–1431,
https://doi.org/10.1111/nph.14549, 2017.
Liu, P., Liu, J., Ji, A., Reinhard, C. T., Planavsky, N. J., Babikov, D.,
Najjar, R. G., and Kasting, J. F.: Triple oxygen isotope constraints on
atmospheric O2 and biological productivity during the mid-Proterozoic,
P. Natl. Acad. Sci USA, 118, e2105074118, https://doi.org/10.1073/pnas.2105074118, 2021.
López, J., Way, D. A., and Sadok, W.: Systemic effects of rising
atmospheric vapor pressure deficit on plant physiology and productivity,
Glob. Change Biol., 27, 1704–1720, https://doi.org/10.1111/gcb.15548, 2021.
Loucos, K. E., Simonin, K. A., Song, X., and Barbour, M. M.: Observed
relationships between leaf H O Péclet effective length and
leaf hydraulic conductance reflect assumptions in Craig-Gordon model
calculations, Tree Physiol., 35, 16–26,
https://doi.org/10.1093/treephys/tpu110, 2014.
Luz, B. and Barkan, E.: Variations of 17O 16O and
18O 16O in meteoric waters, Geochim. Cosmochim. Ac., 74,
6276–6286, https://doi.org/10.1016/j.gca.2010.08.016, 2010.
Majoube, M.: Fractionnement en oxygène 18 et en deutérium entre l'eau et sa vapeur, J. Chim. Phys., 68, 1423–1436, https://doi.org/10.1051/jcp/1971681423, 1971.
Merlivat, L.: Molecular diffusivities of H O, HD16O, and
H O in gases, J. Chem. Phys., 69, 2864–2871,
https://doi.org/10.1063/1.436884, 1978.
Monteith, J.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234,
1965.
Motomura, H., Fujii, T., and Suzuki, M.: Silica deposition in relation to
ageing of leaf tissues in Sasa veitchii (Carrière) Rehder (Poaceae:
Bambusoideae), Ann. Bot., 93, 235–248, https://doi.org/10.1093/aob/mch034,
2004.
Nogué, S., Whicher, K., Baker, A. G., Bhagwat, S. A., and Willis, K. J.:
Phytolith analysis reveals the intensity of past land use change in the
Western Ghats biodiversity hotspot, Quaternary Int., 437, 82–89,
https://doi.org/10.1016/j.quaint.2015.11.113, 2017.
Ogée, J., Cuntz, M., Peylin, P., and Bariac, T.: Non-steady-state,
non-uniform transpiration rate and leaf anatomy effects on the progressive
stable isotope enrichment of leaf water along monocot leaves, Plant Cell
Environ., 30, 367–387, https://doi.org/10.1111/j.1365-3040.2006.01621.x,
2007.
O'Neil, J. R. and Clayton, R. N.: Oxygen isotope geothermometry, in: Isotope and Cosmic Chemistry, edited by: Craig, H. et al., North-Holland, Amsterdam, 157–168, 1964.
Outrequin, C., Alexandre, A., Vallet-Coulomb, C., Piel, C., Devidal, S., Landais, A., Couapel, M., Mazur, J.-C., Peugeot, C., Pierre, M., Prié, F., Roy, J., Sonzogni, C., and Voigt, C.: The triple oxygen isotope composition of phytoliths, a new proxy of atmospheric relative humidity: controls of soil water isotope composition, temperature, CO2 concentration and relative humidity, Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, 2021.
Penchenat, T., Vimeux, F., Daux, V., Cattani, O., Viale, M., Villalba, R.,
Srur, A., and Outrequin, C.: Isotopic Equilibrium Between Precipitation and
Water Vapor in Northern Patagonia and Its Consequences on δ18O cellulose Estimate, J. Geophys. Res.-Biogeo., 125, e2019JG005418,
https://doi.org/10.1029/2019JG005418, 2020.
Perry, C. C., Williams, R. J. P., and Fry, S. C.: Cell Wall Biosynthesis
during Silicification of Grass Hairs, J. Plant Physiol., 126, 437–448,
https://doi.org/10.1016/S0176-1617(87)80028-7, 1987.
Reiter I. M., Castagnoli G., and Rotereau A.: COOPERATE database, https://cooperate.eccorev.fr/db (last access: 8 June 2022), 2015.
Resco de Dios, V., Chowdhury, F. I., Granda, E., Yao, Y., and Tissue, D. T.:
Assessing the potential functions of nocturnal stomatal conductance in
C3 and C4 plants, New Phytol., 223, 1696–1706,
https://doi.org/10.1111/nph.15881, 2019.
Rey-Sánchez, A. C., Slot, M., Posada, J. M., and Kitajima, K.: Spatial
and seasonal variation in leaf temperature within the canopy of a tropical
forest, Clim. Res., 71, 75–89, https://doi.org/10.3354/cr01427, 2016.
Ripullone, F., Matsuo, N., Stuart-Williams, H., Suan, C. W., Borghetti, M.,
Tani, M., and Farquhar, G.: Environmental effects on oxygen isotope
enrichment of leaf water in cotton leaves, Plant Physiol., 146, 729–736,
https://doi.org/10.1104/pp.107.105643, 2008.
Roden, J. S., Lin, G., and Ehleringer, J. R.: A mechanistic model for
interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose,
Geochim. Cosmochim. Ac., 64, 21–35,
https://doi.org/10.1016/S0016-7037(99)00195-7, 2000.
Sharp, Z. D., Gibbons, J. A., Maltsev, O., Atudorei, V., Pack, A., Sengupta,
S., Shock, E. L., and Knauth, L. P.: A calibration of the triple oxygen
isotope fractionation in the SiO2-H2O system and applications to
natural samples, Geochim. Cosmochim. Ac., 186, 105–119,
https://doi.org/10.1016/j.gca.2016.04.047, 2016.
Shemesh, A., Charles, C. D., and Fairbanks, R. G.: Oxygen Isotopes in
Biogenic Silica: Global Changes in Ocean Temperature and Isotopic
Composition, Science, 256, 1434–1436,
https://doi.org/10.1126/science.256.5062.1434, 1992.
Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H., and Graß, R.: Impact
of heat stress on crop yield – On the importance of considering canopy
temperature, Environ. Res. Lett., 9, 044012,
https://doi.org/10.1088/1748-9326/9/4/044012, 2014.
Song, X., Barbour, M. M., Saurer, M., and Helliker, B. R.: Examining the
large-scale convergence of photosynthesis-weighted tree leaf temperatures
through stable oxygen isotope analysis of multiple data sets, New
Phytol., 192, 912–924,
https://doi.org/10.1111/j.1469-8137.2011.03851.x, 2011.
Song, X., Simonin, K. A., Loucos, K. E., and Barbour, M. M.: Modelling
non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette
environment, Plant Cell Environ., 38, 2618–2628,
https://doi.org/10.1111/pce.12571, 2015.
Still, C., Powell, R., Aubrecht, D., Kim, Y., Helliker, B., Roberts, D.,
Richardson, A. D., and Goulden, M.: Thermal imaging in plant and ecosystem
ecology: applications and challenges, Ecosphere, 10, e02768,
https://doi.org/10.1002/ecs2.2768, 2019.
Surma, J., Assonov, S., Bolourchi, M. J., and Staubwasser, M.: Triple oxygen
isotope signatures in evaporated water bodies from the Sistan Oasis, Iran,
Geophys. Res. Lett., 42, 8456–8462, https://doi.org/10.1002/2015GL066475,
2015.
Surma, J., Assonov, S., and Staubwasser, M.: Triple Oxygen Isotope
Systematics in the Hydrologic Cycle, Rev. Mineral. Geochem., 86, 401–428,
https://doi.org/10.2138/rmg.2021.86.12, 2021.
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng,
R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N.,
Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L.,
Goddéris, Y., Huber, B. T., Ivany, L. C., Turner, S. K., Lunt, D. J.,
McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A., and
Zhang, Y. G.: Past climates inform our future, Science, 370, eaay3701,
https://doi.org/10.1126/science.aay3701, 2020.
Tobin, R. L. and Kulmatiski, A.: Plant identity and shallow soil moisture
are primary drivers of stomatal conductance in the savannas of Kruger
National Park, PLoS One, 13, 1–17,
https://doi.org/10.1371/journal.pone.0191396, 2018.
Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich,
B., Saurer, M., Siegwolf, R., Battipaglia, G., Werner, W., and Gessler, A.:
Seasonal transfer of oxygen isotopes from precipitation and soil to the tree
ring: Source water versus needle water enrichment, New Phytol., 202,
772–783, https://doi.org/10.1111/nph.12741, 2014.
Tsujimura, M., Sasaki, L., Yamanaka, T., Sugimoto, A., Li, S. G.,
Matsushima, D., Kotani, A., and Saandar, M.: Vertical distribution of stable
isotopic composition in atmospheric water vapor and subsurface water in
grassland and forest sites, eastern Mongolia, J. Hydrol., 333, 35–46,
https://doi.org/10.1016/j.jhydrol.2006.07.025, 2007.
Tuthorn, M., Zech, R., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle,
H. F., Eglinton, T., Rozanski, K., and Zech, M.: Coupling δ2H
and δ18O biomarker results yields information on relative
humidity and isotopic composition of precipitation – a climate transect
validation study, Biogeosciences, 12, 3913–3924,
https://doi.org/10.5194/bg-12-3913-2015, 2015.
Vallet-Coulomb, C., Couapel, M., and Sonzogni, C.: Improving memory effect
correction to achieve high precision analysis of δ17O, δ18O δ2H, 17O-excess and d-excess in water using
cavity ring-down laser spectroscopy, Rapid Commun. Mass
Sp., 35, e9108, https://doi.org/10.1002/rcm.9108, 2021.
Voelker, S. L., Brooks, J. R., Meinzer, F. C., Roden, J., Pazdur, A.,
Pawelczyk, S., Hartsough, P., Snyder, K., Plavcová, L., and
Šantruček, J.: Reconstructing relative humidity from plant δ18O and δD as deuterium deviations from the global meteoric
water line, Ecol. Appl., 24, 960–975,
https://doi.org/10.1890/13-0988.1, 2014.
Voigt, C., Herwartz, D., Dorador, C., and Staubwasser, M.: Triple oxygen
isotope systematics of evaporation and mixing processes in a dynamic desert
lake system, Hydrol. Earth Syst. Sci., 25, 1211–1228,
https://doi.org/10.5194/hess-25-1211-2021, 2021.
Voigt, C., Vallet-Coulomb, C., Piel, C., and Alexandre, A.: 17O-excess
and d-excess of atmospheric water vapor measured by cavity ring-down
spectrometry: Evidence of a matrix effect and implication for the
calibration procedure, Rapid Commun. Mass Sp., 36, e9227,
https://doi.org/10.1002/rcm.9227, 2022.
Wang, P., Yamanaka, T., Li, X. Y., Wu, X., Chen, B., Liu, Y., Wei, Z., and
Ma, W.: A multiple time scale modeling investigation of leaf water isotope
enrichment in a temperate grassland ecosystem, Ecol. Res., 33, 901–915,
https://doi.org/10.1007/s11284-018-1591-3, 2018.
Webb, E. A. and Longstaffe, F. J.: The oxygen isotopic compositions of
silica phytoliths and plant water in grasses: Implications for the study of
paleoclimate, Geochim. Cosmochim. Ac., 64, 767–780,
https://doi.org/10.1016/S0016-7037(99)00374-9, 2000.
Webb, E. A. and Longstaffe, F. J.: Climatic influences on the oxygen
isotopic composition of biogenic silica in prairie grass, Geochim. Cosmochim.
Ac., 66, 1891–1904, https://doi.org/10.1016/S0016-7037(02)00822-0, 2002.
Webb, E. A. and Longstaffe, F. J.: Identifying the δ18O
signature of precipitation in grass cellulose and phytoliths: Refining the
paleoclimate model, Geochim. Cosmochim. Ac., 70, 2417–2426,
https://doi.org/10.1016/j.gca.2006.02.024, 2006.
Wen, X. F., Zhang, S. C., Sun, X., Yu, G., and Lee, X.: Water vapor and
precipitation isotope ratios in Beijing, China, J. Geophys.
Res.-Atmos., 115, 1–10, https://doi.org/10.1029/2009JD012408,
2010.
Yakir, D., Berry, J. A., Giles, L., and Osmond, C. B.: Isotopic
heterogeneity of water in transpiring leaves: identification of the
component that controls the δ18O of atmospheric O2 and
CO2, Plant Cell Environ., 17, 73–80,
https://doi.org/10.1111/j.1365-3040.1994.tb00267.x, 1994.
Zech, M., Mayr, C., Tuthorn, M., Leiber-Sauheitl, K., and Glaser, B.: Oxygen
isotope ratios (18O 16O) of hemicellulose-derived sugar biomarkers
in plants, soils and sediments as paleoclimate proxy I: Insight from a
climate chamber experiment, Geochim. Cosmochim. Ac., 126, 614–623,
https://doi.org/10.1016/j.gca.2013.10.048, 2014.
Short summary
Data on past relative humidity (RH) ARE needed to improve its representation in Earth system models. A novel isotope parameter (17O-excess) of plant silica has been developed to quantify past RH. Using comprehensive monitoring and novel methods, we show how environmental and plant physiological parameters influence the 17O-excess of plant silica and leaf water, i.e. its source water. The insights gained from this study will help to improve estimates of RH from fossil plant silica deposits.
Data on past relative humidity (RH) ARE needed to improve its representation in Earth system...
Altmetrics
Final-revised paper
Preprint