Articles | Volume 20, issue 1
https://doi.org/10.5194/bg-20-229-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-229-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biomarker characterization of the North Water Polynya, Baffin Bay: implications for local sea ice and temperature proxies
David J. Harning
CORRESPONDING AUTHOR
Institute of Arctic and Alpine Research, University of Colorado,
Boulder, USA
Brooke Holman
Institute of Arctic and Alpine Research, University of Colorado,
Boulder, USA
Lineke Woelders
Institute of Arctic and Alpine Research, University of Colorado,
Boulder, USA
Anne E. Jennings
Institute of Arctic and Alpine Research, University of Colorado,
Boulder, USA
Julio Sepúlveda
Institute of Arctic and Alpine Research, University of Colorado,
Boulder, USA
Department of Geological Sciences, University of Colorado, Boulder,
USA
Related authors
David J. Harning, Christopher R. Florian, Áslaug Geirsdóttir, Thor Thordarson, Gifford H. Miller, Yarrow Axford, and Sædís Ólafsdóttir
Clim. Past, 21, 795–815, https://doi.org/10.5194/cp-21-795-2025, https://doi.org/10.5194/cp-21-795-2025, 2025
Short summary
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial-scale record of landscape and algal productivity from a lake in north Iceland. Along with a high-resolution tephra age constraint that covers the last ∼ 12 000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
David J. Harning, Christopher R. Florian, Áslaug Geirsdóttir, Thor Thordarson, Gifford H. Miller, Yarrow Axford, and Sædís Ólafsdóttir
Clim. Past, 21, 795–815, https://doi.org/10.5194/cp-21-795-2025, https://doi.org/10.5194/cp-21-795-2025, 2025
Short summary
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial-scale record of landscape and algal productivity from a lake in north Iceland. Along with a high-resolution tephra age constraint that covers the last ∼ 12 000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Joshua Coupe, Nicole S. Lovenduski, Luise S. Gleason, Michael N. Levy, Kristen Krumhardt, Keith Lindsay, Charles Bardeen, Clay Tabor, Cheryl Harrison, Kenneth G. MacLeod, Siddhartha Mitra, and Julio Sepúlveda
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-94, https://doi.org/10.5194/gmd-2024-94, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We develop a new feature in the atmosphere and ocean components of the Community Earth System Model version 2. We have implemented ultraviolet (UV) radiation inhibition of photosynthesis of four marine phytoplankton functional groups represented in the Marine Biogeochemistry Library. The new feature is tested with varying levels of UV radiation. The new feature will enable an analysis of an asteroid impact’s effect on the ozone layer and how that affects the base of the marine food web.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Cited articles
Amiraux, R., Smik, L., Köseoğlu, D., Rontani, J.-F., Galindo, V.,
Grondin, P.-L., Babin, M., and Belt, S. T.: Temporal evolution of IP25
and other highly branched isoprenoid lipids in sea ice and the underlying
water column during an Arctic melting season, Elementa-Sci. Anthrop., 7,
1–23, https://doi.org/10.1525/elementa.377, 2019.
Amiraux, R., Archambault, P., Moriceau, B., Lemire, M., Babin, M., Memery,
L., Massé, G., and Tremblay, J.-E.: Efficiency of the
sympagic-benthic coupling revealed by n-3 fatty acids, IP25 and other
highly branched isoprenoid analyses of two filter-feeding Arctic benthic
molluscs: Mya truncate and Serripes groenlandicus, Org. Geochem., 151, 104160,
https://doi.org/10.1016/j.orggeochem.2020.104160, 2021.
Arrigo, K. R. and van Dijken, G. L.: Annual cycles of sea ice and
phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Can.
Arctic, Geophys. Res. Lett., 31, L08304,
https://doi.org/10.1029/2003GL018978, 2004.
Azetsu-Scott, K., Clarke, A., Falkner, K., Hamilton, J., Jones, P. E., Lee,
C., Petrie, B., Prinsenberg, S., Starr, M., and Yeats, P.: Calcium carbonate
saturation states in the waters of the Canadian Arctic Archipelago and the
Labrador Sea, J. Geophys. Res., 115, 1–18,
https://doi.org/10.1029/2009JC005917, 2010.
Bale, N. J., Palatinszky, M., Rijpstra, W. I. C., Herbold, C. W., Wagner,
M., and Sinninghe Damsté, J. S.: Membrane lipid composition of the
moderately thermophilic ammonia-oxidizing archaeon “Candidatus Nitrosotenuis
uzonensis” at different growth temperatures, Appl. Environ. Microbiol., 85,
e01332, https://doi.org/10.1128/AEM.01332-19, 2019.
Barber, D., Mardsen, R., Minnett, P., Ingram, G., and Fortier, L.: Physical
processes within the North Water (NOW) polynya, Atmos. Ocean, 39,
163–166, https://doi.org/10.1080/07055900.2001.9649673, 2001.
Barnhart, K. R., Miller, C. R., Overeem, I., and Kay, J. E.: Mapping the
future expansion of Arctic open water, Nat. Clim. Change, 6, 280–285,
https://doi.org/10.1038/nclimate2848, 2015.
Belt, S. T.: Source-specific biomarkers as proxies for Arctic and Antarctic
sea ice, Org. Geochem., 125, 277–298,
https://doi.org/10.1016/j.orggeochem.2018.10.002, 2018.
Belt, S. T., Allard, W. G., Massé, G., Robert, J.-M., and Rowland, S.
J.: Highly branched isoprenoids (HBIs): Identification of the most common
and abundant sedimentary isomers, Geochim. Cosmochim. Ac., 64, 3839–3851,
https://doi.org/10.1016/S0016-7037(00)00464-6, 2000.
Belt, S. T., Massé, G., Rowland, S. J., Poulin, M., Michel, C., and
LeBlanc, B.: A novel chemical fossil of palaeo sea ice: IP25, Org.
Geochem., 38, 16–27, https://doi.org/10.1016/j.orggeochem.2006.09.013,
2007.
Belt, S. T., Massé, G., Vare, L. L., Rowland, S. J., Poulin, M., Sicre,
M.-A., Sampei, M., and Fortier, L.: Distinctive 13C isotopic signature
distinguishes a novel sea ice biomarker in Arctic sediments and sediment
traps, Mar. Chem., 112, 158–167,
https://doi.org/10.1016/j.marchem.2008.09.002, 2008.
Belt, S. T., Brown, T. A., Navarro Rodriguez, A., Cabedo-Sanz, P., Tonkin,
A., and Ingle, R.: A reproducible method for the extraction, identification
and quantification of the Arctic sea ice proxy IP25 from marine
sediments, Anal. Method., 4, 705–713, https://doi.org/10.1039/C2Ay05728J,
2012.
Belt, S. T., Brown, T. A., Ringrose, A. E., Cabedo-Sanz, P., Mundy, C. J.,
Gosselin, M., and Poulin, M.: Quantitative measurement of the sea ice diatom
biomarker IP25 and sterols in Arctic sea ice and underlying sediments:
further considerations for palaeo sea ice reconstruction, Org. Geochem., 62,
33–45, https://doi.org/10.1016/j.orggeochem.2013.07.002, 2013.
Belt, S. T., Brown, T. A., Ampel, L., Cabedo-Sanz, P., Fahl, K., Kocis, J.
J., Masse, G., Navarro-Rodriguez, A., Ruan, J., and Xu, Y.: An
inter-laboratory investigation of the Arctic sea ice biomarker proxy IP25 in
marine sediments: key outcomes and recommendations, Clim. Past, 10,
155–166, https://doi.org/10.5194/cp-10-155-2014, 2014.
Belt, S. T., Cabedo-Sanz, P., Smik, L., Rodriguez-Navarro, A., Berben, S. M.
P., Knies, J., and Husum, K.: Identification of paleo Arctic winter sea ice
limits and the marginal ice zone: Optimised biomarker-based reconstructions
of late Quaternary Arctic sea ice, Earth Planet. Sc. Lett., 431, 127–139,
https://doi.org/10.1016/j.epsl.2015.09.020, 2015.
Belt, S. T., Brown, T. A., Smik, L., Tatarek, A., Wiktor, J., Stowasser, G.,
Assmy, P., Allen, C. S., and Husum, K.: Identification of C25 highly
branched isoprenoid (HBI) alkenes in diatoms of the genus Rhizosolenia in polar and
sub-polar marine phytoplankton, Org. Geochem., 110, 65–72,
https://doi.org/10.1016/j.orggeochem.2017.05.007, 2017.
Belt, S. T., Brown, T. A., Smik, L., Assmy, P., and Mundy, C. J.: Sterol
identification in floating Arctic sea ice algal aggregates and the Antarctic
sea ice diatom Berkeleya adeliensis, Org. Geochem., 118, 1–3,
https://doi.org/10.1016/j.orggeochem.2018.01.008, 2018.
Belt, S. T., Smik, L., Köseoğlu, D., Knies, J., and Husum, K.: A
novel biomarker-based proxy for the spring phytoplankton bloom in Arctic and
sub-arctic settings – HBI T25, Earth Planet. Sc. Lett., 523,
115703, https://doi.org/10.1016/j.epsl.2019.06.038, 2019.
Besseling, M. A., Hopmans, E. C., Bale, N. J., Schouten, S., Sinninghe
Damsté, J. S., and Villanueva, L.: The absence of intact polar
lipid-derived GDGTs in marine waters dominated by Marine Group II:
Implications for lipid biosynthesis in Archaea, Sci. Rep., 10, 294,
https://doi.org/10.1038/s41598-019-57035-0, 1-10.
Bi, H., Zhang, Z., Wang, Y., Xu, X., Liang, Y., Huang, J., Liu, Y., and Fu, M.: Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017, The Cryosphere, 13, 1025–1042, https://doi.org/10.5194/tc-13-1025-2019, 2019.
Boon, J. J., Rijpstra, W. I. C., De Lange, F., De Leeuw, J. W., Yoshioka,
M., and Shimizu, Y.: Black Sea sterol – a molecular fossil for
dinoflagellate blooms, Nature, 277, 125–127,
https://doi.org/10.1038/277125a0, 1976.
Boudinot, F. G., Dildar, N., Leckie, R. M., Parker, A., Jones, M. M.,
Sageman, B. B., Bralower, T. J., and Sepúlveda, J.: Neritic ecosystem
response to Oceanic Anoxic Event 2 in the Cretaceous Western Interior
Seaway, USA, Palaeogr. Palaeocl., 546, 109673,
https://doi.org/10.1016/j.palaeo.2020.109673, 2020.
Brown, T. A., Belt, S. T., Philippe, B., Mundy, C. J., Massé, G.,
Poulin, M., and Gosselin, M.: Temporal and vertical variations of lipid
biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea:
further evidence for the use of the IP25 biomarker as a proxy for
spring Arctic sea ice, Polar Biol., 34, 1857–1868,
https://doi.org/10.1007/s00300-010-0942-5, 2011.
Brown, T. A., Belt, S. T., Tatarek, A., and Mundy, C. J.: Source
identification of the Arctic sea ice proxy IP25, Nat. Comm., 5, 1–7,
https://doi.org/10.1038/ncomms5197, 2014.
Cabedo-Sanz, P., Belt, S. T., Knies, J., and Husum, K.: Identification of
contrasting seasonal sea ice conditions during the Younger Dryas, Quaternary Sci.
Rev., 79, 74–86, https://doi.org/10.1016/j.quascirev.2012.10.028, 2013.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea Ice
Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave
Data, Version 1, Boulder, Colorado USA, NASA National Snow
and Ice Data Center Distributed Active Archive Center [datat set],
https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.
Church, M. J., Wai, B., Karl, D. M., and DeLong, E. F.: Abundances of
crenarchaeal amoA genes and transcripts in the Pacific Ocean, Environ.
Microbiol., 12, 679–688, https://doi.org/10.1111/j.1462-2920.2009.02108.x,
2010.
Detlef, H., Reilly, B., Jennings, A., Mørk Jensen, M., O'Regan, M., Glasius, M., Olsen, J., Jakobsson, M., and Pearce, C.: Holocene sea-ice dynamics in Petermann Fjord in relation to ice tongue stability and Nares Strait ice arch formation, The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, 2021.
Elling, F. J., Könneke, M., Lipp, J. S., Becker, K. W., Gagen, E. J.,
and Hinrichs, K.-U.: Effects of growth phase on the membrane lipid
composition of the thaumarchaeon Nitrosopumilus maritimus and their
implications for archaeal lipid distributions in the marine environment,
Geochim. Cosmochim. Ac., 141, 579–597,
https://doi.org/10.1016/j.gca.2014.07.005, 2014.
Elling, F. J., Könneke, M., Mußmann, M., Greve, A., and Hinrichs,
K.-U.: Influence of temperature, pH, and salinity on membrane lipid
composition and TEX86 of marine planktonic thaumarchaeal isolates,
Geochim. Cosmochim. Ac., 171, 238–255,
https://doi.org/10.1016/j.gca.2015.09.004, 2015.
Elling, F. J., Könneke, M., Nicol, G. W., Stieglmeier, M., Bayer, B.,
Spieck, E., de la Torre, J. R., Becker, K. W., Thomm, M., Prosser, J. I.,
Herndl, G. J., Schleper, C., and Hinrichs, K.-U.: Chemotaxonomic
characterisation of the thaumarchaeal lipidome, Environ. Microbiol., 19,
681–700, https://doi.org/10.1111/1462-2920.13759, 2017.
Fietz, S., Huguet, C., Rueda, G., Hambach, B., and Rosell-Melé, A.:
Hydroxylated isoprenoidal GDGTs in the Nordic Seas, Mar. Chem., 152, 1–10,
https://doi.org/10.1016/j.marchem.2013.02.007, 2013.
Fietz, S., Ho, S. L., and Huguet, C.: Archaeal membrane lipid-based
paleothermometry for application in polar oceans, Oceanography, 33, 104–114,
https://doi.org/10.5670/oceanog.2020.207, 2020.
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B.
B.: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and
sediments of the ocean, P. Natl. Acad. Sci. USA, 102, 14683–14688,
https://doi.org/10.1073/pnas.0506625102, 2005.
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov,
D., and Reagan, J. R.: World Ocean Atlas 2018, Vol. 3, Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, A. Mishonov Technical Edn., NOAA Atlas NESDIS 83, NOAA National Centers for Environmental Information [data set], 38
pp., 2018a.
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov,
D., and Reagan, J. R.: World Ocean Atlas 2018, Vol. 4, Dissolved Inorganic Nutrients (phosphate, nitrate and nitrate + nitrite, silicate), A. Mishonov Technical Edn., NOAA Atlas NESDIS 84,
35 pp., NOAA Atlas NESDIS 83, NOAA National Centers for Environmental Information [data set], 2018b.
Georgiadis, E., Giraudeau, J., Jennings, A., Limoges, A., Jackson, R.,
Ribeiro, S., and Massé, G.: Local and regional controls on Holocene sea
ice dynamics and oceanography in Nares Strait, Northwest Greenland, Mar.
Geol., 442, 106115, https://doi.org/10.1016/j.margeo.2020.106115, 2020.
Gould, W. A., Raynolds, M., and Walker, D. A.: Vegetation, plant biomass,
and net primary productivity patterns in the Canadian Arctic, J. Geophys.
Res.-Atmos., 108, 1–14, https://doi.org/10.1029/2001JD000948, 2003.
Grønnow, B. and Sørensen, M.: Palaeo-Eskimo migrations into
Greenland: The Canadian Connection, in: Dynamics of Northern Societies,
Proceedings of the SILA/NABO Conference on Arctic and North Atlantic
Archaeology, edited by: Arneborg, J. and Grønnow, B., Copenhagen, National Museum, Studies in Archaeology and History, 59–74,
2006.
Harning, D. J., Andrews, J. T., Belt, S. T., Cabedo-Sanz, P.,
Geirsdóttir, Á, Dildar, N., Miller, G. H., and Sepúlveda, J.:
Sea ice control on winter subsurface temperatures of the North Iceland Shelf
during the Little Ice Age: A TEX86 calibration case study,
Paleoceanogr. Paleocl., 34, 1006–1021,
https://doi.org/10.1029/2018PA003523, 2019.
Harning, D. J., Jennings, A. E., Köseoğlu, D., Belt, S. T.,
Geirsdóttir, Á., and Sepúlveda, J.: Response of biological
productivity to North Atlantic marine front migration during the Holocene,
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, 2021.
Hastrup, K., Mosbech, A., and Grønnow, B.: Introducing the North Water:
Histories of exploration, ice dynamics, living resources, and human
settlement in the Thule Region, Ambio, 47, 162–174,
https://doi.org/10.1007/s13280-018-1030-2, 2018.
Herfort, L., Schouten, S., Boon, J. P., and Sinninghe Damsté, J. S.:
Application of TEX86 temperature proxy to the southern North Sea, Org.
Geochem., 37, 1715–1726, https://doi.org/10.1016/j.orggeochem.2006.07.021,
2006.
Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: The effect of
improved chromatography on GDGT-based palaeoproxies, Org. Geochem., 93, 1–6,
https://doi.org/10.1016/j.orggeochem.2015.12.006, 2016.
Huang, W. Y. and Meinschein, W. G.: Sterols as source indicators of organic
materials in sediments, Geochem. Cosmochim. Ac., 40, 323–330,
https://doi.org/10.1016/0016-7037(76)90210-6, 1976.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe
Damsté, J. S., and Schouten, S.: An improved method to determine the
absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org.
Geochem., 37, 1036–1041, https://doi.org/10.1016/j.orggeochem.2006.05.008,
2006.
Huguet, C., Fietz, S., and Rosell-Melé, A.: Global distribution patterns
of hydroxy glycerol dialkyl glycerol tetraethers, Org. Geochem., 57, 107–118,
https://doi.org/10.1016/j.orggeochem.2013.01.010, 2013.
Huguet, C., Fietz, S., Rosell-Melé, A., Daura, X., and Costenaro, L.:
Molecular dynamics simulation study of the effect of glycerol dialkyl
glycerol tetraether hydroxylation on membrane thermostability, Biochim.
Biophys. Ac., 1859, 966–974,
https://doi.org/10.1016/j.bbamem.2017.02.009, 2017.
Hurley, S. J., Elling, F. J., Könneke, M., Buchwald, C., Wankel, S. D.,
Santoro, A. E., Lipp, J. S., Hinrichs, K.-U., and Pearson, A.: Influence of
ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86
temperature proxy, P. Natl. Acad. Sci. USA, 113, 7762–7767,
https://doi.org/10.1073/pnas.1518534113, 2016.
Hurley, S. J., Lipp, J. S., Close, H. G., Hinrichs, K.-U., and Pearson, A.:
Distribution and export of isoprenoid tetraether lipids in suspended
particulate matter from the water column of the Western Atlantic Ocean, Org.
Geochem., 116, 90–102, https://doi.org/10.1016/j.orggeochem.2017.11.010,
2018.
Ingram, R. G., Bacle, J., Barber, D. G., Gratton, Y., and Melling, H.: An
overview of physical processes in the North Water, Deep-Sea Res. Pt. II, 49,
4893–4906, https://doi.org/10.1016/S0967-0645(02)00169-8, 2002.
Jackson, R., Kvorning, A. B., Limoges, A., Georgiadis, E., Olsen, S. M.,
Tallberg, P., Andersen, T. J., Mikkelsen, N., Giraudeau, J., Massé, G.,
Wacker, L., and Ribeiro, S.: Holocene polynya dynamics and their interaction
with oceanic heat transport in northernmost Baffin Bay, Sci. Rep., 11, 1–17,
https://doi.org/10.1038/s41598-021-88517-9, 2021.
Jia, G., Wang, X., Guo, W., and Dong, L.: Seasonal distribution of archaeal
lipids in surface water and its constraint on their sources and the TEX86
temperature proxy in sediments of the South China Sea, J. Geophys.
Res.-Biogeo., 122, 592–606, https://doi.org/10.1002/2016JG003732, 2017.
Jones, E. P., Swift, J. H. Anderson, L. G., Lipizer, M., Civitarese, G.,
Falkner, K. K., Kattner, G., and McLaughlin, F.: Tracing Pacific water in
the North Atlantic Ocean, J. Geophys. Res., 108, 3116,
https://doi.org/10.1029/2001JC001141, 2003.
Kang, S., Shin, K. H., and Kim, J. H.: Occurrence and distribution of
hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers (OH-GDGTs) in
the Han River system, South Korea, Acta Geochim., 36, 367–369,
https://doi.org/10.1007/s11631-017-0165-3, 2017.
Karner, M. B., DeLong, E. F., and Karl, D. M.: Archaeal dominance in the
mesopelagic zone of the Pacific Ocean, Nature, 409, 507–510,
https://doi.org/10.1038/35054051, 2001.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.:
New indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Kim, J.-H., Crosta, X., Willmott, V., Renssen, H., Bonnin, J., Helmke, P.,
Schouten, S., and Sinninghe Damsté, J. S.: Holocene subsurface
temperature variability in the eastern Antarctic continental margin,
Geophys. Res. Lett., 39, 3–8, https://doi.org/10.1029/2012GL051157, 2012.
Kim, J.-H., Schouten, S., Rodrigo-Gámiz, M., Rampen, S., Marino, G.,
Huguet, C., Helmke, P., Buscail, R., Hopmans, E. C., Pross, J., Sangiorgi,
F., Middelburg, J. B. M., and Sinninghe Damsté, J. S.: Influence of
deep-water derived isoprenoid tetraether lipids on the TEX paleothermometer in the Mediterranean Sea, Geochim. Cosmochim. Ac., 150,
125–141, https://doi.org/10.1016/j.gca.2014.11.017, 2015.
Kim, J.-H., Villanueva, L., Zell, C., and Sinninghe Damsté, J. S.:
Biological source and provenance of deep-water derived isoprenoid tetraether
lipids along the Portuguese continental margin, Geochim. Cosmochim. Ac.,
172, 177–204, https://doi.org/10.1016/j.gca.2015.09.010, 2016.
Klein, B., LeBlanc, B., Mei, Z.-P., Beret, R., Michaud, J., Mundy, C. J.,
von Quillfeldt, C. H., EÌve Garneau, M., Roy, S., Gratton, Y., Cochran, J.
K., Beìlanger, S., Larouche, P., Pakulski, J. D., Rivkin, R. B., and
Legendre, L.: Phytoplankton biomass, production and potential export in the
North Water, Deep-Sea Res. Pt. II, 49, 4983–5002,
https://doi.org/10.1016/S0967-0645(02)00174-1, 2002.
Knies, J., Köseoğlu, D., Rise, L., Baeten, N., Bellec, V. K.,
Bøe, R., Klug, M., Panieri, G., Jernas, P. E., and Belt, S. T.: Nordic
Seas polynyas and their role in preconditioning marine productivity during
the Last Glacial Maximum, Nat. Comm., 9, 3959,
https://doi.org/10.1038/s41467-018-06252-8, 2018.
Koch, C. W., Cooper, L. W., Lalande, C., Brown, T. A., Frey, K. E., and
Grebmeler, J. M.: Seasonal and latitudinal variations in sea ice algae
deposition in the Northern Bering and Chukchi Seas determined by algal
biomarkers, PLoS ONE, 15, e0231178,
https://doi.org/10.1371/journal.pone.0231178, 2020.
Kolling, H. M., Stein, R., Fahl, K., Sadatzki, H., de Vernal, A., and Xiao,
X.: Biomarker distributions in (sub)-Arctic surface sediments and their
potential for sea-ice reconstructions, Geochem. Geophy. Geosy., 21,
e2019GC008629, https://doi.org/10.1029/2019GC008629, 2020.
Könneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B.,
Waterbury, J. B., and Stahl, D. A.: Isolation of an autotrophic
ammonia-oxidizing marine archaeon, Nature, 437, 543–546,
https://doi.org/10.1038/nature03911, 2005.
Köseoğlu, D., Belt, S. T., Smik, L., Yao, H., Panieri, G., and
Knies, J.: Complementary biomarker-based methods for characterizing Arctic
sea ice conditions: A case study comparison between multivariate analysis
and the PIP25 index, Geochim. Cosmochim. Ac., 222, 406–420,
https://doi.org/10.1016/j.gca.2017.11.001, 2018.
Köseoğlu, D., Belt., S. T., and Knies, J.: Abrupt shifts of
productivity and sea ice regimes at the western Barents Sea slope from the
Last Glacial Maximum to the Bølling-Allerød interstadial, Quaternary Sci.
Rev., 222, 105903, https://doi.org/10.1016/j.quascirev.2019.105903, 2019.
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and
Rahmstorf, S.: On the driving processes of the Atlantic meridional
overturning circulation, Rev. Geophys., 45, RG2001,
https://doi.org/10.1029/2004RG000166, 2007.
Kuypers, M. M. M., Marchant, H. K., and Kartal, B.: The microbial
nitrogen-cycling network, Nat. Rev. Microbiol., 16, 263–276,
https://doi.org/10.1038/nrmicro.2018.9, 2018.
Lewis, L., Ponton, D., Legendre, L., and Leblanc, B.: Springtime sensible
heat, nutrients and phytoplankton in the Northwater Polynya, Can.
Arctic. Cont. Shelf Res., 16, 1775–1792,
https://doi.org/10.1016/0278-4343(96)00015-5, 1996.
International Hydrographic Organization (IHO): Limits of Oceans and Seas, International Hydrographic Organization, Special Publication No. 23, 3rd Edn., IMP, Monégasque – Monte Carlo, 45 pp., https://doi.org/10.1594/PANGAEA.777975, 1953.
Limoges, A., Massé, G., Weckström, K., Poulin, M., Ellegaard, M.,
Heikkilä, M., Geilfus, N.-X., Sejr, M. K., Rysgaard, S., and Ribeiro,
S.: Spring succession and vertical export of diatoms and IP25 in a
seasonally ice-covered high arctic fjord, Front. Earth Sci., 6,
1–15, https://doi.org/10.3389/feart.2018.00226, 2018.
Liu, X.-L., Lipp, J. S., Simpson, J. H., Lin, Y.-S., Summons, R. E., and
Hinrichs, K.-U.: Mono- and dihydroxyl dibiphytanyl glycerol tetraethers in
marine sediments: Identification of both core and intact polar lipid forms,
Geochim. Cosmochim. Ac., 89, 102–115,
https://doi.org/10.1016/j.gca.2012.04.053, 2012.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M.
M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R.,
and Smolyar, I.: World Ocean Atlas 2018, Vol. 1, Temperature, A. Mishonov Technical Edn., NOAA Atlas NESDIS 81, 52 pp., NOAA National Centers for Environmental Information [data set],
2018.
Lü, X., Liu, X.-L., Elling F. J., Yang, H., Xie, S., Song, J., Li, X.,
Yuan, H., Li, N., and Hinrichs, K. U.: Hydroxylated isoprenoid GDGTs in
Chinese coastal seas and their potential as a paleo-temperature proxy for
mid-to-low latitude marginal seas, Org. Geochem., 89/90, 31–43,
https://doi.org/10.1016/j.orggeochem.2015.10.004, 2015.
Lü, X., Chen, J., Han, T., Yang, H., Wu, W., Ding, W., and Hinrichs, K.
U.: Origin of hydroxyl GDGTs and regular isoprenoid GDGTs in suspended
particulate matter of Yangtze River Estuary, Org. Geochem., 128, 78–85,
https://doi.org/10.1016/j.orggeochem.2018.12.010, 2019.
Melling, H., Gratton, Y., and Ingram, G.: Ocean circulation within the North
Water polynya of Baffin Bay, Atmos. Ocean, 39, 301–325,
https://doi.org/10.1080/07055900.2001.9649683, 2001.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions,
in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor,
M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem,
A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157964.005, 2019.
Meyers, P. A.: Preservation of elemental and isotopic source identification
of sedimentary organic matter, Chem. Geol., 114, 289–302,
https://doi.org/10.1016/0009-2541(94)90059-0, 1994.
Moore, G. W. K., Howell, S. E. L., Brady, M., Xu, X., and McNeil, K.:
Anomalous collapses of Nares Strait ice arches leads to enhanced export of
Arctic sea ice, Nat. Comm., 12, 1–8,
https://doi.org/10.1038/s41467-020-20314-w, 2021.
Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and Lohmann,
G.: Towards quantitative sea ice reconstructions in the northern North
Atlantic: A combined biomarker and numerical modelling approach, Earth
Planet. Sc. Lett., 306, 137–148,
https://doi.org/10.1016/j.epsl.2011.04.011, 2011.
Münchow, A., Falkner, K. K., and Melling, H.: Spatial
continuity of measured seawater and tracer fluxes through Nares Strait, a
dynamically wide channel bordering the Canadian Archipelago, J. Marine Res.,
65, 759–788, https://doi.org/10.1357/002224007784219048, 2006.
Münchow, A., Kelly, K. Falkner, K. K., and Melling, H.:
Baffin Island and West Greenland Current Systems in northern Baffin Bay,
Prog. Oceanogr., 132, 305–337, https://doi.org/10.1016/j.pocean.2014.04.001,
2015.
Navarro-Rodriguez, A., Belt, S. T., Knies, J., and Brown, T. A.: Mapping
recent sea ice conditions in the Barents Sea using the proxy biomarker IP25:
implications for palaeo sea ice reconstructions, Quaternary Sci. Rev., 79, 26–39,
https://doi.org/10.1016/j.quascirev.2012.11.025, 2013.
Nichols, P. D., Palmisano, A. C., Rayner, M. S., Smith, G. A., and White, D.
C.: Occurrence of novel C30 sterols in Antarctic sea-ice diatom communities
during a spring bloom, Org. Geochem., 15, 503–508,
https://doi.org/10.1016/0146-6380(90)90096-I, 1990.
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.: Seasonal
and regional manifestation of Arctic sea ice loss, J. Clim., 31, 4917–4932,
https://doi.org/10.1175/JCLI-D-17-0427.1, 2018.
Park, E., Hefter, J., Fischer, G., Iversen, M. H., Ramondenc, S.,
Nöthig, E.-M., and Mollenhauer, G.: Seasonality of archaeal lipid flux
and GDGT-based thermometry in sinking particles of high-latitude oceans:
Fram Strait (79∘ N) and Antarctic Polar Front (50∘ S),
Biogeosciences, 16, 2247–2268, https://doi.org/10.5194/bg-16-2247-2019,
2019.
Pearson, A. and Ingalls, A. E.: Assessing the use of archaeal lipids in
marine environmental proxies, Annu. Rev. Earth Pl. Sc., 41, 359–384,
https://doi.org/10.1146/annurev-earth-050212-123947, 2013.
Pitcher, A., Hopmans, E. C., Mosier, A. C., Park, S.-J., Rhee, S.-K.,
Francis, C. A., Schouten, S., and Sinninghe Damsté, J. S.: Core and
intact polar glycerol dibiphytanyl glycerol tetraether lipids of
ammonia-oxidizing archaea enriched from marine and estuarine sediments,
Appl. Environ. Microbiol., 77, 3468–3477, https://doi.org/10.1128/AEM.02758-10,
2011.
Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W.,
Stahl, D. A., and Ingalls, A. E.: Confounding effects of oxygen and
temperature on the TEX86 signature of marine Thaumarchaeota, P. Natl.
Acad. Sci. USA, 112, 10979–10984, https://doi.org/10.1073/pnas.1501568112,
2015.
Raghavan, M., DeGiorgio, M., Albrechtsen, A., Moltke, I., Skoglund, P.,
Korneliussen, T. S., Grønnow, B., Appelt, M., Gulløv, H. C., Friesen,
T. M., Fitzhugh, W., Malmström, H., Rasmussen, S., Olsen, J., Melchior,
L., Fuller, B. T., Fahrni, S. M., Stafford, T. Jr., Grimes, V., Renouf, M.
A. P., Cybulski, J., Lynnerup, N., Lahr, M. M., Britton, K., Knecht, R.,
Arneborg, J., Metspalu, M., Cornejo, O. E., Malaspinas, A.-S., Wang, Y.,
Rasmussen, M., Raghavan, V., Hansen, T. V. O., Khusnutdinova, E., Pierre,
T., Dneprovsky, K., Andreasen, C., Lange, H., Hayes, M. G., Coltrain, J.,
Spitsyn, V. A., Götherström, A., Orlando, L., Kivisild, T., Villems,
R., Crawford, M. H., Nielsen, F. C., Dissing, J., Heinemeier, J., Meldgaard,
M., Bustamante, C., O'Rourke, D. H., Jakobsson, M., Gilbert, M. T. P.,
Nielsen, R., and Willerslev, E.: The genetic prehistory of the New World
Arctic, Science, 345, 1255832, https://doi.org/10.1126/science.1255832, 2014.
Rampen, S. W., Abbas, B. A., Schouten, S., and Sinninghe Damste, J. S.: A
comprehensive study of sterols in marine diatoms (Bacillariophyta):
implications for their use as tracers for diatom productivity, Limnol.
Oceanogr., 55, 91–105, https://doi.org/10.4319/lo.2010.55.1.0091, 2010.
Ribeiro, S., Limoges, A., Massé, G., Johansen, K. L., Colgan, W.,
Weckström, K., Jackson, R., Georgiadis, E., Mikkelsen, N., Kuijpers, A.,
Olsen, J., Olsen, S. M., Nissen, M., Andersen, T. J., Strunk, A., Wetterich,
S., Syväranta, J., Henderson, A. C. G., Mackay, H., Taipale, S.,
Jeppesen, E., Larsen, N. K., Crosta, X., Giraudeau, J., Wengrat, S., Nuttal,
N., Grønnow, B., Mosbech, A., and Davidson, T. A.: Vulnerability of the
North Water ecosystem to climate change, Nat. Comm., 12, 1–12,
https://doi.org/10.1038/s41467-021-24742-0, 2021.
Rodrigo-Gámiz, M., Rampen, S. W., de Haas, H., Baas, M., Schouten, S., and Sinninghe Damsté, J. S.: Constraints on the applicability of the organic temperature proxies U , TEX86 and LDI in the subpolar region around Iceland, Biogeosciences, 12, 6573–6590, https://doi.org/10.5194/bg-12-6573-2015, 2015.
Rowland, S. J., Allard, W. G., Belt, S. T., Massé, G., Robert, J.-M.,
Blackburn, S., Frampton, D., Revill, A. T., and Volkman, J. K.: Factors
influencing the distributions of polyunsaturated terpenoids in the diatom,
Rhizosolenia setigera, Phytochemistry, 58, 717–728,
https://doi.org/10.1016/S0031-9422(01)00318-1, 2001.
Rueda, G., Rosell-Melé, A., Escala, M., Gyllencreutz, R., and Backman,
J.: Comparison of instrumental and GDGT-based estimates of sea surface and
air temperatures from the Skagerrak, Org. Geochem., 40, 287–291,
https://doi.org/10.1016/j.orggeochem.2008.10.012, 2009.
Ryan, P. A. and Münchow, A.: Sea ice draft observations in Nares Strait
from 2003 to 2012, J. Geophys. Res.-Ocean., 122, 3057–3080,
https://doi.org/10.1002/2016JC011966, 2017.
Schlitzer, R.: Ocean Data View, http://odv.awi.de (last access: 1 June 2021), 2020.
Schouten, S., Hopmans, E. C., Schefuss, E., and Sinninghe Damsté, J. S.:
Distributional variations in marine crenarchaeotal membrane lipids: a new
tool for reconstructing ancient sea water temperatures?, Earth Pl. Sc.
Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(02)00979-2, 2002.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org.
Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013.
Sinninghe Damsté, J. S., Warden, L. A., Berg, C., Jürgens, K., and
Moros, M.: Evaluation of the distributions of hydroxylated glycerol
dibiphytanyl glycerol tetraethers (GDGTs) in Holocene Baltic Sea sediments
for reconstruction of sea surface temperature: the effect of changing
salinity, Clim. Past, 18, 2271–2288,
https://doi.org/10.5194/cp-18-2271-2022, 2022.
Smik, L. and Belt, S. T.: Distributions of the Arctic sea ice biomarker
proxy IP25 and two phytoplanktonic biomarkers in surface sediments from
West Svalbard, Org. Geochem., 105, 39–41,
https://doi.org/10.1016/j.orggeochem.2017.01.005, 2017.
Smik, L., Cabedo-Sanz, P., and Belt, S. T.: Semi-quantitative estimates of
paleo Arctic sea ice concentration based on source-specific highly branched
isoprenoid alkenes: A further development of the PIP25 index, Org. Geochem.,
92, 63–69, https://doi.org/10.1016/j.orggeochem.2015.12.007, 2016.
Smith, J. A., Hillenbrand, C. D., Pudsey, C. J., Allen, C. S., and Graham,
A. G. C.: The presence of polynyas in the Weddell Sea during the Last
Glacial Period with implications for the reconstruction of sea-ice limits
and ice sheet history, Earth Pl. Sc. Lett., 296, 287–298,
https://doi.org/10.1016/j.epsl.2010.05.008, 2010.
Stirling, I.: The biological importance of polynyas in the Canadian Arctic,
Arctic, 33, 303–315, https://doi.org/10.14430/arctic2563, 1980.
Stoynova, V., Shanahan, T. M., Hughen, K. A., and de Vernal, A.: Insights
into Circum-Arctic sea ice variability from molecular geochemistry, Quaternary
Sci. Rev., 79, 63–73, https://doi.org/10.1016/j.quascirev.2012.10.006, 2013.
Syring, N., Stein, R., Fahl, K., Vahlenkamp, M., Zehnich, M., Spielhagen, R.
F., and Niessen, F.: Holocene changes in sea-ice cover and polynya formation
along the eastern North Greenland shelf: New insights from biomarker
records, Quaternary Sci. Rev., 231, 106173,
https://doi.org/10.1016/j.quascirev.2020.106173, 2020.
Tang, C. C. L., Ross, C. K., Yao, T., Petrie, B., DeTracey, B. M., and
Dunlap, E.: The circulation, water masses and sea-ice of Baffin Bay, Prog.
Oceanogr., 63, 183–228, https://doi.org/10.1016/j.pocean.2004.09.005, 2004.
Tierney, J. E. and Tingley, M. P.: A Bayesian, spatially-varying
calibration model for the TEX86 proxy, Geochim. Cosmochim. Ac., 127,
83–106, https://doi.org/10.1016/j.gca.2013.11.026, 2014.
Tierney, E. and Tingley, M. P.: BAYSPLINE: A new calibration for the alkenone paleothermometer, Paleoceanogr. Paleocl., 33, 281–301, https://doi.org/10.1002/2017PA003201, 2018.
Tremblay, J.-E., Gratton, Y., Fauchot, J., and Price, N. M.: Climatic and
oceanic forcing of new, net, and diatom production in the North Water,
Deep-Sea Res. Pt. II, 49, 4927–4946,
https://doi.org/10.1016/S0967-0645(02)00171-6, 2002.
Villanueva, L., Schouten, S., and Sinninghe Damsté, J. S.:
Depth-related distribution of a key gene of the tetraether lipid
biosynthetic pathway in marine Thaumarchaeota, Environ. Microbiol., 17,
3527–3539, https://doi.org/10.1111/1462-2920.12508, 2015.
Vincent, R. F.: A study of the North Water Polynya ice arch using four
decades of satellite data, Sci. Rep., 9, 1–12,
https://doi.org/10.1038/s41598-019-56780-6, 2019.
Volkman, J. K.: A review of sterol markers for marine and terrigenous
organic matter, Org. Geochem., 9, 83–99,
https://doi.org/10.1016/0146-6380(86)90089-6, 1986.
Volkman, J. K., Barrett, S. M., Dunstan, G. A., and Jeffrey, S. W.:
Geochemical significance of the occurrence of dinosterol and other 4-methyl
sterols in a marine diatom, Org. Geochem., 20, 7–15,
https://doi.org/10.1016/0146-6380(93)90076-N, 1993.
Wei, B., Jia, G., Hefter, J., Kang, M., Park, E., and Mollenhauer, G.:
Comparison of the U , LDI, TEX and RI-OH
temperature proxies in the northern shelf of the South China Sea,
Biogeosciences, 17, 4489–4508,
https://doi.org/10.5194/bg-17-4489-2020, 2020.
Wuchter, C., Schouten, S., Coolen, M. J. L., and Sinninghe Damsté, J.
S.: Temperature-dependent variation in the distribution of tetraether
membrane lipids of marine Crenarchaeota: Implications for TEX86
paleothermometry, Paleoceanography, 19, PA4028,
https://doi.org/10.1029/2004PA001041, 2004.
Wuchter, C., Schouten, S., Wakeham, S. G., and Sinninghe Damsté, J. S.:
Temporal and spatial variation in tetraether membrane lipids of marine
Crenarchaeota in particulate organic matter: Implications for TEX86
paleothermometry, Paleoceanography, 20, PA3013,
https://doi.org/10.1029/2004PA001110, 2005.
Xiao, X., Fahl, K., Müller, J., and Stein, R.: Sea-ice
distribution in the modern Arctic Ocean: Biomarker records from trans-Arctic
Ocean surface sediments, Geochim. Cosmochim. Ac., 155, 16–29,
https://doi.org/10.1016/j.gca.2015.01.029, 2015.
Zhang, Y. G., Pagani, M., and Wang, Z.: Ring index: A new strategy to evaluate
the integrity of TEX86 paleothermometry, Paleoceanography, 32, 220–232,
https://doi.org/10.1002/2015PA002848, 2016.
Zhu, C., Wakeham, S. G., Elling, F. J., Basse, A., Mollenhauer, G.,
Versteegh, G. J. M., Könneke, M., and Hinrichs, K. U.: Stratification of
archaeal membrane lipids in the ocean and implications for adaptation and
chemotaxonomy of planktonic archaea, Environ. Microbiol., 18, 4324–4336,
https://doi.org/10.1111/1462-2920.13289, 2016.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R.,
and Smolyar, I.: World Ocean Atlas 2018, Vol. 2, Salinity, A. Mishonov Technical Edn., NOAA Atlas NESDIS 82, 50 pp., NOAA National Centers for Environmental Information [data set],
2018.
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
In order to better reconstruct the geologic history of the North Water Polynya, we provide...
Altmetrics
Final-revised paper
Preprint