Articles | Volume 20, issue 19
https://doi.org/10.5194/bg-20-4165-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-4165-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
MIO UM 110, Aix Marseille Univ., Université de Toulon, CNRS, IRD, Marseille, France
Robin Fuchs
MIO UM 110, Aix Marseille Univ., Université de Toulon, CNRS, IRD, Marseille, France
I2M, Aix Marseille Univ., CNRS, Marseille, France
Marc Garel
MIO UM 110, Aix Marseille Univ., Université de Toulon, CNRS, IRD, Marseille, France
Jean-Christophe Poggiale
MIO UM 110, Aix Marseille Univ., Université de Toulon, CNRS, IRD, Marseille, France
Laurent Memery
LEMAR Laboratoire des Sciences de l’Environnement Marin, UMR6539, CNRS, UBO, IFREMER, IRD, Plouzané, Technopôle Brest-Iroise, Brest, France
Frédéric A. C. Le Moigne
CORRESPONDING AUTHOR
MIO UM 110, Aix Marseille Univ., Université de Toulon, CNRS, IRD, Marseille, France
LEMAR Laboratoire des Sciences de l’Environnement Marin, UMR6539, CNRS, UBO, IFREMER, IRD, Plouzané, Technopôle Brest-Iroise, Brest, France
Christian Tamburini
MIO UM 110, Aix Marseille Univ., Université de Toulon, CNRS, IRD, Marseille, France
Related authors
No articles found.
Théo Picard, Chelsey A. Baker, Jonathan Gula, Ronan Fablet, Laurent Mémery, and Richard Lampitt
Biogeosciences, 22, 4309–4331, https://doi.org/10.5194/bg-22-4309-2025, https://doi.org/10.5194/bg-22-4309-2025, 2025
Short summary
Short summary
Ocean sediment traps measure the sequestrated sinking organic carbon. While sinking, the particles are affected by local currents, which presents a challenge with regard to linking the deep flux with the surface. We present a machine learning tool that predicts the source location of the sinking particles based on satellite data. The predictions demonstrate a stronger correlation between surface and deep carbon fluxes, allowing a more comprehensive understanding of the deep carbon sequestration drivers.
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024, https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
Short summary
The biological carbon pump plays a key role in the climate system. Plankton absorb and transform CO2 into organic carbon, forming particles that sink to the ocean floor. Sediment traps catch these particles and measure the carbon stored in the abyss. However, the particles' surface origin is unknown as ocean currents alter their paths. Here, we train an AI model to predict the origin of these particles. This new tool enables a better link between deep-ocean observations and satellite images.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Cited articles
Alldredge, A. L. and Silver, M. W.: Characteristics, dynamics and
significance of marine snow, Prog. Oceanogr., 20, 41–82,
https://doi.org/10.1016/0079-6611(88)90053-5, 1988.
Anderson, T. R. and Ryabchenko, V. A.: Carbon cycling in the Mesopelagic
Zone of the central Arabian Sea: Results from a simple model, Washington DC
American Geophysical Union Geophysical Monograph Series, 185, 281–297,
https://doi.org/10.1029/2007GM000686, 2009.
Anderson, T. R. and Tang, K. W.: Carbon cycling and POC turnover in the
mesopelagic zone of the ocean: Insights from a simple model, Deep-Sea
Res. Pt. II, 57, 1581–1592,
https://doi.org/10.1016/j.dsr2.2010.02.024, 2010.
Arístegui, J., Duarte, C. M., Gasol, J. M., and Alonso-Sáez, L.:
Active mesopelagic prokaryotes support high respiration in the subtropical
northeast Atlantic Ocean, Geophys. Res. Lett., 32, L03608,
https://doi.org/10.1029/2004GL021863, 2005.
Arístegui, J., Gasol, J. M., Duarte, C. M., and Herndld, G. J.:
Microbial oceanography of the dark ocean's pelagic realm, Limnol.
Oceanogr., 54, 1501–1529, https://doi.org/10.4319/lo.2009.54.5.1501,
2009.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A
new, mechanistic model for organic carbon fluxes in the ocean based on the
quantitative association of POC with ballast minerals, Deep-Sea Res.
Pt. II, 49, 219–236,
https://doi.org/10.1016/S0967-0645(01)00101-1, 2002.
Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E., and Herndl, G. J.:
Evidence of prokaryotic metabolism on suspended particulate organic matter
in the dark waters of the subtropical North Atlantic, Limnol.
Oceanogr., 54, 182–193, https://doi.org/10.4319/lo.2009.54.1.0182, 2009.
Baltar, F., Arístegui, J., Sintes, E., Gasol, J. M., Reinthaler, T.,
and Herndl, G. J.: Significance of non-sinking particulate organic carbon
and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic
northeast Atlantic, Geophys. Res. Lett., 37, L09602,
https://doi.org/10.1029/2010GL043105, 2010.
Baumas, C. M. J., Le Moigne, F. A. C., Garel, M., Bhairy, N., Guasco, S.,
Riou, V., Armougom, F., Grossart, H.-P., and Tamburini, C.: Mesopelagic
microbial carbon production correlates with diversity across different
marine particle fractions, ISME J., 15, 1695–1708,
https://doi.org/10.1038/s41396-020-00880-z, 2021.
Belcher, A., Iversen, M., Giering, S., Riou, V., Henson, S. A., Berline, L., Guilloux, L., and Sanders, R.: Depth-resolved particle-associated microbial respiration in the northeast Atlantic, Biogeosciences, 13, 4927–4943, https://doi.org/10.5194/bg-13-4927-2016, 2016.
Bochdansky, A. B., Clouse, M. A., and Herndl, G. J.: Eukaryotic microbes,
principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic
marine snow, ISME J., 11, 362–373,
https://doi.org/10.1038/ismej.2016.113, 2017.
Bogatyreva, N. S., Finkelstein, A. V., and Galzitskaya, O. V.: Trend of
amino acid composition of proteins of different taxa, J. Bioinform. Comput.
B., 04, 597–608, https://doi.org/10.1142/S0219720006002016, 2006.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Briggs, N. T., Slade, W. H., Boss, E., and Perry, M. J.: Method for
estimating mean particle size from high-frequency fluctuations in beam
attenuation or scattering measurements, Appl. Opt., 52, 6710–6725,
https://doi.org/10.1364/AO.52.006710, 2013.
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R.,
Arístegui, J., Baltar, F., Beaupré, S. R., Buesseler, K. O.,
DeHairs, F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt, R. S.,
Nagata, T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini, C., and
Tanaka, T.: Assessing the apparent imbalance between geochemical and
biochemical indicators of meso- and bathypelagic biological activity: What
the @$#! is wrong with present calculations of carbon budgets?,
Deep-Sea Res. Pt. II, 1557–1571,
https://doi.org/10.1016/j.dsr2.2010.02.022, 2010.
Carlson, C. A., Giovannoni, S. J., Hansell, D. A., Goldberg, S. J., Parsons,
R., and Vergin, K.: Interactions among dissolved organic carbon, microbial
processes, and community structure in the mesopelagic zone of the
northwestern Sargasso Sea, Limnol. Oceanogr., 49, 1073–1083,
https://doi.org/10.4319/lo.2004.49.4.1073, 2004.
Chang, K. J. L., Nichols, C. M., Blackburn, S. I., Dunstan, G. A.,
Koutoulis, A., and Nichols, P. D.: Comparison of Thraustochytrids
Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia
sp. for Production of Biodiesel, Long-Chain Omega-3 Oils, and
Exopolysaccharide, Mar. Biotechnol., 16, 396–411, https://doi.org/10.1007/s10126-014-9560-5, 2014.
Cho, B. C. and Azam, F.: Major role of bacteria in biogeochemical fluxes in
the ocean's interior, Nature, 332, 441–443,
https://doi.org/10.1038/332441a0, 1988.
Cole, H., Henson, S., Martin, A., and Yool, A.: Mind the gap: The impact of
missing data on the calculation of phytoplankton phenology metrics, J.
Geophys. Res.-Oceans, 117, C08030, https://doi.org/10.1029/2012JC008249,
2012.
Collins, J. R., Edwards, B. R., Thamatrakoln, K., Ossolinski, J. E.,
DiTullio, G. R., Bidle, K. D., Doney, S. C., and Van Mooy, B. A. S.: The
multiple fates of sinking particles in the North Atlantic Ocean, Global
Biogeochem. Cy., 29, 1471–1494, https://doi.org/10.1002/2014GB005037,
2015.
Cowen, J. P., Bertram, M. A., Wakeham, S. G., Thomson, R. E., William
Lavelle, J., Baker, E. T., and Feely, R. A.: Ascending and descending
particle flux from hydrothermal plumes at Endeavour Segment, Juan de Fuca
Ridge, Deep-Sea Res. Pt. I, 48,
1093–1120, https://doi.org/10.1016/S0967-0637(00)00070-4, 2001.
Edgcomb, V. P., Taylor, C., Pachiadaki, M. G., Honjo, S., Engstrom, I., and
Yakimov, M.: Comparison of Niskin vs. in situ approaches for analysis of
gene expression in deep Mediterranean Sea water samples, Deep-Sea Res.
Pt. II, 129, 213–222,
https://doi.org/10.1016/j.dsr2.2014.10.020, 2016.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680,
https://doi.org/10.1038/282677a0, 1979.
Fennel, K., Mattern, J. P., Doney, S. C., Bopp, L., Moore, A. M., Wang, B.,
and Yu, L.: Ocean biogeochemical modelling, Nat. Rev. Methods Primers, 2,
1–21, https://doi.org/10.1038/s43586-022-00154-2, 2022.
Fuchs, R., Baumas, C. M. J., Garel, M., Nerini, D., Le Moigne, F. A. C., and
Tamburini, C.: A RUpture-Based detection method for the Active mesopeLagIc
Zone (RUBALIZ): A crucial step toward rigorous carbon budget assessments,
Limnol. Oceanogr.-Meth., 21, 24–39,
https://doi.org/10.1002/lom3.10520, 2022.
Fuhrman, J.: Impact of Viruses on Bacterial Processes, in: Microbial ecology
of the oceans, Wiley, 327–350, 542 pp., ISBN 0-471-29992-8.X, 2000.
Garel, M., Bonin, P., Martini, S., Guasco, S., Roumagnac, M., Bhairy, N.,
Armougom, F., and Tamburini, C.: Pressure-Retaining Sampler and
High-Pressure Systems to Study Deep-Sea Microbes Under In Situ Conditions,
Front. Microbiol., 10, 453,
https://doi.org/10.3389/FMICB.2019.00453, 2019.
Giering, S. L. C. and Evans, C.: Overestimation of prokaryotic production by
leucine incorporation – and how to avoid it, Limnol. Oceanogr., 67, 726–738,
https://doi.org/10.1002/lno.12032, 2022.
Giering, S. L. C., Sanders, R., Lampitt, R. S., Anderson, T. R., Tamburini,
C., Boutrif, M., Zubkov, M. V., Marsay, C. M., Henson, S. A., Saw, K., Cook,
K., and Mayor, D. J.: Reconciliation of the carbon budget in the ocean's
twilight zone, Nature, 507, 480–483, https://doi.org/10.1038/nature13123,
2014.
Giering, S. L. C., Sanders, R., Martin, A. P., Henson, S. A., Riley, J. S.,
Marsay, C. M., and Johns, D. G.: Particle flux in the oceans: Challenging
the steady state assumption, Global Biogeochem. Cy., 31, 159–171,
https://doi.org/10.1002/2016GB005424, 2017.
Giering, S. L. C., Cavan, E. L., Basedow, S. L., Briggs, N., Burd, A. B.,
Darroch, L. J., Guidi, L., Irisson, J. O., Iversen, M. H., Kiko, R.,
Lindsay, D., Marcolin, C. R., McDonnell, A. M. P., Möller, K. O.,
Passow, U., Thomalla, S., Trull, T. W., and Waite, A. M.: Sinking Organic
Particles in the Ocean–Flux Estimates From in situ Optical Devices,
Front. Mar. Sci., 6, 834, https://doi.org/10.3389/fmars.2019.00834,
2020.
del Giorgio, P. A. and Cole, J. J.: BACTERIAL GROWTH EFFICIENCY IN NATURAL
AQUATIC SYSTEMS, Annu. Rev. Ecol. Syst., 29, 503–541,
https://doi.org/10.1146/annurev.ecolsys.29.1.503, 1998.
Grossart, H.-P. and Ploug, H.: Bacterial production and growth efficiencies:
Direct measurements on riverine aggregates, Limnol. Oceanogr., 45,
436–445, https://doi.org/10.4319/lo.2000.45.2.0436, 2000.
Grossart, H.-P. and Ploug, H.: Microbial degradation of organic carbon and
nitrogen on diatom aggregates, Limnol. Oceanogr., 46, 267–277,
https://doi.org/10.4319/lo.2001.46.2.0267, 2001.
Guieu, C., Desboeufs, K., Albani, S., Alliouane, S., Aumont, O., Barbieux,
M., Barrillon, S., Baudoux, A.-C., Berline, L., Bhairy, N., Bigeard, E.,
Bloss, M., Bressac, M., Brito, J., Carlotti, F., de, Liege, G., Dinasquet,
J., Djaoudi, K., Doglioli, A., D'Ortenzio, F., Doussin, J.-F., Duforet, L.,
Dulac, F., Dutay, J.-C., Engel, A., Feliu-Brito, G., Ferre, H., Formenti,
P., Fu, F., Garcia, D., Garel, M., Gazeau, F., Giorio, C., Gregori, G.,
Grisoni, J.-M., Guasco, S., Guittonneau, J., Haëntjens, N., Heimburger,
L.-E., Helias, S., Jacquet, S., Laurent, B., Leblond, N., Lefevre, D.,
Mallet, M., Marañón, E., Nabat, P., Nicosia, A., Obernosterer, I.,
Perez, Lorenzo, M., Petrenko, A., Pulido-Villena, E., Raimbault, P., Ridame,
C., Riffault, V., Rougier, G., Rousselet, L., Roy-Barman, M., Saiz-Lopez,
A., Schmechtig, C., Sellegri, K., Siour, G., Taillandier, V., Tamburini, C.,
Thyssen, M., Tovar-Sanchez, A., Triquet, S., Uitz, J., Van, Wambeke, F.,
Wagener, T., and Zaencker, B.: BIOGEOCHEMICAL dataset collected during the
PEACETIME cruise, SEANOE [data set], https://doi.org/10.17882/75747, 2020.
Hamamoto, Y. and Honda, D.: Nutritional intake of Aplanochytrium
(Labyrinthulea, Stramenopiles) from living diatoms revealed by culture
experiments suggesting the new prey–predator interactions in the grazing
food web of the marine ecosystem, PLoS ONE, 14, e0208941,
https://doi.org/10.1371/journal.pone.0208941, 2019.
Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and
Quartly, G. D.: A reduced estimate of the strength of the ocean's biological
carbon pump, Geophys. Res. Lett., 38, L04606,
https://doi.org/10.1029/2011GL046735, 2011.
Herndl, G. and Reinthaler, T.: Microbial control of the dark end of the
biological pump, Nat. Geosci., 6, 718–724,
https://doi.org/10.1038/ngeo1921, 2013.
Herndl, G. J., Reinthaler, T., Teira, E., van Aken, H., Veth, C.,
Pernthaler, A., and Pernthaler, J.: Contribution of Archaea to Total Prokaryotic
Production in the Deep Atlantic Ocean, Appl. Environ. Microb., 71,
2303–2309, https://doi.org/10.1128/AEM.71.5.2303-2309.2005, 2005.
Homma, T. and Saltelli, A.: Importance measures in global sensitivity
analysis of nonlinear models, Reliab. Eng. Syst. Safe.,
52, 1–17, https://doi.org/10.1016/0951-8320(96)00002-6, 1996.
Hoppe, H. and Ullrich, S.: Profiles of ectoenzymes in the Indian Ocean:
phenomena of phosphatase activity in the mesopelagic zone, Aquat. Microb.
Ecol., 19, 139–148, https://doi.org/10.3354/ame019139, 1999.
Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A., and Fischer, G.: High
resolution profiles of vertical particulate organic matter export off Cape
Blanc, Mauritania: Degradation processes and ballasting effects, Deep-Sea
Res. Pt. I, 57, 771–784,
https://doi.org/10.1016/j.dsr.2010.03.007, 2010.
Jain, R., Raghukumar, S., Tharanathan, R., and Bhosle, N. B.: Extracellular
Polysaccharide Production by Thraustochytrid Protists, Mar. Biotechnol., 7,
184–192, https://doi.org/10.1007/s10126-004-4025-x, 2005.
Kiørboe, T.: Marine snow microbial communities: scaling of abundances
with aggregate size, Aquat. Microb. Ecol., 33, 67–75,
https://doi.org/10.3354/ame033067, 2003.
Kiørboe, T., Grossart, H.-P., Ploug, H., and Tang, K.: Mechanisms and Rates
of Bacterial Colonization of Sinking Aggregates, Appl. Environ.
Microb., 68, 3996–4006,
https://doi.org/10.1128/AEM.68.8.3996-4006.2002, 2002.
Kiørboe, T., Tang, K., Grossart, H.-P., and Ploug, H.: Dynamics of Microbial
Communities on Marine Snow Aggregates: Colonization, Growth, Detachment, and
Grazing Mortality of Attached Bacteria, Appl. Environ.
Microb., 69, 3036–3047,
https://doi.org/10.1128/AEM.69.6.3036-3047.2003, 2003.
Kirchman, D., K'nees, E., and Hodson, R.: Leucine incorporation and its
potential as a measure of protein synthesis by bacteria in natural aquatic
systems, Appl. Environ. Microb., 49, 599–607,
https://doi.org/10.1128/aem.49.3.599-607.1985, 1985.
Kirchman, D. L. and Ducklow, H. W.: Estimating Conversion Factors for the
Thymidine and Leucine Methods for Measuring Bacterial Production, in:
Handbook of Methods in Aquatic Microbial Ecology, Lewis publishers, https://doi.org/10.1201/9780203752746, ISBN 9780203752746, 1993.
Koski, M., Valencia, B., Newstead, R., and Thiele, C.: The missing piece of
the upper mesopelagic carbon budget? Biomass, vertical distribution and
feeding of aggregate-associated copepods at the PAP site, Prog.
Oceanogr., 181, 102243, https://doi.org/10.1016/j.pocean.2019.102243,
2020.
Kuhlisch, C., Schleyer, G., Shahaf, N., Vincent, F., Schatz, D., and Vardi,
A.: Viral infection of algal blooms leaves a unique metabolic footprint on
the dissolved organic matter in the ocean, Science Advances, 7, eabf4680,
https://doi.org/10.1126/sciadv.abf4680, 2021.
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of
remineralization depth on the air–sea carbon balance, Nat. Geosci., 2,
630–635, https://doi.org/10.1038/ngeo612, 2009.
Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E.: Convergence
properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optimiz., 9, 112–147, https://doi.org/10.1137/S1052623496303470,
1998.
Lampitt, R. S., Boorman, B., Brown, L., Lucas, M., Salter, I., Sanders, R.,
Saw, K., Seeyave, S., Thomalla, S. J., and Turnewitsch, R.: Particle export
from the euphotic zone: Estimates using a novel drifting sediment trap,
234Th and new production, Deep-Sea Res. Pt. I, 55, 1484–1502, https://doi.org/10.1016/j.dsr.2008.07.002, 2008.
Lara, E., Vaqué, D., Sà, E. L., Boras, J. A., Gomes, A., Borrull,
E., Díez-Vives, C., Teira, E., Pernice, M. C., Garcia, F. C., Forn, I.,
Castillo, Y. M., Peiró, A., Salazar, G., Morán, X. A. G., Massana,
R., Catalá, T. S., Luna, G. M., Agustí, S., Estrada, M., Gasol, J.
M., and Duarte, C. M.: Unveiling the role and life strategies of viruses
from the surface to the dark ocean, Sci. Adv., 3, e1602565,
https://doi.org/10.1126/sciadv.1602565, 2017.
Le Moigne, F. A. C.: Pathways of organic carbon downward transport by the
oceanic biological carbon pump, Front. Mar. Sci., 6, 1–8,
https://doi.org/10.3389/fmars.2019.00634, 2019.
Le Moigne, F. A. C., Henson, S. A., Cavan, E., Georges, C., Pabortsava, K.,
Achterberg, E. P., Ceballos-Romero, E., Zubkov, M., and Sanders, R. J.: What
causes the inverse relationship between primary production and export
efficiency in the Southern Ocean?, Geophys. Res. Lett., 43,
4457–4466, https://doi.org/10.1002/2016GL068480, 2016.
Lemée, R., Rochelle-Newall, E., Van Wambeke, F., Pizay, M., Rinaldi, P.,
and Gattuso, J.: Seasonal variation of bacterial production, respiration and
growth efficiency in the open NW Mediterranean Sea, Aquat. Microb.
Ecol., 29, 227–237, https://doi.org/10.3354/ame029227, 2002.
Luo, E., Leu, A. O., Eppley, J. M., Karl, D. M., and DeLong, E. F.:
Diversity and origins of bacterial and archaeal viruses on sinking particles
reaching the abyssal ocean, ISME J., 16, 1627–1635,
https://doi.org/10.1038/s41396-022-01202-1, 2022.
Marsay, C. M., Sanders, R. J., Henson, S. A., Pabortsava, K., Achterberg, E.
P., and Lampitt, R. S.: Attenuation of sinking particulate organic carbon
flux through the mesopelagic ocean, P. Natl. Acad.
Sci. USA, 112, 1089–1094, https://doi.org/10.1073/pnas.1415311112, 2015.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX:
carbon cycling in the northeast Pacific, Deep-Sea Res. Pt. A, 34, 267–285,
https://doi.org/10.1016/0198-0149(87)90086-0, 1987.
McDonnell, A. M. P., Lam, P. J., Lamborg, C. H., Buesseler, K. O., Sanders,
R., Riley, J. S., Marsay, C., Smith, H. E. K., Sargent, E. C., Lampitt, R.
S., and Bishop, J. K. B.: The oceanographic toolbox for the collection of
sinking and suspended marine particles, Prog. Oceanogr., 133,
17–31, https://doi.org/10.1016/j.pocean.2015.01.007, 2015.
Nagata, T., Tamburini, C., Arístegui, J., Baltar, F., Bochdansky, A.
B., Fonda-Umani, S., Fukuda, H., Gogou, A., Hansell, D. A., Hansman, R. L.,
Herndl, G. J., Panagiotopoulos, C., Reinthaler, T., Sohrin, R., Verdugo, P.,
Yamada, N., Yamashita, Y., Yokokawa, T., and Bartlett, D. H.: Emerging
concepts on microbial processes in the bathypelagic ocean – ecology,
biogeochemistry, and genomics, Deep-Sea Res. Pt II, 57, 1519–1536, https://doi.org/10.1016/j.dsr2.2010.02.019,
2010.
Nelder, J. A. and Mead, R.: A Simplex Method for Function Minimization,
Comput. J., 7, 308–313, https://doi.org/10.1093/comjnl/7.4.308, 1965.
Pedrosa-Pàmies, R., Conte, M. H., Weber, J. C., and Johnson, R.:
Hurricanes Enhance Labile Carbon Export to the Deep Ocean, Geophys. Res. Lett., 46, 10484–10494, https://doi.org/10.1029/2019GL083719,
2019.
Picheral, M., Catalano, C., Brousseau, D., Claustre, H., Coppola, L.,
Leymarie, E., Coindat, J., Dias, F., Fevre, S., Guidi, L., Irisson, J. O.,
Legendre, L., Lombard, F., Mortier, L., Penkerch, C., Rogge, A., Schmechtig,
C., Thibault, S., Tixier, T., Waite, A., and Stemmann, L.: The
Underwater Vision Profiler 6: an imaging sensor of particle size spectra and
plankton, for autonomous and cabled platforms, Limnol. Oceanogr.-Meth., 20, 115–129, https://doi.org/10.1002/lom3.10475, 2022.
Planquette, H. and Sherrell, R. M.: Sampling for particulate trace element
determination using water sampling bottles: methodology and comparison to in
situ pumps, Limnol. Oceanogr.-Meth., 10, 367–388,
https://doi.org/10.4319/lom.2012.10.367, 2012.
Reinthaler, T., van Aken, H., Veth, C., Arístegui, J., Robinson, C.,
Williams, P. J. L. B., Lebaron, P., and Herndl, G. J.: Prokaryotic
respiration and production in the meso- and bathypelagic realm of the
eastern and western North Atlantic basin, Limnol. Oceanogr., 51,
1262–1273, https://doi.org/10.4319/lo.2006.51.3.1262, 2006.
Reinthaler, T., van Aken, H. M., and Herndl, G. J.: Major contribution of
autotrophy to microbial carbon cycling in the deep North Atlantic's
interior, Deep-Sea Res. Pt. II, 57,
1572–1580, https://doi.org/10.1016/j.dsr2.2010.02.023, 2010.
Riley, J. S., Sanders, R., Marsay, C., Le Moigne, F. A. C., Achterberg, E.
P., and Poulton, A. J.: The relative contribution of fast and slow sinking
particles to ocean carbon export, Global Biogeochem. Cy., 26, 1–10,
https://doi.org/10.1029/2011GB004085, 2012.
Riou, V., Para, J., Garel, M., Guigue, C., Al Ali, B., Santinelli, C.,
Lefèvre, D., Gattuso, J. P., Goutx, M., Jacquet, S., Le Moigne, F. A.
C., Tachikawa, K., and Tamburini, C.: Biodegradation of Emiliania huxleyi
aggregates by a natural Mediterranean prokaryotic community under increasing
hydrostatic pressure, Prog. Oceanogr., 163, 271–281,
https://doi.org/10.1016/j.pocean.2017.01.005, 2018.
Robert, A.: Minéralisation in situ de la matière organique le long
de la colonne d'eau: application sur une station eulérienne, PhD, Aix-Marseille, https://www.theses.fr/2012AIXM4045 (last access: 15 August 2023), 2012.
RobF: RobeeF/InverseCarbonBudgetEstim: Paper publication (paper_release), Zenodo [data set], https://doi.org/10.5281/zenodo.8412947, 2023.
Russell, J. B. and Cook, G. M.: Energetics of Bacterial Growth: Balance of
Anabolic and Catabolic Reactions, Microbiol. Rev., 59, 48–62, https://doi.org/10.1128/mr.59.1.48-62.1995, 1995.
Saint-Béat, B., Maps, F., and Babin, M.: Unraveling the intricate
dynamics of planktonic Arctic marine food webs. A sensitivity analysis of a
well-documented food web model, Prog. Oceanogr., 160, 167–185,
https://doi.org/10.1016/j.pocean.2018.01.003, 2018.
Saint-Béat, B., Fath, B. D., Aubry, C., Colombet, J., Dinasquet, J.,
Fortier, L., Galindo, V., Grondin, P.-L., Joux, F., Lalande, C., Leblanc,
M., Raimbault, P., Sime-Ngando, T., Tremblay, J.-E., Vaulot, D., Maps, F.,
and Babin, M.: Contrasting pelagic ecosystem functioning in eastern and
western Baffin Bay revealed by trophic network modeling, Elementa: Science
of the Anthropocene, 8, 1, https://doi.org/10.1525/elementa.397, 2020.
Sherry, N. D., Boyd, P. W., Sugimoto, K., and Harrison, P. J.: Seasonal and
spatial patterns of heterotrophic bacterial production, respiration, and
biomass in the subarctic NE Pacific, Deep-Sea Res. Pt. II, 46, 2557–2578,
https://doi.org/10.1016/S0967-0645(99)00076-4, 1999.
Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-Nelson, C. R.,
Boss, E., Brzezinski, M. A., Burd, A., Carlson, C. A., D'Asaro, E. A.,
Doney, S. C., Perry, M. J., Stanley, R. H. R., and Steinberg, D. K.:
Prediction of the Export and Fate of Global Ocean Net Primary Production:
The EXPORTS Science Plan, Front. Mar. Sci., 3, 22,
https://doi.org/10.3389/fmars.2016.00022, 2016.
Simon, M. and Azam, F.: Protein content and protein synthesis rates of
planktonic marine bacteria, Mar. Ecol.-Prog. Ser., 51, 201–213,
https://doi.org/10.3354/meps051201, 1989.
Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F.: Intense hydrolytic
enzyme activity on marine aggregates and implications for rapid particle
dissolution, Nature, 359, 139–142, https://doi.org/10.1038/359139a0, 1992.
Smith, K. L., Williams, P. M., and Druffel, E. R. M.: Upward fluxes of
particulate organic matter in the deep North Pacific, Nature, 337, 724–726,
https://doi.org/10.1038/337724a0, 1989.
Sobol, I. M.: Sensitivity Estimates for Nonlinear Mathematical Models, John Wiley and Sons, Inc., 1, 407–414, 1993.
Stange, P., Bach, L. T., Le Moigne, F. a. C., Taucher, J., Boxhammer, T.,
and Riebesell, U.: Quantifying the time lag between organic matter
production and export in the surface ocean: Implications for estimates of
export efficiency, Geophys. Res. Lett., 44, 268–276,
https://doi.org/10.1002/2016GL070875, 2017.
Steinberg, D. K., Van Mooy, B. A. S., Buesseler, K. O., Boyd, P. W., Kobari,
T., and Karl, D. M.: Bacterial vs. zooplankton control of sinking particle
flux in the ocean's twilight zone, Limnol. Oceanogr., 53,
1327–1338, https://doi.org/10.4319/lo.2008.53.4.1327, 2008.
Stief, P., Elvert, M., and Glud, R. N.: Respiration by “marine snow” at
high hydrostatic pressure: Insights from continuous oxygen measurements in a
rotating pressure tank, Limnol. Oceanogr., 66, 2797–2809,
https://doi.org/10.1002/lno.11791, 2021.
Tamburini, C., Garcin, J., Ragot, M., and Bianchi, A.: Biopolymer hydrolysis
and bacterial production under ambient hydrostatic pressure through a 2000 m
water column in the NW Mediterranean, Deep-Sea Res. Pt. II, 49, 2109–2123,
https://doi.org/10.1016/S0967-0645(02)00030-9, 2002.
Tamburini, C., Garcin, J., and Bianchi, A.: Role of deep-sea bacteria in
organic matter mineralization and adaptation to hydrostatic pressure
conditions in the NW Mediterranean Sea, Aquat. Microb. Ecol., 32,
209–218, https://doi.org/10.3354/ame032209, 2003.
Tamburini, C., Garcin, J., Grégori, G., Leblanc, K., Rimmelin, P., and
Kirchman, D. L.: Pressure effects on surface Mediterranean prokaryotes and
biogenic silica dissolution during a diatom sinking experiment, Aquat. Microb. Ecol., 43, 267–276, https://doi.org/10.3354/ame043267, 2006.
Tamburini, C., Goutx, M., Guigue, C., Garel, M., Lefèvre, D.,
Charrière, B., Sempéré, R., Pepa, S., Peterson, M. L., Wakeham,
S., and Lee, C.: Effects of hydrostatic pressure on microbial alteration of
sinking fecal pellets, Deep-Sea Res. Pt. II, 56, 1533–1546, https://doi.org/10.1016/j.dsr2.2008.12.035,
2009.
Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R., and Deming, J. D.:
Prokaryotic responses to hydrostatic pressure in the ocean – a review,
Env. Microbiol. Rep., 15, 1262–1274, 2013.
Tamburini, C., Garel, M., Barani, A., Boeuf, D., Bonin, P., Bhairy, N.,
Guasco, S., Jacquet, S., Le Moigne, F. A. C., Panagiotopoulos, C., Riou, V.,
Veloso, S., Santinelli, C., and Armougom, F.: Increasing Hydrostatic
Pressure Impacts the Prokaryotic Diversity during Emiliania huxleyi
Aggregates Degradation, Water, 13, 2616, https://doi.org/10.3390/w13192616,
2021.
Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter
Estimation, Society for Industrial and Applied Mathematics, 348 pp.,
https://doi.org/10.1137/1.9780898717921, 2005.
Tian, R. C., Ve, A. F., Klein, B., Packard, T., Roy, S., Savenko, C., and
Silverberg, N.: E!ects of pelagic food-web interactions and nutrient
remineralization on the biogeochemical cycling of carbon: a modeling
approach, Journal Deep Sea Reasearch II,
47, 637–662, 2000.
Trull, T. W., Bray, S. G., Buesseler, K. O., Lamborg, C. H., Manganini, S.,
Moy, C., and Valdes, J.: In situ measurement of mesopelagic particle sinking
rates and the control of carbon transfer to the ocean interior during the
Vertical Flux in the Global Ocean (VERTIGO) voyages in the North Pacific,
Deep-Sea Res. Pt. II, 55, 1684–1695,
https://doi.org/10.1016/j.dsr2.2008.04.021, 2008.
Turley, C. and Mackie, P.: Biogeochemical significance of attached and
free-living bacteria and the flux of particles in the NE Atlantic Ocean,
Mar. Ecol.-Prog. Ser., 115, 191–203,
https://doi.org/10.3354/meps115191, 1994.
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248,
https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
Vetter, Y. A., Deming, J. W., Jumars, P. A., and Krieger-Brockett, B. B.: A
Predictive Model of Bacterial Foraging by Means of Freely Released
Extracellular Enzymes, Microb. Ecol., 36, 75–92,
https://doi.org/10.1007/s002489900095, 1998.
Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J., and Peterson, M. J.:
Molecular indicators of diagenetic status in marine organic matter,
Geochim. Cosmochim. Ac., 61, 5363–5369,
https://doi.org/10.1016/S0016-7037(97)00312-8, 1997.
Weiss, M. S., Abele, U., Weckesser, J., Welte, W., Schiltz, E., and Schulz,
G. E.: Molecular architecture and electrostatic properties of a bacterial
porin, Science, 254, 1627–1630, https://doi.org/10.1126/science.1721242,
1991.
Welch, W. J., Gething, M. -j., Clarke, A. R., Viitanen, P., Lund, P., Haas,
I. G., Georgopoulos, C., Ellis, R. J., Laskey, R. A., and Lorimer, G. H.:
Heat shock proteins functioning as molecular chaperones: their roles in
normal and stressed cells, Philos. T. R. Soc. B, 339, 327–333,
https://doi.org/10.1098/rstb.1993.0031, 1993.
Westerhoff, H. V., Hellingwerf, K. J., and Van Dam, K.: Thermodynamic
efficiency of microbial growth is low but optimal for maximal growth rate,
P. Natl. Acad. Sci. USA, 80, 305–309,
https://doi.org/10.1073/pnas.80.1.305, 1983.
Wilhem, W. and Suttle, C. A.: Viruses and Nutrient Cycles in the Sea, BioScience, 49, 781–788, https://doi.org/10.2307/1313569,
1999.
Xie, N., Bai, M., Liu, L., Li, J., He, Y., Collier, J. L., Hunt, D. E.,
Johnson, Z. I., Jiao, N., and Wang, G.: Patchy Blooms and Multifarious
Ecotypes of Labyrinthulomycetes Protists and Their Implication in Vertical
Carbon Export in the Pelagic Eastern Indian Ocean, Microbiol. Spectr., 10,
e00144-22, https://doi.org/10.1128/spectrum.00144-22, 2022.
Young, H. L.: Uptake and Incorporation of Exogenous Leucine in Bacterial
Cells under High Oxygen Tension, Nature, 219, 1068–1069,
https://doi.org/10.1038/2191068a0, 1968.
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching...
Altmetrics
Final-revised paper
Preprint