Articles | Volume 20, issue 19
https://doi.org/10.5194/bg-20-4197-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-4197-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
present address: Department of Oceanography, School of Ocean and Earth
Science and Technology, University of Hawai`i at Mānoa, Honolulu, HI,
USA
Alessandro Tagliabue
School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
Related authors
No articles found.
Christopher D. Traill, Tyler W. Rohr, Elizabeth H. Shadwick, Pearse J. Buchanan, Alessandro Tagliabue, and Andrew R. Bowie
EGUsphere, https://doi.org/10.5194/egusphere-2026-44, https://doi.org/10.5194/egusphere-2026-44, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Southern Ocean phytoplankton are a key part of the carbon cycle, yet year-to-year changes in ocean productivity are poorly understood. Using model simulations, this study shows how deeper mixing in the most productive years increases nutrient supply & changes the predator-prey relationship between phytoplankton and zooplankton. This helps explain why satellite productivity estimates disagree, and the reasons for why climate projections might be getting inaccurate estimates of future production.
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Cited articles
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Aumont, O., van Hulten, M., Roy-Barman, M., Dutay, J.-C., Éthé, C., and Gehlen, M.: Variable reactivity of particulate organic matter in a global ocean biogeochemical model, Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017, 2017.
Barrett, P. M., Grun, R., and Ellwood, M. J.: Tracing iron along the
flowpath of East Australian Current using iron stable isotopes, Mar. Chem.,
237, 104039, https://doi.org/10.1016/j.marchem.2021.104039, 2021.
Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J.:
ENSO representation in climate models: From CMIP3 to CMIP5, Clim. Dynam.,
42, 1999–2018, https://doi.org/10.1007/s00382-013-1783-z, 2014.
Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M. S., Levin, L., O'Donoghue, S., Cuicapusa, S. R. P., Rinkevich, B., Suga, T., Tagliabue, A., and Williamson, P.: Changing Ocean, Marine Ecosystems, and Dependent Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., 447–587, Cambridge University Press, https://doi.org/10.1017/9781009157964.007, 2019.
Bonnet, S. and Guieu, C.: Atmospheric forcing on the annual iron cycle in
the western Mediterranean Sea: A 1-year survey, J. Geophys. Res.-Oceans,
111, 1–13, https://doi.org/10.1029/2005JC003213, 2006.
Boyd, P. W. and Ellwood, M. J.: The biogeochemical cycle of iron in the
ocean, Nat. Geosci., 3, 675–682, https://doi.org/10.1038/ngeo964, 2010.
Boyd, P. W., Crossley, A. C., DiTullio, G. R., Griffiths, F. B., Hutchins,
D. A., Queguiner, B., Sedwick, P. N., and Trull, T. W.: Control of
phytoplankton growth by iron supply and irradiance in the subantarctic
Southern Ocean: Experimental results from the SAZ Project, J. Geophys. Res.-Oceans, 106, 31573–31583, https://doi.org/10.1029/2000jc000348, 2001.
Buchanan, P. J. and Tagliabue, A.: The Regional Importance of Oxygen Demand
and Supply for Historical Ocean Oxygen Trends, Geophys. Res. Lett., 48, e2021GL094797,
https://doi.org/10.1029/2021GL094797, 2021.
Cai, W., Santoso, A., Wang, G., Yeh, S. W., An, S. Il, Cobb, K. M., Collins, M., Guilyardi, E., Jin, F. F., Kug, J. S., Lengaigne, M., Mcphaden, M. J., Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., and Wu, L.:
ENSO and greenhouse warming, Nat. Clim. Change, 5, 849–859,
https://doi.org/10.1038/nclimate2743, 2015.
Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S. S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W. W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T. T., Bayr, T., Brown, J. R., Capotondi, A., Cobb, K. M., Gan, B., Geng, T., Ham, Y.-G., Jin, F.-F., Jo, H.-S., Li, X., Lin, X., McGregor, S., Park, J.-H., Stein, K., Yang, K., Zhang, L., and Zhong, W.: Changing El Niño–Southern Oscillation in a warming climate,
Nat. Rev. Earth Environ., 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z,
2021.
Chever, F., Rouxel, O. J., Croot, P. L., Ponzevera, E., Wuttig, K., and
Auro, M. E.: Total dissolvable and dissolved iron isotopes in the water
column of the Peru upwelling regime, Geochim. Cosmochim. Ac., 162, 66–82,
https://doi.org/10.1016/j.gca.2015.04.031, 2015.
Coale, K. H., Fitzwater, S. E., Gordon, R. M., Johnson, K. S., and Barber,
R. T.: Control of community growth and export production by upwelled
iron in the equatorial Pacific Ocean, Nature, 379, 621–624,
https://https://doi.org/10.1038/379621a0, 1996.
Conway, T. M. and John, S. G.: Quantification of dissolved iron sources to
the North Atlantic Ocean, Nature, 511, 212–215,
https://doi.org/10.1038/nature13482, 2014.
Conway, T. M., John, S. G., and Lacan, F.: Intercomparison of dissolved iron
isotope profiles from reoccupation of three GEOTRACES stations in the
Atlantic Ocean, Mar. Chem., 183, 50–61, https://doi.org/10.1016/j.marchem.2016.04.007,
2016.
Conway, T. M., Hamilton, D. S., Shelley, R. U., Aguilar-Islas, A. M., Landing, W. M., Mahowald, N. M., and John, S. G.: Tracing and constraining
anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron
isotopes, Nat. Commun., 10, 2628, https://doi.org/10.1038/s41467-019-10457-w, 2019.
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the IPSL-CM5 Earth System
Model: From CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165,
https://doi.org/10.1007/s00382-012-1636-1, 2013.
Ellwood, M. J., Hutchins, D. A., Lohan, M. C., Milne, A., Nasemann, P., Nodder, S. D., Sander, S. G., Strzepek, R. F., Wilhelm, S. W., and Boyd, P. W.: Iron stable isotopes track pelagic iron cycling
during a subtropical phytoplankton bloom, P. Natl. Acad. Sci. USA, 112,
E15–E20, https://doi.org/10.1073/pnas.1421576112, 2015.
Ellwood, M. J., Strzepek, R. F., Strutton, P. G., Trull, T. W., Fourquez,
M., and Boyd, P. W.: Distinct iron cycling in a Southern Ocean eddy, Nat.
Commun., 11, 825, https://doi.org/10.1038/s41467-020-14464-0, 2020.
Firing, E., Lukas, R., Sadler, J., and Wyrtki, K.: Equatorial
undercurrent disappears during 1982–1983 El Niño, Science, 222,
1121–1123, https://https://doi.org/10.1126/science.222.4628.1121, 1983.
Fitzsimmons, J. N., Conway, T. M., Lee, J. M., Kayser, R., Thyng, K. M., John, S. G., and Boyle, E. A.: Dissolved iron and iron isotopes in the southeastern
Pacific Ocean, Global Biogeochem. Cy., 30, 1372–1395,
https://doi.org/10.1002/2015GB005357, 2016.
Fitzsimmons, J. N., Hayes, C. T., Al-Subiai, S. N., Zhang, R., Morton, P. L., Weisend, R. E., Ascani, F., and Boyle, E. A.: Daily to decadal variability of
size-fractionated iron and iron-binding ligands at the Hawaii Ocean
Time-series Station ALOHA, Geochim. Cosmochim. Ac., 171, 303–324,
https://doi.org/10.1016/j.gca.2015.08.012, 2015.
Homoky, W. B., Severmann, S., Mills, R. A., Statham, P. J., and Fones, G.
R.: Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling:
Evidence from continental shelf and deep-sea sediments, Geology, 37,
751–754, https://doi.org/10.1130/G25731A.1, 2009.
Homoky, W. B., John, S. G., Conway, T. M., and Mills, R. A.: Distinct iron
isotopic signatures and supply from marine sediment dissolution, Nat.
Commun., 4, 2143, https://doi.org/10.1038/ncomms3143, 2013.
John, S. G., Helgoe, J., Townsend, E., Weber, T., DeVries, T., Tagliabue, A., Moore, J. K., Lam, P. J., Marsay, C. M., and Till, C. P.: Biogeochemical cycling of Fe and Fe stable isotopes in the
Eastern Tropical South Pacific, Mar. Chem., 201, 66–76,
https://doi.org/10.1016/j.marchem.2017.06.003, 2018.
Johnson, K. S., Chavez, F. P., and Friederich, G. E.: Continentalshelf
sediment as a primary source of iron for coastal phytoplankton,
Nature, 398, 697–700, https://doi.org/10.1038/19511,
1999.
Johnson, G. C., McPhaden, M. J., Rowe, G. D., and McTaggart, K. E.:
Upper equatorial Pacific Ocean current and salinity variability during the
1996–1998 El Niño-La Niña cycle, J. Geophys. Res.-Oceans, 105, 1037–1053, https://https://doi.org/10.1029/1999jc900280, 2000.
Johnson, K. S., Chavez, F. P., and Friederich, G. E.: Continental-shelf
sediment as a primary source of iron for coastal phytoplankton, Nature, 398,
697–700, https://doi.org/10.1038/19511, 1999.
Kaupp, L. J., Measures, C. I., Selph, K. E., and Mackenzie, F. T.: The
distribution of dissolved Fe and Al in the upper waters of the Eastern
Equatorial Pacific, Deep-Sea Res. Pt. II, 58, 296–310,
https://doi.org/10.1016/j.dsr2.2010.08.009, 2011.
König, D. and Tagliabue, A.: The Fingerprint of Climate Variability on the Surface Ocean Cycling of Iron and its Isotopes, Zenodo [data set], https://doi.org/10.5281/zenodo.7418726, 2022.
König, D., Conway, T. M., Ellwood, M. J., Homoky, W. B., and Tagliabue,
A.: Constraints on the Cycling of Iron Isotopes From a Global Ocean Model,
Global Biogeochem. Cy., 35, e2021GB006968, https://doi.org/10.1029/2021GB006968,
2021.
König, D., Conway, T. M., Hamilton, D. S., and Tagliabue, A.: Surface
Ocean Biogeochemistry Regulates the Impact of Anthropogenic Aerosol Fe
Deposition on the Cycling of Iron and Iron Isotopes in the North Pacific,
Geophys. Res. Lett., 49, e2022GL098016, https://doi.org/10.1029/2022GL098016, 2022.
Kurisu, M., Adachi, K., Sakata, K., and Takahashi, Y.: Stable Isotope Ratios
of Combustion Iron Produced by Evaporation in a Steel Plant, ACS Earth Space
Chem., 3, 588–598, https://doi.org/10.1021/acsearthspacechem.8b00171, 2019.
Kwiatkowski, L., Bopp, L., Aumont, O., Ciais, P., Cox, P. M., Laufkötter, C., Li, Y., and Séférian, R.: Emergent constraints on projections of declining
primary production in the tropical oceans, Nat. Clim. Change, 7, 355–358,
https://doi.org/10.1038/nclimate3265, 2017.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Labatut, M., Lacan, F., Pradoux, C., Chmeleff, J., Radic, A., Murray, J. W., Poitrasson, F., Johansen, A. M., and Thil, F.: Iron sources and dissolved-particulate interactions in the seawater
of the Western Equatorial Pacific, iron isotope perspectives, Global
Biogeochem. Cy., 28, 1044–1065, https://doi.org/10.1002/2014GB004928, 2014.
Misumi, K., Lindsay, K., Moore, J. K., Doney, S. C., Bryan, F. O., Tsumune, D., and Yoshida, Y.: The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1, Biogeosciences, 11, 33–55, https://doi.org/10.5194/bg-11-33-2014, 2014.
Moore, C. M.: Diagnosing oceanic nutrient deficiency, Philos. T. Roy. Soc.
A, 374, 20150290, https://doi.org/10.1098/rsta.2015.0290, 2016.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient limitation, Nat.
Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Nishioka, J., Takeda, S., Wong, C. S., and Johnson, W. K.: Size-fractionated
iron concentrations in the northeast Pacific Ocean: Distribution of soluble
and small colloidal iron, Mar. Chem., 74, 157–179,
https://doi.org/10.1016/S0304-4203(01)00013-5, 2001.
Pinedo-González, P., Hawco, N. J., Bundy, R. M., Virginia Armbrust, E., Follows, M. J., Cael, B. B., White, A. E., Ferrón, S., Karl, D. M., and John, S. G.: Anthropogenic Asian aerosols provide Fe
to the North Pacific Ocean, P. Natl. Acad. Sci. USA, 117, 27862–27868,
https://doi.org/10.1073/pnas.2010315117, 2020.
Planton, Y. Y., Guilyardi, E., Wittenberg, A. T., Lee, J., Gleckler, P. J., Bayr, T., McGregor, S., McPhaden, M. J., Power, S., Roehrig, R., Vialard, J., and Voldoire, A.: Evaluating climate models with the CLIVAR 2020 ENSO
metrics package, B. Am. Meteorol. Soc., 102, E193–E217,
https://doi.org/10.1175/BAMS-D-19-0337.1, 2021.
Radic, A., Lacan, F., and Murray, J. W.: Iron isotopes in the seawater of
the equatorial Pacific Ocean: New constraints for the oceanic iron cycle,
Earth Planet. Sc. Lett., 306, 1–10, https://doi.org/10.1016/j.epsl.2011.03.015,
2011.
Richon, C. and Tagliabue, A.: Biogeochemical feedbacks associated with the
response of micronutrient recycling by zooplankton to climate change, Glob.
Change Biol., 27, 4758–4770, https://doi.org/10.1111/gcb.15789, 2021.
Schallenberg, C., Davidson, A. B., Simpson, K. G., Miller, L. A., and
Cullen, J. T.: Iron(II) variability in the northeast subarctic Pacific
Ocean, Mar. Chem., 177, 33–44, https://doi.org/10.1016/j.marchem.2015.04.004, 2015.
Sedwick, P. N., DiTullio, G. R., Hutchins, D. A., Boyd, P. W., Griffiths, F. B., Crossley, A. C., Trull, T. W., and Quéguiner, B.: Limitation of algal growth by iron deficiency
in the Australian Subantarctic Region, Geophys. Res. Lett., 26, 2865–2868,
https://doi.org/10.1029/1998GL002284, 1999.
Sedwick, P. N., Church, T. M., Bowie, A. R., Marsay, C. M., Ussher, S. J., Achilles, K. M., Lethaby, P. J., Johnson, R. J., Sarin, M. M., and McGillicuddy, D. J.: Iron in the Sargasso Sea (Bermuda Atlantic
Time-series Study region) during summer: Eolian imprint, spatiotemporal
variability, and ecological implications, Global Biogeochem. Cy., 19, GB4006,
https://doi.org/10.1029/2004GB002445, 2005.
Sedwick, P.N., Bowie, A. R., Church, T. M., Cullen, J. T., Johnson, R. J., Lohan, M. C., Marsay, C. M., McGillicuddy, D. J., Sohst, B. M., Tagliabue, A., and Ussher, S. J.: Dissolved iron in the Bermuda region of the
subtropical North Atlantic Ocean: Seasonal dynamics, mesoscale variability,
and physicochemical speciation, Mar. Chem., 219, 103748,
https://doi.org/10.1016/j.marchem.2019.103748, 2020.
Severmann, S., Mcmanus, J., Berelson, W. M., and Hammond, D. E.: The
continental shelf benthic iron flux and its isotope composition, Geochim.
Cosmochim. Ac., 74, 3984–4004, https://doi.org/10.1016/j.gca.2010.04.022, 2010.
Sieber, M., Conway, T. M., de Souza, G. F., Hassler, C. S., Ellwood, M. J.,
and Vance, D.: Isotopic fingerprinting of biogeochemical processes and iron
sources in the iron-limited surface Southern Ocean, Earth Planet. Sc. Lett.,
567, 116967, https://doi.org/10.1016/j.epsl.2021.116967, 2021.
Sigman, D. M. and Fripiat, F.: Nitrogen Isotopes in the Ocean, in:
Encyclopedia of Ocean Sciences, edited by: Cochran, J. K., Bokuniewicz, H.,
and Yager, P., Elsevier, 263–278, https://doi.org/10.1016/B978-0-12-409548-9.11605-7,
2019.
Tagliabue, A., Aumont, O., Death, R., Dunne, J. P., Dutkiewicz, S., Galbraith, E. D., Misumi, K., Moore, J. K., Ridgwell, A. J., Sherman, E., Stock, C., Vichi, M., Völker, C., and Yool, A.: How well do global ocean biogeochemistry models
simulate dissolved iron distributions?, Global Biogeochem. Cy., 30, 149–174,
https://doi.org/10.1002/2015GB005289, 2016.
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., and
Saito, M. A.: The integral role of iron in ocean biogeochemistry, Nature,
543, 51–59, https://doi.org/10.1038/nature21058, 2017.
Tagliabue, A., Barrier, N., Du Pontavice, H., Kwiatkowski, L., Aumont, O., Bopp, L., Cheung, W. W. L., Gascuel, D., and Maury, O.: An iron cycle cascade governs the response of equatorial
Pacific ecosystems to climate change, Glob. Change Biol., 26, 6168–6179,
https://doi.org/10.1111/gcb.15316, 2020.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J., Masina, S., Scheinert, M., Hiroyuki, T., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice models
(JRA55-do), Ocean Model., 130, 79–139,
https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Völker, C. and Tagliabue, A.: Modeling organic iron-binding ligands in
a three-dimensional biogeochemical ocean model, Mar. Chem., 173, 67–77,
https://doi.org/10.1016/j.marchem.2014.11.008, 2015.
Waeles, M., Baker, A. R., Jickells, T., and Hoogewerff, J.: Global dust
teleconnections: aerosol iron solubility and stable isotope composition,
Environ. Chem., 4, 233–237, https://doi.org/10.1071/EN07013, 2007.
Short summary
Using model simulations, we show that natural and anthropogenic changes in the global climate leave a distinct fingerprint in the isotopic signatures of iron in the surface ocean. We find that these climate effects on iron isotopes are often caused by the redistribution of iron from different external sources to the ocean, due to changes in ocean currents, and by changes in algal growth, which take up iron. Thus, isotopes may help detect climate-induced changes in iron supply and algal uptake.
Using model simulations, we show that natural and anthropogenic changes in the global climate...
Altmetrics
Final-revised paper
Preprint