Articles | Volume 20, issue 4
https://doi.org/10.5194/bg-20-803-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-803-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Erica Jaakkola
CORRESPONDING AUTHOR
Department of Physical Geography and Ecosystem Science, Lund
University, Lund 223 62, Sweden
Antje Gärtner
Department of Physical Geography and Ecosystem Science, Lund
University, Lund 223 62, Sweden
Anna Maria Jönsson
Department of Physical Geography and Ecosystem Science, Lund
University, Lund 223 62, Sweden
Karl Ljung
Department of Geology, Lund University, Lund 223 62, Sweden
Per-Ola Olsson
Department of Physical Geography and Ecosystem Science, Lund
University, Lund 223 62, Sweden
Thomas Holst
Department of Physical Geography and Ecosystem Science, Lund
University, Lund 223 62, Sweden
Related authors
No articles found.
Karolina Pantazatou, Andreas Persson, Per-Ola Olsson, and Lars Harrie
AGILE GIScience Ser., 6, 41, https://doi.org/10.5194/agile-giss-6-41-2025, https://doi.org/10.5194/agile-giss-6-41-2025, 2025
Fredrik Lagergren, Anna Maria Jönsson, Mats Lindeskog, and Thomas A. M. Pugh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-239, https://doi.org/10.5194/gmd-2024-239, 2025
Revised manuscript under review for GMD
Short summary
Short summary
The European spruce bark beetle (SBB) has, in recent years, been the most important disturbance agent in many European forests. We implemented a SBB module in a dynamic vegetation model and calibrated it against observations from Sweden, Switzerland, Austria and France. The start and duration of outbreaks triggered by storm damage and the increased damage driven by recent warm and dry periods were reasonably well simulated, although the spread was reflected in uncertain parameter estimates.
Ross Charles Petersen, Thomas Holst, Cheng Wu, Radovan Krejci, Jeremy Chan, Claudia Mohr, and Janne Rinne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3410, https://doi.org/10.5194/egusphere-2024-3410, 2024
Short summary
Short summary
Ecosystem-scale emissions of biogenic volatile organic compounds (BVOCs) are important for atmospheric chemistry. Here we investigate boreal BVOC fluxes from a forest in central Sweden. BVOC fluxes were measured above-canopy using proton-transfer-reaction mass spectrometry, while compound-specific monoterpene (MT) fluxes were assessed using a concentration gradient method. We also evaluate the impact of chemical degradation on observed sesquiterpene (SQT) and nighttime MT fluxes.
Claire Ellul, Jantien Stoter, Benedicte Bucher, Per-Ola Olsson, Roland Billen, and Bart DeLathouwer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W5-2024, 147–154, https://doi.org/10.5194/isprs-annals-X-4-W5-2024-147-2024, https://doi.org/10.5194/isprs-annals-X-4-W5-2024-147-2024, 2024
Ross Petersen, Thomas Holst, Meelis Mölder, Natascha Kljun, and Janne Rinne
Atmos. Chem. Phys., 23, 7839–7858, https://doi.org/10.5194/acp-23-7839-2023, https://doi.org/10.5194/acp-23-7839-2023, 2023
Short summary
Short summary
We investigate variability in the vertical distribution of volatile organic compounds (VOCs) in boreal forest, determined through multiyear measurements at several heights in a boreal forest in Sweden. VOC source/sink seasonality in canopy was explored using these vertical profiles and with measurements from a collection of sonic anemometers on the station flux tower. Our results show seasonality in the source/sink distribution for several VOCs, such as monoterpenes and water-soluble compounds.
Per-Ola Olsson, Hugo Bergman, and Karl Piltz
AGILE GIScience Ser., 4, 35, https://doi.org/10.5194/agile-giss-4-35-2023, https://doi.org/10.5194/agile-giss-4-35-2023, 2023
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
L. Harrie, J. Kanters, K. Mattisson, P. Nezval, P.-O. Olsson, K. Pantazatou, G. Kong, and H. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W4-2021, 73–77, https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-73-2021, https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-73-2021, 2021
Roger Seco, Thomas Holst, Mikkel Sillesen Matzen, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Janne Rinne, and Riikka Rinnan
Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, https://doi.org/10.5194/acp-20-13399-2020, 2020
Short summary
Short summary
Northern ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs). We measured VOC fluxes from a subarctic permafrost-free fen and its adjacent lake in northern Sweden. The graminoid-dominated fen emitted mainly isoprene during the peak of the growing season, with a pronounced response to increasing temperatures stronger than assumed by biogenic emission models. The lake was a sink of acetone and acetaldehyde during both periods measured.
Cited articles
Amin, H. S., Russo, R. S., Sive, B., Richard Hoebeke, E., Dodson, C., McCubbin, I. B., Gannet Hallar, A., and Huff Hartz, K. E.: Monoterpene emissions from bark beetle infested Engelmann spruce trees, Atmos. Environ., 72, 130–133, https://doi.org/10.1016/j.atmosenv.2013.02.025, 2013.
Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S.,
Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D.,
Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeochemical
feedbacks in the climate system, Nat. Geosci., 3, 525–532,
https://doi.org/10.1038/ngeo905, 2010.
Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M.: Chemodiversity of a Scots pine stand and implications for terpene air concentrations, Biogeosciences, 9, 689–702, https://doi.org/10.5194/bg-9-689-2012, 2012.
Bakke, A.: Inhibition of the response in Ips typographus to the aggregation
pheromone; field evaluation of verbenone and ipsenol, Z. Angew. Entomol., 92, 172–177, https://doi.org/10.1111/j.1439-0418.1981.tb01666.x, 2009.
Bergström, R., Hallquist, M., Simpson, D., Wildt, J., and Mentel, T. F.: Biotic stress: a significant contributor to organic aerosol in Europe?, Atmos. Chem. Phys., 14, 13643–13660, https://doi.org/10.5194/acp-14-13643-2014, 2014.
Birgersson, G. and Bergström, G.: Volatiles released from individual
spruce bark beetle entrance holes Quantitative variations during the first
week of attack, J. Chem. Ecol., 15, 2465–2483, https://doi.org/10.1007/BF01020377,
1989.
Birgersson, G., Schlyter, F., Bergström, G., and Löfqvist, J.:
Individual Variation In Aggregation Phermomone Content Of The Bark Beetlem
Ips typographus, J. Chem. Ecol., 14, 1737–1761, 1988.
Bonn, B. and Moorgat, G. K.: New particle formation during a- and b-pinene oxidation by O3, OH and NO3, and the influence of water vapour: particle size distribution studies, Atmos. Chem. Phys., 2, 183–196, https://doi.org/10.5194/acp-2-183-2002, 2002.
Brilli, F., Ciccioli, P., Frattoni, M., Prestininzi, M., Spanedda, A. F., and
Loreto, F.: Constitutive and herbivore-induced monoterpenes emitted by
Populus × euroamericana leaves are key volatiles that orient
Chrysomela populi beetles, Plant Cell Environ., 32, 542–552,
https://doi.org/10.1111/j.1365-3040.2009.01948.x, 2009.
Cale, J. A., Ding, R., Wang, F., Rajabzadeh, R., and Erbilgin, N.:
Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other
semiochemicals in media amended with various pine chemicals and
beetle-released compounds, Fungal Ecol., 39, 285–295,
https://doi.org/10.1016/J.FUNECO.2019.01.003, 2019.
Celedon, J. M. and Bohlmann, J.: Oleoresin defenses in conifers: chemical
diversity, terpene synthases and limitations of oleoresin defense under
climate change, New Phytol., 224, 1444–1463, https://doi.org/10.1111/NPH.15984,
2019.
Eller, A. S. D., Harley, P., and Monson, R. K.: Potential contribution of
exposed resin to ecosystem emissions of monoterpenes, Atmos. Environ., 77,
440–444, https://doi.org/10.1016/j.atmosenv.2013.05.028, 2013.
Esposito, R., Lusini, I., VeèeøOvá, K., Holi, P., Pallozzi, E.,
Guidolotti, G., Urban, O., and Calfapietra, C.: Shoot-level terpenoids
emission in Norway spruce (Picea abies) under natural field and manipulated
laboratory conditions, Plant Physiol. Biochem., 108, 530–538,
https://doi.org/10.1016/J.PLAPHY.2016.08.019, 2016.
Everaerts, C., Grégoire, J.-C., and Merlin, J.: The Toxicity of Norway
Spruce Monoterpenes to Two Bark Beetle Species and Their Associates, in
Mechanisms of Woody Plant Defenses Against Insects, Springer
New York, New York, NY, USA, 335–344, https://doi.org/10.1007/978-1-4612-3828-7_23, 1988.
Ghimire, R. P., Kivimäenpää, M., Blomqvist, M., Holopainen, T.,
Lyytikäinen-Saarenmaa, P., and Holopainen, J. K.: Effect of bark beetle
(Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea
abies Karst.) trees, Atmos. Environ., 126, 145–152,
https://doi.org/10.1016/j.atmosenv.2015.11.049, 2016.
Greenberg, J. P., Asensio, D., Turnipseed, A., Guenther, A. B., Karl, T., and
Gochis, D.: Contribution of leaf and needle litter to whole ecosystem BVOC
fluxes, Atmos. Environ., 59, 302–311, https://doi.org/10.1016/J.ATMOSENV.2012.04.038,
2012.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: model evaluations
and sensitivity analyses, J. Geophys. Res., 98, 12609–12617, https://doi.org/10.1029/93jd00527,
1993.
Heijari, J., Blande, J. D., and Holopainen, J. K.: Feeding of large pine
weevil on Scots pine stem triggers localised bark and systemic shoot
emission of volatile organic compounds, Environ. Exp. Bot., 71, 390–398,
https://doi.org/10.1016/j.envexpbot.2011.02.008, 2011.
Heliasz, M.: Ecosystem eco time series (ICOS Sweden), Hyltemossa,
2018-12-31–2019-12-31, ICOS RI [data set], https://hdl.handle.net/11676/UMnMNGTWtxqjsw9AcOTx_92c (last access: 17 August 2021), 2020.
Heliasz, M., Biermann, T., Holst, J., Rinne, J., Holst, T., Linderson, M., and Mölder, M.: ETC L2 ARCHIVE, Hyltemossa, 2017-12-31–2021-08-31, ICOS RI [data set],
https://hdl.handle.net/11676/4du0339yr3mPuyyRf7LybFjQ (last access: 17 August 2021), 2021a.
Heliasz, M., Biermann, T., and Kljun, N.: Hyltemossa, ICOS Sweden,
https://www.icos-sweden.se/hyltemossa, last access: 17 August 2021b.
Jakoby, O., Lischke, H., and Wermelinger, B.: Climate change alters
elevational phenology patterns of the European spruce bark beetle (Ips
typographus), Glob. Chang. Biol., 25, 4048–4063, https://doi.org/10.1111/gcb.14766, 2019.
Jia, G., Shevliakova, E., Artaxo, P., De Noblet-Ducoudré, N., Houghton,
R., House, J., Kitajima, K., Lennard, C., Popp, A., Sirin, A. R., and Sukumar, L. V.: Land–climate interactions, in Climate Change and Land: an IPCC
special report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., 131–247, https://www.ipcc.ch/site/assets/uploads/2019/11/05_Chapter-2.pdf (last access: 25 August 2021), 2019.
Jönsson, A. M., Schroeder, L. M., Lagergren, F., Anderbrant, O., and
Smith, B.: Guess the impact of Ips typographus – An ecosystem modelling
approach for simulating bark beetle outbreaks, Agr. Forest Meteorol.,
166–167, 188–200, https://doi.org/10.1016/J.AGRFORMET.2012.07.012, 2012.
Kleist, E., Mentel, T. F., Andres, S., Bohne, A., Folkers, A., Kiendler-Scharr, A., Rudich, Y., Springer, M., Tillmann, R., and Wildt, J.: Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species, Biogeosciences, 9, 5111–5123, https://doi.org/10.5194/bg-9-5111-2012, 2012.
Krokene, P.: Conifer Defense and Resistance to Bark Beetles, Bark Beetles
Biol. Ecol. Nativ. Invasive Species, 177–207, https://doi.org/10.1016/B978-0-12-417156-5.00005-8, 2015.
Kulmala, M., Suni, T., Lehtinen, K. E. J., Dal Maso, M., Boy, M., Reissell, A., Rannik, Ü., Aalto, P., Keronen, P., Hakola, H., Bäck, J., Hoffmann, T., Vesala, T., and Hari, P.: A new feedback mechanism linking forests, aerosols, and climate, Atmos. Chem. Phys., 4, 557–562, https://doi.org/10.5194/acp-4-557-2004, 2004.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C. N.: Biogenic
volatile organic compounds in the Earth system, New Phytol., 183, 27–51,
https://doi.org/10.1111/j.1469-8137.2009.02859.x, 2009.
Lee, A., Goldstein, A. H., Kroll, J. H., Ng, N. L., Varutbangkul, V.,
Flagan, R. C., and Seinfeld, J. H.: Gas-phase products and secondary aerosol
yields from the photooxidation of 16 different terpenes, J. Geophys. Res.-Atmos., 111, D17305, https://doi.org/10.1029/2006JD007050, 2006.
Li, T., Holst, T., Michelsen, A., and Rinnan, R.: Amplification of plant
volatile defence against insect herbivory in a warming Arctic tundra, Nat.
Plants, 5, 568–574, https://doi.org/10.1038/s41477-019-0439-3, 2019.
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil
Respiration, Ecology, 8, 315–323, https://www.jstor.org/stable/2389824 (last access: 10 November 2021), 1994.
Loreto, F. and Schnitzler, J. P.: Abiotic stresses and induced BVOCs, Trends
Plant Sci., 15, 154–166, https://doi.org/10.1016/j.tplants.2009.12.006, 2010.
Mageroy, M. H., Christiansen, E., Långström, B., Borg-Karlson, A.
K., Solheim, H., Björklund, N., Zhao, T., Schmidt, A., Fossdal, C. G., and Krokene, P.: Priming of inducible defenses protects Norway spruce
against tree-killing bark beetles, Plant Cell Environ., 43, 420–430,
https://doi.org/10.1111/pce.13661, 2020.
Mölder, M.: Ecosystem meteo time series (ICOS Sweden), Norunda,
2018-12-31–2019-12-31, ICOS RI [data set], https://hdl.handle.net/11676/rMNwV-Xr8imkwqKhriV9Rr7B (last access: 17 August 2021), 2021.
Mölder, M., Kljun, N., Lehner, I., Båth, A., Holst, J., and
Linderson, M.: ETC L2 ARCHIVE, Norunda, 2017-12-31–2021-08-31, ICOS RI [data set], https://hdl.handle.net/11676/RIZv3k8DDrTi7Qed21dkTrEY (last access: 17 August 2021), 2021a.
Mölder, M., Lehner, I., and Kljun, N.: Norunda, ICOS Sweden,
https://www.icos-sweden.se/norunda, last access: 17 August 2021b.
Öhrn, P., Långström, B., Lindelöw, Å., and Björklund,
N.: Seasonal flight patterns of Ips typographus in southern Sweden and
thermal sums required for emergence, Agr. Forest Entomol., 16, 147–157,
https://doi.org/10.1111/afe.12044, 2014.
Ortega, J. and Helmig, D.: Approaches for quantifying reactive and
low-volatility biogenic organic compound emissions by vegetation enclosure
techniques – Part A, Chemosphere, 72, 343–364,
https://doi.org/10.1016/j.chemosphere.2007.11.020, 2008.
Paasonen, P., Asmi, A., Petäjä, T., Kajos, M. K.,
Äijälä, M., Junninen, H., Holst, T., Abbatt, J. P. D., Arneth,
A., Birmili, W., Van Der Gon, H. D., Hamed, A., Hoffer, A., Laakso, L.,
Laaksonen, A., Richard Leaitch, W., Plass-Dülmer, C., Pryor, S. C.,
Räisänen, P., Swietlicki, E., Wiedensohler, A., Worsnop, D. R.,
Kerminen, V. M., and Kulmala, M.: Warming-induced increase in aerosol number
concentration likely to moderate climate change, Nat. Geosci., 6,
438–442, https://doi.org/10.1038/ngeo1800, 2013.
Raffa, K. F.: Induced defensive reactions in conifer-bark beetle systems, in
Phytochemical induction by herbivores, chap. 11, edited by: Tallamy, D. W. and
Raupp, M. J., Wiley-Interscience, 245–276, ISBN-10: 0471632414, 1991.
Raffa, K. F. and Berryman, A. A.: Physiological Differences Between
Lodgepole Pines Resistant and Susceptible to the Mountain Pine Beetle 1 and
Associated Microorganisms 2, Environ. Entomol., 11, 486–492,
https://doi.org/10.1093/ee/11.2.486, 1982.
Rieksta, J., Li, T., Junker, R. R., Jepsen, J. U., Ryde, I., and Rinnan, R.:
Insect Herbivory Strongly Modifies Mountain Birch Volatile Emissions, Front.
Plant Sci., 11, 558979, https://doi.org/10.3389/fpls.2020.558979, 2020.
Roldin, P., Swietlicki, E., Schurgers, G., Arneth, A., Lehtinen, K. E. J., Boy, M., and Kulmala, M.: Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM, Atmos. Chem. Phys., 11, 5867–5896, https://doi.org/10.5194/acp-11-5867-2011, 2011.
Roldin, P., Ehn, M., Kurtén, T., Olenius, T., Rissanen, M. P., Sarnela,
N., Elm, J., Rantala, P., Hao, L., Hyttinen, N., Heikkinen, L., Worsnop, D.
R., Pichelstorfer, L., Xavier, C., Clusius, P., Öström, E.,
Petäjä, T., Kulmala, M., Vehkamäki, H., Virtanen, A., Riipinen,
I., and Boy, M.: The role of highly oxygenated organic molecules in the
Boreal aerosol-cloud-climate system, Nat. Commun., 10, 4370,
https://doi.org/10.1038/s41467-019-12338-8, 2019.
Schelhaas, M. J., Nabuurs, G. J., and Schuck, A.: Natural disturbances in the
European forests in the 19th and 20th centuries, Glob. Chang. Biol., 9,
1620–1633, https://doi.org/10.1046/J.1365-2486.2003.00684.X, 2003.
Schiebe, C., Hammerbacher, A., Birgersson, G., Witzell, J., Brodelius, P.
E., Gershenzon, J., Hansson, B. S., Krokene, P., and Schlyter, F.:
Inducibility of chemical defenses in Norway spruce bark is correlated with
unsuccessful mass attacks by the spruce bark beetle, Oecologia, 170,
183–198, https://doi.org/10.1007/s00442-012-2298-8, 2012.
Schurgers, G., Hickler, T., Miller, P. A., and Arneth, A.: European emissions of isoprene and monoterpenes from the Last Glacial Maximum to present, Biogeosciences, 6, 2779–2797, https://doi.org/10.5194/bg-6-2779-2009, 2009.
Seco, R., Holst, T., Matzen, M. S., Westergaard-Nielsen, A., Li, T., Simin, T., Jansen, J., Crill, P., Friborg, T., Rinne, J., and Rinnan, R.: Volatile organic compound fluxes in a subarctic peatland and lake, Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, 2020.
Seidl, R., Schelhaas, M. J., Rammer, W., and Verkerk, P. J.: Increasing
forest disturbances in Europe and their impact on carbon storage, Nat. Clim.
Chang., 4, 806–810, https://doi.org/10.1038/nclimate2318, 2014.
Sharkey, T. D., Chen, X., and Yeh, S.: Isoprene increases thermotolerance of
fosmidomycin-fed leaves, Plant Physiol., 125, 2001–2006,
https://doi.org/10.1104/pp.125.4.2001, 2001.
Skogsstyrelsen: Genomsnittligt antal granbarkborrar per fälla efter
Fällornas plats, År och Vecka, PxWeb [data set], http://pxweb.skogsstyrelsen.se/pxweb/sv/Skogsstyrelsens statistikdatabas/Skogsstyrelsens statistikdatabas__Granbarkborresvarmning/01_antal_granbarkborrar samtliga_fallor.px/, last access: 25 May 2022.
Thomsen, D., Elm, J., Rosati, B., Skønager, J. T., Bilde, M., and Glasius,
M.: Large Discrepancy in the Formation of Secondary Organic Aerosols from
Structurally Similar Monoterpenes, ACS Earth Sp. Chem., 5, 632–644,
https://doi.org/10.1021/acsearthspacechem.0c00332, 2021.
van Meeningen, Y., Wang, M., Karlsson, T., Seifert, A., Schurgers, G.,
Rinnan, R., and Holst, T.: Isoprenoid emission variation of Norway spruce
across a European latitudinal transect, Atmos. Environ., 170, 45–57,
https://doi.org/10.1016/j.atmosenv.2017.09.045, 2017.
Wang, M., Schurgers, G., Arneth, A., Ekberg, A., and Holst, T.: Seasonal
variation in biogenic volatile organic compound (BVOC) emissions from Norway
spruce in a Swedish boreal forest, Boreal Environ. Res., 22,
353–367, 2017.
Wulff, S. and Roberge, C.: Nationell Riktad Skogsskadeinventering (NRS) – Inventering av granbarkborreangrepp i Götaland och Svealand 2020 [Inventory of spruce bark beetle infestation in Götaland and Svealand 2020], In Swedish, Umeå, https://pub.epsilon.slu.se/21827/1/wulff_s_et_al_210201.pdf (last access: 15 August 2021), 2020.
Yu, H., Holopainen, J. K., Kivimäenpää, M., Virtanen, A., and
Blande, J. D.: Potential of climate change and herbivory to affect the
release and atmospheric reactions of bvocs from boreal and subarctic
forests, Molecules, 26, 1–24, https://doi.org/10.3390/molecules26082283, 2021.
Zhang-Turpeinen, H., Kivimäenpää, M., Berninger, F., Köster,
K., Zhao, P., Zhou, X., and Pumpanen, J.: Age-related response of forest
floor biogenic volatile organic compound fluxes to boreal forest succession
after wildfires, Agr. Forest Meteorol., 308–309, 108584,
https://doi.org/10.1016/J.AGRFORMET.2021.108584, 2021.
Zhao, T., Borg-Karlson, A. K., Erbilgin, N., and Krokene, P.: Host resistance
elicited by methyl jasmonate reduces emission of aggregation pheromones by
the spruce bark beetle, Ips typographus, Oecologia, 167, 691–699,
https://doi.org/10.1007/s00442-011-2017-x, 2011a.
Zhao, T., Krokene, P., Hu, J., Christiansen, E., Björklund, N.,
Långström, B., Solheim, H., and Borg-Karlson, A. K.: Induced terpene
accumulation in Norway spruce inhibits bark beetle colonization in a
dose-dependent manner, PLoS One, 6, e26649, https://doi.org/10.1371/journal.pone.0026649,
2011b.
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees...
Altmetrics
Final-revised paper
Preprint