Articles | Volume 20, issue 4
https://doi.org/10.5194/bg-20-827-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-827-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recently fixed carbon fuels microbial activity several meters below the soil surface
Andrea Scheibe
Bayreuth Center of Ecology and Environmental Research (BayCEER),
University of Bayreuth, Bayreuth, Germany
Carlos A. Sierra
Department of Biogeochemical Processes, Max Planck Institute for
Biogeochemistry, Jena, Germany
Department of Ecology, Swedish University of Agricultural Sciences,
Uppsala, Sweden
Bayreuth Center of Ecology and Environmental Research (BayCEER),
University of Bayreuth, Bayreuth, Germany
Department of Soil and Environment, Swedish University of Agricultural
Sciences, Uppsala, Sweden
Related authors
No articles found.
Valentina Lara, Carlos A. Sierra, Miguel A. Peña, Sebastián Ramirez, Diego Navarrete, Juan F. Phillips, and Álvaro Duque
EGUsphere, https://doi.org/10.5194/egusphere-2025-2959, https://doi.org/10.5194/egusphere-2025-2959, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Impacts of deforestation on the soil level are commonly overlooked. Conversion of Amazon rainforest to pastures increases soil compaction and decreases soil carbon storage, with lasting effects over time and across soil depth. After decades, pasture accumulated soil carbon doesn't match the original forest stocks. These changes may worsen climate change by reducing the Amazon basin ability to store carbon, highlighting the need to protect these ecosystems, from canopy to soil.
Carlos A. Sierra and Estefanía Muñoz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1640, https://doi.org/10.5194/egusphere-2025-1640, 2025
Short summary
Short summary
We propose an approach to obtain weights for calculating averages of variables from Earth system models (ESM) based on concepts from information theory. It quantifies a relative distance between model output and reality, even though it is impossible to know the absolute distance from model predictions to reality. The relative ranking among models is based on concepts of model selection and multi-model averages previously developed for simple statistical models, but adapted here for ESMs.
Carlos A. Sierra, Ingrid Chanca, Meinrat Andreae, Alessandro Carioca de Araújo, Hella van Asperen, Lars Borchardt, Santiago Botía, Luiz Antonio Candido, Caio S. C. Correa, Cléo Quaresma Dias-Junior, Markus Eritt, Annica Fröhlich, Luciana V. Gatti, Marcus Guderle, Samuel Hammer, Martin Heimann, Viviana Horna, Armin Jordan, Steffen Knabe, Richard Kneißl, Jost Valentin Lavric, Ingeborg Levin, Kita Macario, Juliana Menger, Heiko Moossen, Carlos Alberto Quesada, Michael Rothe, Christian Rödenbeck, Yago Santos, Axel Steinhof, Bruno Takeshi, Susan Trumbore, and Sönke Zaehle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-151, https://doi.org/10.5194/essd-2025-151, 2025
Preprint under review for ESSD
Short summary
Short summary
We present here a unique dataset of atmospheric observations of greenhouse gases and isotopes that provide key information on land-atmosphere interactions for the Amazon forests of central Brazil. The data show a relatively large level of variability, but also important trends in greenhouse gases, and signals from fires as well as seasonal biological activity.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025, https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a change in the transit time from 6 ± 2 years and 18 ± 4 years within 2 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Song Wang, Carlos Sierra, Yiqi Luo, Jinsong Wang, Weinan Chen, Yahai Zhang, Aizhong Ye, and Shuli Niu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-33, https://doi.org/10.5194/bg-2023-33, 2023
Manuscript not accepted for further review
Short summary
Short summary
Nitrogen is important for plant growth and carbon uptake, which is uaually limited in nature and can constrain carbon storage and impact efforts to combat climate change. We developed a new method of combining data and models to determine if and how much an ecosystem is nitrogen limited. This new method can help determine if and to what extent an ecosystem is nitrogen-limited, providing insight into nutrient limitations on a global scale and guiding ecosystem management decisions.
Carlos A. Sierra, Verónika Ceballos-Núñez, Henrik Hartmann, David Herrera-Ramírez, and Holger Metzler
Biogeosciences, 19, 3727–3738, https://doi.org/10.5194/bg-19-3727-2022, https://doi.org/10.5194/bg-19-3727-2022, 2022
Short summary
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
Short summary
Plant litter breakdown in aridlands is driven by processes different from those in more humid ecosystems. A better understanding of these processes will allow us to make better predictions of future carbon cycling. We have compiled aridec, a database of plant litter decomposition studies in aridlands and tested some modeling applications for potential users. Aridec is open for use and collaboration, and we hope it will help answer newer and more important questions as the database develops.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Cited articles
Akob, D. M. and Küsel, K.: Where microorganisms meet rocks in the Earth's Critical Zone, Biogeosciences, 8, 3531–3543, https://doi.org/10.5194/bg-8-3531-2011, 2011.
Badri, D. V. and Vivanco, J. M.: Regulation and function of root exudates,
Plant Cell Environ., 32, 666–681,
https://doi.org/10.1111/j.1365-3040.2009.01926.x, 2009.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D.,
Fekiacova, Z., and Hatté, C.: Atmosphere–soil carbon transfer as a
function of soil depth, Nature, 559, 599–602,
https://doi.org/10.1038/s41586-018-0328-3, 2018.
Berg, A. and Banwart, S. A.: Carbon dioxide mediated dissolution of
Ca-feldspar: implications for silicate weathering, Chem. Geol., 163, 25–42,
https://doi.org/10.1016/S0009-2541(99)00132-1, 2000.
Berner, R. A.: The rise of plants and their effect on weathering and
atmospheric CO2, Science, 276, 544–546,
https://doi.org/10.1126/science.276.5312.544, 1997.
Bernard, L., Basile-Doelsch, I., Derrien, D., Fanin, N., Fontaine, S.,
Guenet, B., Karimi, B., Marsden, C., and Maron, P.-A.: Advancing the mechanistic understanding of
the priming effect on soil organic matter mineralization, Funct. Ecol., 36,
1355–1377, https://doi.org/10.1111/1365-2435.14038, 2022.
Bernhard, N.,
Moskwa, L.-M., Schmidt, K., Oeser, R. A., Aburto, F., Bader, M. Y.,
Baumann, K., von Blanckenburg, F., Boy, J., van den Brink, L., Brucker, E., Büdel, B., Canessa, R., Dippold, M. A., Ehlers, T. A., Fuentes, J. P., Godoy, R., Jung, P., Karsten, U., Köster, M., Kuzyakov, Y., Leinweber, P., Neidhardt, H., Matus, F., Mueller, C. W., Oelmann, Y., Oses, R., Osses, P., Paulino, L., Samolov, E., Schaller, M., Schmid, M., Spielvogel, S., Spohn, M., Stock, S., Stroncik, N., Tielbörger, K., Übernickel, K., Scholten, T., Seguel, O., Wagner, D., and Kühn, P.: Pedogenic and microbial interrelations to
regional climate and local topography: New insights from a climate gradient
(arid to humid) along the Coastal Cordillera of Chile, Catena, 170,
335–355, https://doi.org/10.1016/j.catena.2018.06.018, 2018.
Brucker, E. and Spohn, M.: Formation of soil phosphorus fractions along a
climate and vegetation gradient in the Coastal Cordillera of Chile, Catena,
180, 203–211, https://doi.org/10.1016/j.catena.2019.04.022, 2019.
Dungait, J. A., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil
organic matter turnover is governed by accessibility not recalcitrance,
Glob. Change Biol., 18, 1781–1796,
https://doi.org/10.1111/j.1365-2486.2012.02665.x, 2012.
Dutta, K., Schuur, E. A. G., Neff, J. C., and Zimov, S. A.: Potential carbon
release from permafrost soils of Northeastern Siberia, Glob. Change Biol.,
12, 2336–2351, https://doi.org/10.1111/j.1365-2486.2006.01259.x, 2006.
Ehleringer, J. R., Buchmann, N., and Flanagan, L. B.: Carbon isotope ratios
in belowground carbon cycle processes, Ecol. Appl., 10, 412–422,
https://doi.org/10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2 , 2000.
Fierer, N., Chadwick, O. A., and Trumbore, S. E.: Production of CO2 in
soil profiles of a California annual grassland, Ecosystems, 8, 412–429,
https://doi.org/10.1007/s10021-003-0151-y, 2005.
Finlay, R. D., Mahmood, S., Rosenstock, N., Bolou-Bi, E. B., Köhler, S. J., Fahad, Z., Rosling, A., Wallander, H., Belyazid, S., Bishop, K., and Lian, B.: Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale, Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020, 2020.
Gentsch, N., Wild, B., Mikutta, R., Čapek, P., Diáková, K.,
Schrumpf, M., Turner, S., Minnich, C., Schaarschmidt, F., Shibistova, O., Schnecker, J., Urich, T., Gittel, A., Šantrůčková, H., Bárta, J., Lashchinskiy, N., Fuß, R., Richter, A. and Guggenberger, G.: Temperature response of permafrost
soil carbon is attenuated by mineral protection, Glob. Change Biol., 24,
3401–3415, https://doi.org/10.1111/gcb.14316, 2018.
Gill, R. A. and Jackson, R. B.: Global patterns of root turnover for
terrestrial ecosystems, New Phytol., 147, 13–31,
https://doi.org/10.1046/j.1469-8137.2000.00681.x, 2000.
Hanson, P. J., Edwards, N. T., Garten, C. T., and Andrews, J. A.: Separating
root and soil microbial contributions to soil respiration: a review of
methods and observations, Biogeochemistry, 48, 115–146,
https://doi.org/10.1023/A:1006244819642, 2000.
Hayes, N. R., Buss, H. L., Moore, O. W., Krám, P., and Pancost, R. D.:
Controls on granitic weathering fronts in contrasting climates, Chem. Geol.,
535, 119450, https://doi.org/10.1016/j.chemgeo.2019.119450, 2020.
Hoffland, E., Kuyper, T. W., Wallander, H., Plassard, C., Gorbushina, A. A.,
Haselwandter, K., Holmström, S., Landeweert, R., Lundström, U. S., Rosling, A., Sen, R., Smits, M. M., van Hees, P. A. W., and van Breemen, N.: The role of fungi in weathering,
Front. Ecol. Environ., 2, 258–264,
https://doi.org/10.1890/1540-9295(2004)002[0258:TROFIW]2.0.CO;2, 2004.
Högberg, P. and Read, D. J.: Towards a more plant physiological
perspective on soil ecology, Trends Ecol. Evol., 21, 548–554,
https://doi.org/10.1016/j.tree.2006.06.004, 2006.
Högberg, P., Högberg, M. N., Göttlicher, S. G., Betson, N. R.,
Keel, S. G., Metcalfe, D. B., Campbell, C., Schindlbacher, A., Hurry, V., Lundmark, T., Linder, S., and Näsholm, T.: High temporal
resolution tracing of photosynthate carbon from the tree canopy to forest
soil microorganisms, New Phytol., 177, 220–228,
https://doi.org/10.1111/j.1469-8137.2007.02238.x, 2008.
Hulton, N. R. J., Purves, R. S., McCulloch, R. D., Sugden, D. E., and
Bentley, M. J.: The last Glacial Maximum and deglaciation in southern South
America, Quaternary Sci. Rev., 21, 233–241,
https://doi.org/10.1016/S0277-3791(01)00103-2, 2002.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update
2015, International soil classification system for naming soils and creating
legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome,
2015.
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., and
Piñeiro, G.: The ecology of soil carbon: pools, vulnerabilities, and
biotic and abiotic controls, Annu. Rev. Ecol. Evol. S., 48, 419–445,
https://doi.org/10.1146/annurev-ecolsys-112414-054234, 2017.
Kaiser, K. and Kalbitz, K.: Cycling downwards–dissolved organic matter in
soils, Soil Biol. Biochem., 52, 29–32,
https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Keeling, C. D., Mook, W. G., and Tans, P. P.: Recent trends in the
ratio of atmospheric carbon dioxide, Nature, 277,
121–123, https://doi.org/10.1038/277121a0, 1979.
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz,
K., Scheu, S., Eusterhues, K., and Leinweber, P.: Organo-mineral associations in
temperate soils: Integrating biology, mineralogy, and organic matter
chemistry, J. Plant Nutr. Soil Sc., 171, 61–82,
https://doi.org/10.1002/jpln.200700048, 2008.
Krone, L. V., Hampl, F. J., Schwerdhelm, C., Bryce, C., Ganzert, L., Kitte,
A., Übernickel, K., Dielforder, A., Aldaz, S., Oses-Pedraza, R., Perez, J. P. H., Sanchez-Alfaro, P., Wagner, D., Weckmann, U., and von Blanckenburg, F.: Deep weathering in the semi-arid Coastal
Cordillera, Chile, Sci. Rep., 11, 1–15,
https://doi.org/10.1038/s41598-021-90267-7, 2021.
Krumholz, L. R.: Microbial communities in the deep subsurface, Hydrogeol.
J., 8, 4–10, https://doi.org/10.1007/s100400050003, 2000.
Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.: An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, 2020.
Lee, H., Schuur, E. A., Inglett, K. S., Lavoie, M., and Chanton, J. P.: The
rate of permafrost carbon release under aerobic and anaerobic conditions and
its potential effects on climate, Glob. Change Biol., 18, 515–527,
https://doi.org/10.1111/j.1365-2486.2011.02519.x, 2012.
Luebert, F. and Pliscoff, P.: Sinopsis bioclimática y vegetacional de
Chile, 2nd Edn., Editorial Universitaria, Santiago, Chile, 384 pp.,
2017.
Marín-Spiotta, E. and Hobley, E. U.: Deep soil carbon, in: Multi-Scale
Biogeochemical Processes in Soil Ecosystems: Critical Reactions and
Resilience to Climate Changes, edited by: Yang, Y., Keiluweit, M., Senesi,
N., and Xing B., John Wiley & Sons, Inc., 193–206,
https://doi.org/10.1002/9781119480419.ch9, 2022.
Marin-Spiotta, E., Chaopricha, N. T., Plante, A. F., Diefendorf, A. F.,
Mueller, C. W., Grandy, A. S., and Mason, J. A.: Long-term stabilization of
deep soil carbon by fire and burial during early Holocene climate change,
Nat. Geosci., 7, 428–432, https://doi.org/10.1038/NGEO2169, 2014.
Mathieu, J. A., Hatté, C., Balesdent, J., and Parent, É.: Deep soil
carbon dynamics are driven more by soil type than by climate – a worldwide
meta-analysis of radiocarbon profiles, Glob. Change Biol., 21, 4278–4292,
https://doi.org/10.1111/gcb.13012, 2015.
Michalzik, B., Kalbitz, K., Park, J.-H., Solinger, S., and Matzner, E.:
Fluxes and concentrations of dissolved organic carbon and nitrogen – a
synthesis for temperate forests, Biogeochemistry, 52, 173–205,
https://doi.org/10.1023/A:1006441620810, 2001.
Moreland, K., Tian, Z., Berhe, A. A., McFarlane, K. J., Hartsough, P., Hart,
S. C., Bales, R., and O'Geen, A. T.: Deep in the Sierra Nevada critical zone:
saprock represents a large terrestrial organic carbon stock, Environ. Res.
Lett., 16, 124059, https://doi.org/10.1088/1748-9326/ac3bfe, 2021.
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic
respiration to moisture availability: An exploration of processes and
models, Soil Biol. Biochem., 59, 72–85,
https://doi.org/10.1016/j.soilbio.2013.01.002, 2013.
Nagy, R. C., Porder, S., Brando, P., Davidson, E. A., Figueira, A. M. E. S.,
Neill, C., Riskin, S., and Trumbore, S.: Soil carbon dynamics in soybean cropland
and forests in Mato Grosso, Brazil, J. Geophys. Res.-Biogeo., 123,
18–31, https://doi.org/10.1002/2017JG004269, 2018.
Ni, X., Liao, S., Tan, S., Peng, Y., Wang, D., Yue, K., Wu, F., and Yang, Y.:
The vertical distribution and control of microbial necromass carbon in
forest soils, Global Ecol. Biogeogr., 29, 1829–1839,
https://doi.org/10.1111/geb.13159, 2020.
Oeser, R. A., Stroncik, N., Moskwa, L.-M., Bernhard, N., Schaller, M.,
Canessa, R., van den Brink, L., Köster, M., Brucker, E., Stock, S., Fuentes, J. P., Godoy, R., Matus, F. J., Pedraza, R. O., McIntyre, P. O., Paulino, L., Seguel, O., Bader, M. Y., Boy, J., Dippold, M. A., Ehlers, T. A., Kühn, P., Kuzyakov, Y., Leinweber, P., Scholten, T., Spielvogel, S., Spohn, M., Übernickel, K., Tielbörger, K., Wagner, D., and von Blanckenburg, F.: Chemistry and
microbiology of the Critical Zone along a steep climate and vegetation
gradient in the Chilean Coastal Cordillera, Catena, 170, 183–203,
https://doi.org/10.1016/j.catena.2018.06.002, 2018.
Pedersen, K.: Microbial life in deep granitic rock, FEMS Microbiol. Rev.,
20, 399–414, https://doi.org/10.1111/j.1574-6976.1997.tb00325.x, 1997.
Pedron, S. A., Welker, J. M., Euskirchen, E. S., Klein, E. S., Walker, J.
C., Xu, X., and Czimczik, C. I.: Closing the winter gap – Year-round
measurements of soil CO2 emission sources in Arctic tundra, Geophys.
Res. Lett., 49, e2021GL097347, https://doi.org/10.1029/2021GL097347, 2022.
Phillips, C. L., McFarlane, K. J., Risk, D., and Desai, A. R.: Biological and physical influences on soil 14CO2 seasonal dynamics in a temperate hardwood forest, Biogeosciences, 10, 7999–8012, https://doi.org/10.5194/bg-10-7999-2013, 2013.
R Core Team: A Language and Environment for Statistical Computing R
Foundation for Statistical Computing, Austria, Vienna, https://www.R-project.org/ (last access: 14 February 2023), 2022.
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a key but
poorly understood component of terrestrial C cycle, Plant Soil, 338,
143–158, https://doi.org/10.1007/s11104-010-0391-5, 2011.
Sanderman, J., Baldock, J. A., and Amundson, R.: Dissolved organic carbon
chemistry and dynamics in contrasting forest and grassland soils,
Biogeochemistry, 89, 181–198, https://doi.org/10.1007/s10533-008-9211-x,
2008.
Scheibe, A., Sierra, C. A., and Spohn, M.: Recently fixed carbon fuels microbial activity several meters below the soil surface, Zenodo [data set], https://doi.org/10.5281/zenodo.7389812, 2022.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic
matter as an ecosystem property, Nature, 478, 49–56,
https://doi.org/10.1038/nature10386, 2011.
Seuss, I., Scheibe, A., and Spohn, M.: N2 fixation is less sensitive to
changes in soil water content than carbon and net nitrogen mineralization,
Geoderma, 424, 115973, https://doi.org/10.1016/j.geoderma.2022.115973, 2022.
Spohn, M. and Holzheu, S.: Temperature controls diel oscillation of the
CO2 concentration in a desert soil, Biogeochemistry, 156, 279–292,
https://doi.org/10.1007/s10533-021-00845-0, 2021.
Steinhof, A., Adamiec, G., Gleixner, G., van Klinken, G. J., and Wagner, T.:
The new 14C analysis laboratory in Jena, Germany, Radiocarbon, 46,
51–58, https://doi.org/10.1017/S0033822200039345, 2004.
Steinhof, A., Altenburg, M., and Machts, H.: Sample preparation at the Jena
14C laboratory, Radiocarbon, 59, 815–830,
https://doi.org/10.1017/RDC.2017.50, 2017.
Stuiver, M. and Polach, H. A.: Radiocarbon – Discussion reporting of
14C data, Radiocarbon, 19, 355–363,
https://doi.org/10.1017/S0033822200003672, 1977.
Trumbore, S.: Age of soil organic matter and soil respiration: radiocarbon
constraints on belowground C dynamics, Ecol. Appl., 10, 399–411,
https://doi.org/10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2, 2000.
Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P., Nepstad, D. C.,
and Martinelli, L. A.: Belowground cycling of carbon in forests and pastures
of eastern Amazonia, Global Biogeochem. Cy., 9, 515–528,
https://doi.org/10.1029/95GB02148, 1995.
Trumbore, S. E., Sierra, C. A., and Hicks Pries, C. E.: Radiocarbon
nomenclature, theory, models, and interpretation: Measuring age, determining
cycling rates, and tracing source pools, in: Radiocarbon and Climate Change,
edited by: Schuur, E. A. G., Druffel, E., and Trumbore, S. E., Springer
International Publishing, 45–82,
https://doi.org/10.1007/978-3-319-25643-6_3, 2016.
Uroz, S., Picard, L., and Turpault, M. P.: Recent progress in understanding
the ecology and molecular genetics of soil mineral weathering bacteria,
Trends Microbiol., 30, 882–897, https://doi.org/10.1016/j.tim.2022.01.019,
2022.
van Hees, P. A., Jones, D. L., Finlay, R., Godbold, D. L., and
Lundström, U. S.: The carbon we do not see – the impact of low molecular
weight compounds on carbon dynamics and respiration in forest soils: a
review, Soil Biol. Biochem., 37, 1–13,
https://doi.org/10.1016/j.soilbio.2004.06.010, 2005.
Vázquez, M., Ramírez, S., Morata, D., Reich, M., Braun, J. J., and
Carretier, S.: Regolith production and chemical weathering of granitic rocks
in central Chile, Chem. Geol., 446, 87–98,
https://doi.org/10.1016/j.chemgeo.2016.09.023, 2016.
Werner, C., Schmid, M., Ehlers, T. A., Fuentes-Espoz, J. P., Steinkamp, J., Forrest, M., Liakka, J., Maldonado, A., and Hickler, T.: Effect of changing vegetation and precipitation on denudation – Part 1: Predicted vegetation composition and cover over the last 21 thousand years along the Coastal Cordillera of Chile, Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, 2018.
Wynn, J. G., Harden, J. W., and Fries, T. L.: Stable carbon isotope depth
profiles and soil organic carbon dynamics in the lower Mississippi Basin,
Geoderma, 131, 89–109, https://doi.org/10.1016/j.geoderma.2005.03.005,
2006.
Short summary
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m, using carbon isotopes. Our results show that microbial activity several meters below the soil surface is mostly fueled by recently fixed carbon and that strong decomposition of soil organic matter only occurs in the upper decimeters of the soils. The study shows that different layers of the critical zone are tightly connected and that processes in the deep soil depend on recently fixed carbon.
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m,...
Altmetrics
Final-revised paper
Preprint