Articles | Volume 9, issue 4
https://doi.org/10.5194/bg-9-1553-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-9-1553-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The effect of meter-scale lateral oxygen gradients at the sediment-water interface on selected organic matter based alteration, productivity and temperature proxies
K. A. Bogus
University of Bremen, Department of Geosciences, Klagenfurter Strasse, 28359 Bremen, Germany
MARUM – Center For Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
K. A. F. Zonneveld
University of Bremen, Department of Geosciences, Klagenfurter Strasse, 28359 Bremen, Germany
MARUM – Center For Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
D. Fischer
MARUM – Center For Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
S. Kasten
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
G. Bohrmann
University of Bremen, Department of Geosciences, Klagenfurter Strasse, 28359 Bremen, Germany
MARUM – Center For Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
G. J. M. Versteegh
MARUM – Center For Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
Related subject area
Paleobiogeoscience: Proxy use, Development & Validation
Disentangling influences of climate variability and lake-system evolution on climate proxies derived from isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs): the 250 kyr Lake Chala record
Electron backscatter diffraction analysis unveils foraminiferal calcite microstructure and processes of diagenetic alteration
Quantifying the δ15N trophic offset in a cold-water scleractinian coral (CWC): implications for the CWC diet and coral δ15N as a marine N cycle proxy
Stable oxygen isotopes of crocodilian tooth enamel allow tracking Plio-Pleistocene evolution of freshwater environments and climate in the Shungura Formation (Turkana Depression, Ethiopia)
Charcoal morphologies and morphometrics of a Eurasian grass-dominated system for robust interpretation of past fuel and fire type
Single-species dinoflagellate cyst carbon isotope fractionation in core-top sediments: environmental controls, CO2 dependency and proxy potential
Past fire dynamics inferred from polycyclic aromatic hydrocarbons and monosaccharide anhydrides in a stalagmite from the archaeological site of Mayapan, Mexico
Examination of the parameters controlling the triple oxygen isotope composition of grass leaf water and phytoliths at a Mediterranean site: a model–data approach
Biomarker characterization of the North Water Polynya, Baffin Bay: implications for local sea ice and temperature proxies
Technical note: No impact of alkenone extraction on foraminiferal stable isotope, trace element and boron isotope geochemistry
Deep-sea stylasterid δ18O and δ13C maps inform sampling scheme for paleotemperature reconstructions
Experimental burial diagenesis of aragonitic biocarbonates: from organic matter loss to abiogenic calcite formation
A modern snapshot of the isotopic composition of lacustrine biogenic carbonates – records of seasonal water temperature variability
Performance of temperature and productivity proxies based on long-chain alkane-1, mid-chain diols at test: a 5-year sediment trap record from the Mauritanian upwelling
Validation of a coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach based on a climate chamber experiment
Experimental production of charcoal morphologies to discriminate fuel source and fire type: an example from Siberian taiga
Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera
Calibration of Mg ∕ Ca and Sr ∕ Ca in coastal marine ostracods as a proxy for temperature
Technical note: Accelerate coccolith size separation via repeated centrifugation
Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity
Chemical destaining and the delta correction for blue intensity measurements of stained lake subfossil trees
Modern calibration of Poa flabellata (tussac grass) as a new paleoclimate proxy in the South Atlantic
Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients
Bottom-water deoxygenation at the Peruvian margin during the last deglaciation recorded by benthic foraminifera
The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)
Benthic foraminifera as tracers of brine production in the Storfjorden “sea ice factory”
Evaluation of bacterial glycerol dialkyl glycerol tetraether and 2H–18O biomarker proxies along a central European topsoil transect
Leaf wax n-alkane patterns and compound-specific δ13C of plants and topsoils from semi-arid and arid Mongolia
Organic-carbon-rich sediments: benthic foraminifera as bio-indicators of depositional environments
Strong correspondence between nitrogen isotope composition of foliage and chlorin across a rainfall gradient: implications for paleo-reconstruction of the nitrogen cycle
Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals
Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations
Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study
Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
Long-chain diols in settling particles in tropical oceans: insights into sources, seasonality and proxies
Multi-trace-element sea surface temperature coral reconstruction for the southern Mozambique Channel reveals teleconnections with the tropical Atlantic
Oxygen isotope composition of the final chamber of planktic foraminifera provides evidence of vertical migration and depth-integrated growth
Mg ∕ Ca and δ18O in living planktic foraminifers from the Caribbean, Gulf of Mexico and Florida Straits
Manganese incorporation in living (stained) benthic foraminiferal shells: a bathymetric and in-sediment study in the Gulf of Lions (NW Mediterranean)
Effects of light and temperature on Mg uptake, growth, and calcification in the proxy climate archive Clathromorphum compactum
A systematic look at chromium isotopes in modern shells – implications for paleo-environmental reconstructions
Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification
Physico-chemical and biological factors influencing dinoflagellate cyst production in the Cariaco Basin
Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi
Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers
Benthic foraminiferal Mn / Ca ratios reflect microhabitat preferences
The effects of environment on Arctica islandica shell formation and architecture
Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)
Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic
The effect of shell secretion rate on Mg / Ca and Sr / Ca ratios in biogenic calcite as observed in a belemnite rostrum
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024, https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Short summary
This study uses novel techniques to look at the microstructure of planktonic foraminifera (single-celled marine organisms) fossils, to further our understanding of how they form their hard exterior shells and how the microstructure and chemistry of these shells can change as a result of processes that occur after deposition on the seafloor. Understanding these processes is of critical importance for using planktonic foraminifera for robust climate and environmental reconstructions of the past.
Josie L. Mottram, Anne M. Gothmann, Maria G. Prokopenko, Austin Cordova, Veronica Rollinson, Katie Dobkowski, and Julie Granger
Biogeosciences, 21, 1071–1091, https://doi.org/10.5194/bg-21-1071-2024, https://doi.org/10.5194/bg-21-1071-2024, 2024
Short summary
Short summary
Knowledge of ancient ocean N cycling can help illuminate past climate change. Using field and lab studies, this work ground-truths a promising proxy for marine N cycling, the N isotope composition of cold-water coral (CWC) skeletons. Our results estimate N turnover in CWC tissue; quantify the isotope effects between CWC tissue, diet, and skeleton; and suggest that CWCs possibly feed mainly on metazoan zooplankton, suggesting that the marine N proxy may be sensitive to the food web structure.
Axelle Gardin, Emmanuelle Pucéat, Géraldine Garcia, Jean-Renaud Boisserie, Adélaïde Euriat, Michael M. Joachimski, Alexis Nutz, Mathieu Schuster, and Olga Otero
Biogeosciences, 21, 437–454, https://doi.org/10.5194/bg-21-437-2024, https://doi.org/10.5194/bg-21-437-2024, 2024
Short summary
Short summary
We introduce a novel approach using stable oxygen isotopes from crocodilian fossil teeth to unravel palaeohydrological changes in past continental contexts. Applying it to the Plio-Pleistocene Ethiopian Shungura Formation, we found a significant increase in δ18O in the last 3 million years, likely due to monsoonal shifts and reduced rainfall, and that the local diversity of waterbodies (lakes, rivers, ponds) became restricted.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Claudia Voigt, Anne Alexandre, Ilja M. Reiter, Jean-Philippe Orts, Christine Vallet-Coulomb, Clément Piel, Jean-Charles Mazur, Julie C. Aleman, Corinne Sonzogni, Helene Miche, and Jérôme Ogée
Biogeosciences, 20, 2161–2187, https://doi.org/10.5194/bg-20-2161-2023, https://doi.org/10.5194/bg-20-2161-2023, 2023
Short summary
Short summary
Data on past relative humidity (RH) ARE needed to improve its representation in Earth system models. A novel isotope parameter (17O-excess) of plant silica has been developed to quantify past RH. Using comprehensive monitoring and novel methods, we show how environmental and plant physiological parameters influence the 17O-excess of plant silica and leaf water, i.e. its source water. The insights gained from this study will help to improve estimates of RH from fossil plant silica deposits.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
Theresa M. King and Brad E. Rosenheim
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-180, https://doi.org/10.5194/bg-2022-180, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Corals can record ocean properties such as temperature in their skeletons. These records are useful for where and when we have no instrumental record like in the distant past. However, coral growth must be understood to interpret these records. Here, we analyze slices of a branching deep sea coral from Antarctica to determine how to best sample these corals for past climate work. We recommend sampling from the innermost portion of coral skeleton for accurate temperature reconstructions.
Pablo Forjanes, María Simonet Roda, Martina Greiner, Erika Griesshaber, Nelson A. Lagos, Sabino Veintemillas-Verdaguer, José Manuel Astilleros, Lurdes Fernández-Díaz, and Wolfgang W. Schmahl
Biogeosciences, 19, 3791–3823, https://doi.org/10.5194/bg-19-3791-2022, https://doi.org/10.5194/bg-19-3791-2022, 2022
Short summary
Short summary
Aragonitic skeletons are employed to decipher past climate dynamics and environmental change. Unfortunately, the information that these skeletons keep can be destroyed during diagenesis. In this work, we study the first changes undergone by aragonitic skeletons upon hydrothermal alteration. We observe that major changes occur from the very beginning of the alteration, even without mineralogical changes. These results have major implications for the use of these archives to understand the past.
Inga Labuhn, Franziska Tell, Ulrich von Grafenstein, Dan Hammarlund, Henning Kuhnert, and Bénédicte Minster
Biogeosciences, 19, 2759–2777, https://doi.org/10.5194/bg-19-2759-2022, https://doi.org/10.5194/bg-19-2759-2022, 2022
Short summary
Short summary
This study presents the isotopic composition of recent biogenic carbonates from several lacustrine species which calcify during different times of the year. The authors demonstrate that when biological offsets are corrected, the dominant cause of differences between species is the seasonal variation in temperature-dependent fractionation of oxygen isotopes. Consequently, such carbonates from lake sediments can provide proxy records of seasonal water temperature changes in the past.
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022, https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Short summary
A 5-year record of long-chain mid-chain diol export flux and composition is presented with a 1- to 3-week resolution sediment trap CBeu (in the NW African upwelling). All environmental parameters as well as the diol composition are dominated by the seasonal cycle, albeit with different phase relations for temperature and upwelling. Most diol-based proxies are dominated by upwelling. The long-chain diol index reflects temperatures of the oligotrophic summer sea surface.
Johannes Hepp, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Mario Tuthorn, Bruno Glaser, Dieter Juchelka, Willibald Stichler, Roland Zech, and Michael Zech
Biogeosciences, 18, 5363–5380, https://doi.org/10.5194/bg-18-5363-2021, https://doi.org/10.5194/bg-18-5363-2021, 2021
Short summary
Short summary
Deriving more quantitative climate information like relative air humidity is one of the key challenges in paleostudies. Often only qualitative reconstructions can be done when single-biomarker-isotope data are derived from a climate archive. However, the coupling of hemicellulose-derived sugar with leaf-wax-derived n-alkane isotope results has the potential to overcome this limitation and allow a quantitative relative air humidity reconstruction.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Martin Tetard, Laetitia Licari, Ekaterina Ovsepyan, Kazuyo Tachikawa, and Luc Beaufort
Biogeosciences, 18, 2827–2841, https://doi.org/10.5194/bg-18-2827-2021, https://doi.org/10.5194/bg-18-2827-2021, 2021
Short summary
Short summary
Oxygen minimum zones are oceanic regions almost devoid of dissolved oxygen and are currently expanding due to global warming. Investigation of their past behaviour will allow better understanding of these areas and better prediction of their future evolution. A new method to estimate past [O2] was developed based on morphometric measurements of benthic foraminifera. This method and two other approaches based on foraminifera assemblages and porosity were calibrated using 45 core tops worldwide.
Maximiliano Rodríguez and Christelle Not
Biogeosciences, 18, 1987–2001, https://doi.org/10.5194/bg-18-1987-2021, https://doi.org/10.5194/bg-18-1987-2021, 2021
Short summary
Short summary
Mg/Ca in calcium carbonate shells of marine organisms such as foraminifera and ostracods has been used as a proxy to reconstruct water temperature. Here we provide new Mg/Ca–temperature calibrations for two shallow marine species of ostracods. We show that the water temperature in spring produces the best calibrations, which suggests the potential use of ostracod shells to reconstruct this parameter at a seasonal scale.
Hongrui Zhang, Chuanlian Liu, Luz María Mejía, and Heather Stoll
Biogeosciences, 18, 1909–1916, https://doi.org/10.5194/bg-18-1909-2021, https://doi.org/10.5194/bg-18-1909-2021, 2021
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Dulcinea V. Groff, David G. Williams, and Jacquelyn L. Gill
Biogeosciences, 17, 4545–4557, https://doi.org/10.5194/bg-17-4545-2020, https://doi.org/10.5194/bg-17-4545-2020, 2020
Short summary
Short summary
Tussock grasses that grow along coastlines of the Falkland Islands are slow to decay and build up thick peat layers over thousands of years. Grass fragments found in ancient peat can be used to reconstruct past climate because grasses can preserve a record of growing conditions in their leaves. We found that modern living tussock grasses in the Falkland Islands reliably record temperature and humidity in their leaves, and the peat they form can be used to understand past climate change.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, Alexandra Villa, Fengming Chang, and Aradhna Tripati
Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020, https://doi.org/10.5194/bg-17-3487-2020, 2020
Short summary
Short summary
Boron isotope ratios (δ11B) of foraminifera are a promising proxy for seawater pH and can be used to constrain pCO2. In this study, we derived calibrations for new foraminiferal taxa which extend the application of the boron isotope proxy. We discuss the origin of different δ11B signatures in species and also discuss the potential of using multispecies δ11B analyses to constrain vertical pH and pCO2 gradients in ancient water columns to shed light on biogeochemical carbon cycling in the past.
Zeynep Erdem, Joachim Schönfeld, Anthony E. Rathburn, Maria-Elena Pérez, Jorge Cardich, and Nicolaas Glock
Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020, https://doi.org/10.5194/bg-17-3165-2020, 2020
Short summary
Short summary
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing, and oxygen minimum zones are expanding together with current climate change. With the aim of understanding past climatic events and their relationship with oxygen content, we looked at the fossils, called benthic foraminifera, preserved in the sediment archives from the Peruvian margin and quantified the bottom-water oxygen content for the last 22 000 years.
Hannah K. Donald, Gavin L. Foster, Nico Fröhberg, George E. A. Swann, Alex J. Poulton, C. Mark Moore, and Matthew P. Humphreys
Biogeosciences, 17, 2825–2837, https://doi.org/10.5194/bg-17-2825-2020, https://doi.org/10.5194/bg-17-2825-2020, 2020
Short summary
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
Eleonora Fossile, Maria Pia Nardelli, Arbia Jouini, Bruno Lansard, Antonio Pusceddu, Davide Moccia, Elisabeth Michel, Olivier Péron, Hélène Howa, and Meryem Mojtahid
Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, https://doi.org/10.5194/bg-17-1933-2020, 2020
Short summary
Short summary
This study focuses on benthic foraminiferal distribution in an Arctic fjord characterised by continuous sea ice production during winter and the consequent cascading of salty and corrosive waters (brine) to the seabed. The inner fjord is dominated by calcareous species (C). In the central deep basins, where brines are persistent, calcareous foraminifera are dissolved and agglutinated (A) dominate. The high A/C ratio is suggested as a proxy for brine persistence and sea ice production.
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Julian Struck, Marcel Bliedtner, Paul Strobel, Jens Schumacher, Enkhtuya Bazarradnaa, and Roland Zech
Biogeosciences, 17, 567–580, https://doi.org/10.5194/bg-17-567-2020, https://doi.org/10.5194/bg-17-567-2020, 2020
Short summary
Short summary
We present leaf wax n-alkanes and their compound-specific (CS) δ13C isotopes from semi-arid and/or arid Mongolia to test their potential for paleoenvironmental reconstructions. Plants and topsoils were analysed and checked for climatic control. Chain-length variations are distinct between grasses and Caragana, which are not biased by climate. However CS δ13C is strongly correlated to climate, so n-alkanes and their CS δ13C show great potential for paleoenvironmental reconstruction in Mongolia.
Elena Lo Giudice Cappelli, Jessica Louise Clarke, Craig Smeaton, Keith Davidson, and William Edward Newns Austin
Biogeosciences, 16, 4183–4199, https://doi.org/10.5194/bg-16-4183-2019, https://doi.org/10.5194/bg-16-4183-2019, 2019
Short summary
Short summary
Fjords are known sinks of organic carbon (OC); however, little is known about the long-term fate of the OC stored in these sediments. The reason for this knowledge gap is the post-depositional degradation of OC. This study uses benthic foraminifera (microorganisms with calcite shells) to discriminate between post-depositional OC degradation and actual OC burial and accumulation in fjordic sediments, as foraminifera would only preserve the latter information in their assemblage composition.
Sara K. E. Goulden, Naohiko Ohkouchi, Katherine H. Freeman, Yoshito Chikaraishi, Nanako O. Ogawa, Hisami Suga, Oliver Chadwick, and Benjamin Z. Houlton
Biogeosciences, 16, 3869–3882, https://doi.org/10.5194/bg-16-3869-2019, https://doi.org/10.5194/bg-16-3869-2019, 2019
Short summary
Short summary
We investigate whether soil organic compounds preserve information about nitrogen availability to plants. We isolate chlorophyll degradation products in leaves, litter, and soil and explore possible species and climate effects on preservation and interpretation. We find that compound-specific nitrogen isotope measurements in soil have potential as a new tool to reconstruct changes in nitrogen cycling on a landscape over time, avoiding issues that have limited other proxies.
Nicolai Schleinkofer, Jacek Raddatz, André Freiwald, David Evans, Lydia Beuck, Andres Rüggeberg, and Volker Liebetrau
Biogeosciences, 16, 3565–3582, https://doi.org/10.5194/bg-16-3565-2019, https://doi.org/10.5194/bg-16-3565-2019, 2019
Short summary
Short summary
In this study we tried to correlate Na / Ca ratios from cold-water corals with environmental parameters such as salinity, temperature and pH. We do not observe a correlation between Na / Ca ratios and seawater salinity, but we do observe a strong correlation with temperature. Na / Ca data from warm-water corals (Porites spp.) and bivalves (Mytilus edulis) support this correlation, indicating that similar controls on the incorporation of sodium exist in these aragonitic organisms.
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Eunmi Park, Jens Hefter, Gerhard Fischer, Morten Hvitfeldt Iversen, Simon Ramondenc, Eva-Maria Nöthig, and Gesine Mollenhauer
Biogeosciences, 16, 2247–2268, https://doi.org/10.5194/bg-16-2247-2019, https://doi.org/10.5194/bg-16-2247-2019, 2019
Short summary
Short summary
We analyzed GDGT-based proxy temperatures in the polar oceans. In the eastern Fram Strait (79° N), the nutrient distribution may determine the depth habit of Thaumarchaeota and thus the proxy temperature. In the Antarctic Polar Front (50° S), the contribution of Euryarchaeota or the nonlinear correlation between the proxy values and temperatures may cause the warm biases of the proxy temperatures relative to SSTs.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Jens Zinke, Juan P. D'Olivo, Christoph J. Gey, Malcolm T. McCulloch, J. Henrich Bruggemann, Janice M. Lough, and Mireille M. M. Guillaume
Biogeosciences, 16, 695–712, https://doi.org/10.5194/bg-16-695-2019, https://doi.org/10.5194/bg-16-695-2019, 2019
Short summary
Short summary
Here we report seasonally resolved sea surface temperature (SST) reconstructions for the southern Mozambique Channel in the SW Indian Ocean, a region located along the thermohaline ocean surface circulation route, based on multi-trace-element temperature proxy records preserved in two Porites sp. coral cores for the past 42 years. Particularly, we show the suitability of both separate and combined Sr / Ca and Li / Mg proxies for improved multielement SST reconstructions.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Shauna Ní Fhlaithearta, Christophe Fontanier, Frans Jorissen, Aurélia Mouret, Adriana Dueñas-Bohórquez, Pierre Anschutz, Mattias B. Fricker, Detlef Günther, Gert J. de Lange, and Gert-Jan Reichart
Biogeosciences, 15, 6315–6328, https://doi.org/10.5194/bg-15-6315-2018, https://doi.org/10.5194/bg-15-6315-2018, 2018
Short summary
Short summary
This study looks at how foraminifera interact with their geochemical environment in the seabed. We focus on the incorporation of the trace metal manganese (Mn), with the aim of developing a tool to reconstruct past pore water profiles. Manganese concentrations in foraminifera are investigated relative to their ecological preferences and geochemical environment. This study demonstrates that Mn in foraminiferal tests is a promising tool to reconstruct oxygen conditions in the seabed.
Siobhan Williams, Walter Adey, Jochen Halfar, Andreas Kronz, Patrick Gagnon, David Bélanger, and Merinda Nash
Biogeosciences, 15, 5745–5759, https://doi.org/10.5194/bg-15-5745-2018, https://doi.org/10.5194/bg-15-5745-2018, 2018
Robert Frei, Cora Paulukat, Sylvie Bruggmann, and Robert M. Klaebe
Biogeosciences, 15, 4905–4922, https://doi.org/10.5194/bg-15-4905-2018, https://doi.org/10.5194/bg-15-4905-2018, 2018
Short summary
Short summary
The reconstruction of paleo-redox conditions of seawater has the potential to link to climatic changes on land and therefore to contribute to our understanding of past climate change. The redox-sensitive chromium isotope system is applied to marine calcifiers in order to characterize isotope offsets that result from vital processes during calcification processes and which can be eventually used in fossil equivalents to reconstruct past seawater compositions.
Thomas M. DeCarlo, Michael Holcomb, and Malcolm T. McCulloch
Biogeosciences, 15, 2819–2834, https://doi.org/10.5194/bg-15-2819-2018, https://doi.org/10.5194/bg-15-2819-2018, 2018
Short summary
Short summary
Understanding the mechanisms of coral calcification is limited by the isolation of the calcifying environment. The boron systematics (B / Ca and δ11B) of aragonite have recently been developed as a proxy for the carbonate chemistry of the calcifying fluid, but a variety of approaches have been utilized. We assess the available experimental B / Ca partitioning data and present a computer code for deriving calcifying fluid carbonate chemistry from the boron systematics of coral skeletons.
Manuel Bringué, Robert C. Thunell, Vera Pospelova, James L. Pinckney, Oscar E. Romero, and Eric J. Tappa
Biogeosciences, 15, 2325–2348, https://doi.org/10.5194/bg-15-2325-2018, https://doi.org/10.5194/bg-15-2325-2018, 2018
Short summary
Short summary
We document 2.5 yr of dinoflagellate cyst production in the Cariaco Basin using a sediment trap record. Each species' production pattern is interpreted in the context of the physico-chemical (e.g., temperature, nutrients) and biological (other planktonic groups) environment. Most species respond positively to upwelling, but seem to be negatively impacted by an El Niño event with a 1-year lag. This work helps understanding dinoflagellate ecology and interpreting fossil assemblages in sediments.
Gabriella M. Weiss, Eva Y. Pfannerstill, Stefan Schouten, Jaap S. Sinninghe Damsté, and Marcel T. J. van der Meer
Biogeosciences, 14, 5693–5704, https://doi.org/10.5194/bg-14-5693-2017, https://doi.org/10.5194/bg-14-5693-2017, 2017
Short summary
Short summary
Algal-derived compounds allow us to make assumptions about environmental conditions in the past. In order to better understand how organisms record environmental conditions, we grew microscopic marine algae at different light intensities, salinities, and alkalinities in a temperature-controlled environment. We determined how these environmental parameters affected specific algal-derived compounds, especially their relative deuterium content, which seems to be mainly affected by salinity.
S. Nemiah Ladd, Nathalie Dubois, and Carsten J. Schubert
Biogeosciences, 14, 3979–3994, https://doi.org/10.5194/bg-14-3979-2017, https://doi.org/10.5194/bg-14-3979-2017, 2017
Short summary
Short summary
Hydrogen isotopes of lipids provide valuable information about microbial activity, climate, and environmental stress. We show that heavy hydrogen in fatty acids declines from spring to summer in a nutrient-rich and a nutrient-poor lake and that the effect is nearly 3 times as big in the former. This effect is likely a combination of increased biomass from algae, warmer temperatures, and higher algal growth rates.
Karoliina A. Koho, Lennart J. de Nooijer, Christophe Fontanier, Takashi Toyofuku, Kazumasa Oguri, Hiroshi Kitazato, and Gert-Jan Reichart
Biogeosciences, 14, 3067–3082, https://doi.org/10.5194/bg-14-3067-2017, https://doi.org/10.5194/bg-14-3067-2017, 2017
Short summary
Short summary
Here we report Mn / Ca ratios in living benthic foraminifera from the NE Japan margin. The results show that the Mn incorporation directly reflects the environment where the foraminifera calcify. Foraminifera that live deeper in sediment, under greater redox stress, generally incorporate more Mn into their carbonate skeletons. As such, foraminifera living close to the Mn reduction zone in sediment appear promising tools for paleoceanographic reconstructions of sedimentary redox conditions.
Stefania Milano, Gernot Nehrke, Alan D. Wanamaker Jr., Irene Ballesta-Artero, Thomas Brey, and Bernd R. Schöne
Biogeosciences, 14, 1577–1591, https://doi.org/10.5194/bg-14-1577-2017, https://doi.org/10.5194/bg-14-1577-2017, 2017
Diana Zúñiga, Celia Santos, María Froján, Emilia Salgueiro, Marta M. Rufino, Francisco De la Granda, Francisco G. Figueiras, Carmen G. Castro, and Fátima Abrantes
Biogeosciences, 14, 1165–1179, https://doi.org/10.5194/bg-14-1165-2017, https://doi.org/10.5194/bg-14-1165-2017, 2017
Short summary
Short summary
Diatoms are one of the most important primary producers in highly productive coastal regions. Their silicified valves are susceptible to escape from the upper water column and be preserved in the sediment record, and thus are frequently used to reconstruct environmental conditions in the past from sediment cores. Here, we assess how water column diatom’s community in the NW Iberian coastal upwelling system is seasonally transferred from the surface to the seafloor sediments.
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
Clemens Vinzenz Ullmann and Philip A. E. Pogge von Strandmann
Biogeosciences, 14, 89–97, https://doi.org/10.5194/bg-14-89-2017, https://doi.org/10.5194/bg-14-89-2017, 2017
Short summary
Short summary
This study documents how much control growth rate has on the chemical composition of fossil shell material. Using a series of chemical analyses of the fossil hard part of a belemnite, an extinct marine predator, a clear connection between the rate of calcite formation and its magnesium and strontium contents was found. These findings provide further insight into biomineralization processes and help better understand chemical signatures of fossils as proxies for palaeoenvironmental conditions.
Cited articles
Aharon, P. and Fu, B.: Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico, Geochim. Cosmochim. Acta, 64, 233–246, 2000.
Aharon, P., and Fu, B.: Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients, Chem. Geol., 195, 201-218, 2003.
Arzayus, K. M. and Canuel, E. A.: Organic matter degradation in sediments of the York River estuary: Effects of biological vs. physical mixing, Geochim. Cosmochim. Acta, 69, 455–463, 2004.
Barrett, S., Volkman, J. K., and Dunstan, G. A.: Sterols of 14 species of marine diatoms (Bacillariophyta), J. Phycol., 31, 360–369, 1995.
Bauer, S., Hitchcock, J. L., and Olson, D. B.: Influence of monsoonally-forced Ekman dynamics upon surface layer depth and plankton biomass distribution in the Arabian Sea, Deep Sea Res., 38, 531–553, 1991.
Biddle, J. F., Lipp, J. S., Lever, M. A., Lloyd, K. G., Sørensen, K. B., Anderson, R., Fredericks, H. F., Elvert, M., Kelly, T. J., Schrag, D. P., Sogin, M. L., Brenchley, J. E., Teske, A., House, C. H., and Hinrichs, K.-U.: Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru, Proc. Nat. Acad. Sci., 103, 3846–3851, 2006.
Bockelmann, F., Zonneveld, K. A. F., and Schmidt, M.: Assessing environmental control on dinoflagellate cyst distribution in surface sediments of the Benguela upwelling region (eastern South Atlantic), Limnol. Oceanogr. 52, 2582–2594, 2007.
Boere, A. C., Abbas, B., Rijpstra, W. I. C., Versteegh, G. J. M., Volkman, J. K., Sinninghe Damsté, J. S., and Coolen, M. J. L.: Late-Holocene succession of dinoflagellates in an Antarctic fjord using a multi-proxy approach: palaeoenvironmental genomics, lipid biomarkers and palynomorphs, Geobiology, 7, 265–281, 2009.
Bohrmann, G., Bahr, A., Brinkmann, F., Brüning, M., Buhmann, S., Diekamp, V., Enneking, K., Fischer, D., Gassner, A., von Halem, G., Huettich, D., Kasten, S., Klapp, S., Nasir, M., Nowald, N., Ochsenhirt, W. T., Pape, T., Ratmeyer, V., Rehage, R., Rethemeyer, J., Reuter, M., Rossel, P., Saleem, M., Schmidt, W., Seiter, C., Stephan, S., Thomanek, K., Wittenberg, N., Yoshinaga, M., and Zonneveld, K.: Report and preliminary results of R/V Meteor cruise M74/3, Fujairah–Malé, 30 October–7 November, 2007, Cold seeps of the Makran subduction zone (Continental margin off Pakistan), Berichte, Fachbereich 5, Universität Bremen, edited by: Bohrmann, G. and Ohling, G., Bremen, Germany, 161 pp., 2008.
Boon, J. J., Rijpstra, W. I. C., de Lange, F., and de Leeuw, J. W.: Black Sea sterol – a molecular fossil for dinoflagellate blooms, Nature, 277, 125–126, 1979.
Brand, T. D. and Griffiths, C.: Seasonality in the hydrography and biogeochemistry across the Pakistan Margin of the NE Arabian Sea, Deep Sea Res. Part II, 56, 283–295, 2009.
Breuer, E. R., Law, G. T. W., Woulds, C., Cowie, G. L., Shimmield, G. B., Peppe, O., Schwartz, M., and McKinlay, S.: Sedimentary oxygen consumption and microdistribution at sites across the Arabian Sea oxygen minimum zone (Pakistan margin), Deep Sea Res. Part II, 56, 296–304, 2009.
Cacho, I., Grimalt, J. O., Sierro, F. J., Shackleton, N., and Canals, M.: Evidence for enhanced Mediterranean thermohaline circulation during rapid climatic coolings, Earth Planet. Sci. Lett., 183, 417–429, 2000.
Calvert, S. E., Pedersen, T. F., Naidu, P. D., and von Stackelburg, U.: On the organic carbon maximum on the continental slope of the eastern Arabian Sea, J. Mar. Res., 53, 279–296, 1995.
Canfield, D. E., Thamdrup, B., and Hansen, J. W.: The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulphate reduction, Geochim. Cosmochim. Acta, 57, 3867–3883, 1993.
Canuel, E. A. and Martens, C. S.: Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface, Geochim. Cosmochim. Acta, 60, 1793–1806, 1996.
Chu, F. L. E., Lund, E. D., Littreal, P. R., Ruck, K. E., and Harvey, E.: Species-specific differences in long-chain n-3 essential fatty acid, sterol, and steroidal ketone production in six heterotrophic protist species, Aquat. Biol., 6, 159–172, 2009.
Combourieu-Nebout, N., Paterne, M., Turon, J. L., and Siani, G.: A high-resolution record of the last deglaciation in the central Mediterranean Sea: Palaeovegetation and palaeohydrological evolution, Quat. Sci. Rev., 17, 303–317, 1998.
Cowie, G. L. and Levin, L. A.: Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea), Deep Sea Res. Part II, 56, 261–270, 2009.
Cowie, G. L., Hedges, J. L., Prahl, F. G., and de Lange, G. J.: Elemental and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect, Geochim. Cosmochim. Acta, 59, 33–46, 1995.
Cowie, G. L., Calvert, S. E., Pedersen, T. F., Schulz, H., and von Rad, U.: Organic content and preservational controls in surficial shelf and slope sediments from the Arabian Sea (Pakistan Margin), Mar. Geol., 161, 23–38, 1999.
Dale, B.: Cyst formation, sedimentation, and preservation: factors affecting dinoflagellate assemblages in recent sediments from Trondheimsfjord, Norway, Rev. Palaeobot. Palynol, 22, 39–60, 1976.
Dale, B. and Fjellså, A.: Dinoflagellate cysts as paleoproductivity indicators: state of the art, potential and limits, in: Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change, edited by: Zahn, R., Pedersen, T. F., Kaminski, M. A., and Labeyrie, L., Springer, Berlin, 521–537, 1994.
de Leeuw, J. W., Rijpstra, W. I. C., and Schenck, P. A.: The occurrence and identification of C30, C31, and C32 alkan-1,15-diols and alkan-15-one-1-ols in Unit I and Unit II Black Sea sediments, Geochim. Cosmochim. Acta, 45, 2281–2285, 1981.
de Leeuw, J. W., Versteegh, G. J. M., and van Bergen, P. F.: Biomacromolecules of algae and plants and their fossil analogues, Plant Ecol., 182, 209–233, 2006.
Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., and Eglinton, G.: Organic geochemical indicators of paleoenvironmental conditions of sedimentation, Nature, 272, 216–222, 1978.
Ding, F., Spiess, V., Fekete, N., Murton, B., Bruening, M., and Bohrmann, G.: Interaction between accretionary thrust faulting and slope sedimentation at the frontal Makran accretionary prism and its implications for hydrocarbon fluid seepage, J. Geophys. Res., 115, B08106, https://doi.org/10.1029/2008JB006246, 2010.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156, 1322–1335, 1967.
Fensome, R. A. and Williams, G. L.: The Lentin and Williams index of fossil dinoflagellates, 2004 Edition, Ameri. Assoc. Strat. Paly., Contributions Series 42, 909 pp., 2004.
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L.: A classification of fossil and living dinoflagellates, Micropaleont. Press Special Paper, 7, 351 pp., 1993.
Ferreira, A. M., Miranda, A., Caetano, M., Baas, M., Vale, C., and Sinninghe Damsté, J. S.: Formation of mid-chain alkane keto-ols by post-depositional oxidation of mid-chain diols in Mediterranean sapropels, Org. Geochem., 32, 271–276, 2001.
Fischer, D., Sahling, H., Nöthen, K., Bohrmann, G., Zabel, M., and Kasten, S.: Interaction between hydrocarbon seepage, chemosynthetic communities and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling, Biogeosci. Discuss., 8, 9763–9811, https://doi.org/10.5194/bgd-8-9763-2011, 2011.
Fukushima, K. and Ishiwatari, R.: Acid and alcohol compositions of wax esters in sediments from different environments, Chem. Geol., 47, 41–56, 1984.
Gélinas, Y., Baldock, J. A., and Hedges, J. I.: Organic carbon composition of marine sediments: effect of oxygen exposure on oil generation potential, Science, 294, 145–148 2001.
Grossi, V., Hirschler, D., Raphel, D., Rontani, J. F., de Leeuw, J. W., and Bertrand, J. C.: Biotransformation pathways of phytol in Recent anoxic sediments, Org. Geochem., 29, 845–861, 1998.
Grossi, V., Blokker, P., and Sinninghe Damsté, J. S.: Anaerobic biodegradation of lipids of the marine microalga Nannochloropsis salina, Org. Geochem., 32, 795–808, 2001.
Harland, R.: Dinoflagellate cysts and acritarchs from the Bearpaw Formation (upper Campanian) of southern Alberta, Canada, Paleontol., 16, 665–706, 1973.
Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature, 391, 572–574, 1998.
Harvey, H. R., Bradshaw, S. A., O'Hara, S. C. M., Eglinton, G., and Corner, E. D. S.: Lipid composition of the marine dinoflagellate Scrippsiella trochoidea, Phytochem., 27, 1723–1729, 1988.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem., 49, 81–115, 1995.
Hedges, J. I., Hu, F. S., Devol, A. H., Hartnett, H. E., Tsamakis, E., and Keil, R. G.: Sedimentary organic matter preservation: a test for selective degradation under oxic conditions, Amer. J. Sci., 299, 529–555, 1999.
Henrichs, S. M.: Early diagenesis of organic matter in marine sediments: progress and perplexity, Mar. Chem., 39, 119-149, 1992.
Ho, S. L., Yamamoto, M., Mollenhauer, G., and Minagawa, M.: Core top TEX86 values in the south and equatorial Pacific, Org. Geochem., 42, 94–99, 2011.
Hoefs, M. J. L., Rijpstra, W. I. C., and Sinninghe Damsté, J. S.: The influence of oxic degradation on the sedimentary biomarker record I: Evidence from Madeira Abyssal Plain turbidites, Geochim. Cosmochim. Acta, 66, 2719–2735, 2002.
Holzwarth, U., Esper, O., and Zonneveld, K.: Distribution of organic-walled dinoflagellate cysts in sediments of the Benguela upwelling system in relationship to environmental conditions, Mar. Micropaleontol., 64, 91–119, 2007.
Hopkins, J. A. and McCarthy, F. M. G.: Post-depositional palynomorph degradation in Quaternary shelf sediments: a laboratory experiment studying the effects of progressive oxidation, Palynol., 26, 167–184, 2002.
Hopmans, E. C., Schouten, S., Pancost, R., van der Meer, M. T. J., and Sinninghe Damsté, J. S.: Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry, Rapid Commun. Mass Spec., 14, 585–589, 2000.
Hudson, E. D., Parrish, C. C., and Helleur, R. J.: Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland), Mar. Chem., 76, 253–270, 2001.
Huguet, C., Schimmelmann, A., Thunell, R., Lourens, L. J., Sinninghe Damsté, J. S., and Schouten, S.: A study of the TEX86 paleothermometer in the water column and sediments of Santa Barbara Basin, California, Paleoceanogr., 22, PA3203, https://doi.org/10.10129/2006PA00131, 2007.
Huguet, C., Kim, J. H., de Lange, G. J., Sinninghe Damsté, J. S., and Schouten, S.: Effects of long term oxic degradation on the U^{K'}37, TEX86 and BIT organic proxies, Org. Geochem., 40, 1188–1194, 2009.
Hulthe, G., Hulth, S., and Hall, P. O. J.: Effect of oxygen on the degradation rate of refractory and labile organic matter in continental margin sediments, Geochim. Cosmochim. Acta, 62, 1319–1328, 1998.
Jetter, R. and Riederer, M.: Long-chain alkanediols, ketoaldehydes, ketoalcohols and ketoalkyl esters in the cuticular waxes of Osmunda regalis fronds, Phytochem., 52, 907–915, 1999.
Jørgensen, B. B.: Mineralisation of organic-matter in the sea-bed – the role of sulphate reduction, Nature, 296, 643–645, 1982.
Jørgensen, B. B., and Kasten, S.: Sulfur cycling and methane oxidation, in: Marine Geochemistry, edited by: Schulz, H. D., and Zabel, M., Springer, Heidelberg, Germany, 263–282, 2006.
Karner, M. B., DeLong, E. F., and Karl, D. M.: Archaeal dominance in the mesopleagic zone of the Pacific Ocean, Nature, 409, 507–509, 2001.
Keil, R. G. and Cowie, G. L.: Organic matter preservation through the oxygen-deficient zone of the NE Arabian Sea as discerned by organic carbon:mineral surface area ratios, Mar. Geol., 161, 13–22, 1999.
Kim, J. H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damsté, J. S.: Global sediment core-top calibration of the TEX86 paleothermometer in the ocean, Geochim. Cosmochim. Acta, 72, 1154–1173, 2008.
Kim, J. H., Huguet, C., Zonneveld, K. A. F., Versteegh, G. J. M., Roeder, W., Sinninghe Damsté, J. S, and Schouten, S.: An experimental field study to test the stability of lipids used for the TEX86 and U^{K}37 palaeothermometers, Geochim. Cosmochim. Acta, 73, 2888–2898, 2009.
Kim, J. H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.: New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions, Geochim. Cosmochim. Acta, 74, 4639–4654, 2010.
Kodrans-Nsiah, M., de Lange, G. J., and Zonneveld, K. A. F.: A natural exposure experiment on short-term species-selective aerobic degradation of dinoflagellate cysts, Rev. Palaeobot. Palynol., 152, 32–39, 2008.
Kokinos, J. P., Eglinton, T. I., Goñi, M. A., Boon, J. J., Martoglio, P. A., and Anderson, D. M.: Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate resting cyst, Org. Geochem., 28, 265–288, 1998.
Leblond, J. D., and Chapman, P. J.: A survey of the sterol composition of the marine dinoflagellates Karenia brevis, Karenia mikimotoi, and Karlodinium micrum: distribution of sterols within other members of the class Dinophyceae, J. Phycol., 38, 670–682, 2002.
Leider, A., Hinrichs, K.-U., Mollenhauer, G., and Versteegh, G. J. M.: Core-top calibration of the lipid based U^{K{'}}37 and TEX86 temperature proxies on the southern Italian shelf (SW Adriatic Sea, Gulf of Taranto), Earth Planet. Sci. Lett., 300, 112–124, 2010.
Lipp, J., Morono, Y., Inagaki, F., and Hinrichs, K.-U.: Significant contribution of Archaea to extant biomass in marine subsurface sediments, Nature, 454, 991–994, 2008.
Liu, X., Lipp, J. S., and Hinrichs, K.-.U.: Distribution of intact and core GDGTs in marine sediments, Org. Geochem., 42, 368–375, 2011.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Volume 1: Temperature, edited by: Levitus, S., NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, DC, USA, 184 pp., 2010.
Lückge, A., Ercegovac, M., Strauss, H., and Littke, R.: Early diagenetic alteration of organic matter by sulfate reduction in Quaternary sediments from the northeastern Arabian Sea, Mar. Geol., 158, 1–13, 1999.
Madhupratap, M., Prasanna Kumar, S., Bhattathiri, P. M. A., Dileep Kumar, M., Raghukumar, S., Nair, K. K. C., and Ramaiah, N.: Mechanism of the biological response to winter cooling in the northeastern Arabian Sea, Nature, 384, 549–552, 1996.
Marret, F. and Scourse, J.: Control of modern dinoflagellate cyst distribution in the Irish and Celtic seas by seasonal stratification dynamics. Mar. Micropaleontol., 47, 101–116, 2002.
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F.: Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin, Science, 317, 502–507, 2007.
Matsuoka, K., Kawami, H., Nagai, S., Iwataki, M., and Takayama, H.: Re-examination of cyst motile relationships of Polykrikos kofoidii Chatton and Polykrikos schwartzii Bütschli (Gymnodiniales, Dinophyceae), Rev. Palaeobot. Palynol., 154, 79–90, 2009.
McCaffrey, M. A., Farrington, J. W., and Repeta, D. J.: The organic geochemistry of Peru margin surface sediments: II. Paleoenvironmental implications of hydrocarbon and alcohol profiles, Geochim. Cosmochim. Acta, 55, 483–498, 1991.
McCarthy, F. M. G., Gostlin, K. E., Mudie, P. J., and Scott, D. B.: Synchronous palynological changes in early Pleistocene sediments off New Jersey and Iberia, and a possible paleoceanographic explanation, Palynol., 24, 63–77, 2000.
Méjanelle, L., Sanchez-Gargallo, A., Bentaleb, I., and Grimalt, J.: Long chain n-alkyl diols, hydroxy ketones and sterols in a marine eustigmatophyte, Nannochloropsis gaditana, and in Brachionus plicatilis feeding on the algae, Org. Geochem., 34, 527–538, 2003.
Menzel, D., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 239, 1–15, 2006.
Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J. S., and Eglinton, T. I.: Aging of marine organic matter during cross-shelf lateral transport in the Benguela upwelling system revealed by compound-specific radiocarbon dating, Geochem. Geophys. Geosys., 8, Q09004, https://doi.org/10.1029/2007GC001603, 2007.
Mollenhauer, G., Eglinton, T. I., Hopmans, E. C., and Sinninghe Damsté, J. S.: A radiocarbon-based assessment of the preservation characteristics of crenarchaeol and alkenones from continental margin sediments, Org. Geochem., 39, 1039–1045, 2008.
Mouradian, M., Panetta, R. J., de Vernal, A., and Gélinas, Y.: Dinosterols or dinocysts to estimate dinoflagellate contributions to marine sedimentary organic matter? Limnol. Oceanogr., 52, 2569–2581, 2007.
Mudie, P. J. and Rochon, A.: Distribution of dinoflagellate cysts in the Canadian Arctic marine realm. J. Quaternary Sci., 16, 603–620, 2001.
Nishimura, M. and Koyama, T.: The occurrence of stanols in various living organisms and the behavior of sterols in contemporary sediments, Geochim. Cosmochim. Acta, 41, 379–385, 1977.
Olson, D. B., Hitchcock, G. L., Fine, R. A., and Warren, B. A.: Maintenance of the low-oxygen layer in the central Arabian Sea, Deep Sea Res. Part II, 40, 673–685, 1993.
Pancost, R. D., Hopmans, E. C., Sinninghe Damsté, J. S., and MEDINAUT Shipboard Scientific Party: Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation, Geochim. Cosmochim. Acta, 65, 1611–1627, 2001.
Paropkari, A. L., Prakash Babu, C., and Mascarenhas, A.: A critical evaluation of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments, Mar. Geol., 107, 213–226, 1992.
Paropkari, A. L., Prakash Babu, C., and Mascarenhas, A.: New evidence for enhanced preservation of organic carbon in contact with oxygen minimum zone on the western continental slope of India, Mar. Geol., 111, 7–13, 1993.
Pedersen, T. F., Shimmield, G. B., and Price, N. B.: Lack of enhanced preservation of organic matter in sediments under the oxygen minimum zone on the Oman Margin, Geochim. Cosmochim. Acta, 56, 545–551, 1992.
Pinturier-Geiss, L., Méjanelle, L., Dale, B., and Karlsen, D. A.: Lipids as indicators of eutrophication in marine coastal sediments. J. Microbiol. Methods, 48, 239–257, 2002.
Prahl, F. G., Dymond, J., and Sparrow, M. A.: Annual biomarker record for export production in the central Arabian Sea, Deep Sea Res. Part II, 47, 1581–1604, 2000.
Prasana Kumar, S., Ramaiah, N., Mangesh, G., Sarma, V. V. S. S., Muraleedharan, P. M., Raghukumar, S., Dileep Kumar, M., and Madhupratap, M.: Physical forcing of biological productivity in the Northern Arabian Sea during the Northeast Monsoon, Deep Sea Res. Part II, 48, 1115–1126, 2001.
Qasim, S. Z.: Oceanography of the northern Arabian Sea, Deep Sea Res., 29, 1041–1068, 1982.
Reichart, G. J. and Brinkhuis, H.: Late Quaternary Protoperidinium cysts as indicators of paleoproductivity in the northern Arabian Sea, Mar. Micropaleontol., 49, 303–315, 2003.
Roberts, H. H., and Carney, R. S.: Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope, Econ. Geol., 92, 863–879, 1997.
Robinson, N., Eglinton, G., Brassell, S. C., and Cranwell, P.: Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols, Nature, 308, 439–442, 1984.
Rontani, J. F. and Volkman, J. K.: Phytol degradation products as biogeochemical tracers in aquatic environments, Org. Geochem., 34, 1–35, 2003.
Rontani, J. F. and Bonin, P.: Production of pristane and phytane in the marine environment: role of prokaryotes, Res. Microbiol., 162, 923–933, 2011.
Rontani, J. F., Nassiry, M., Michotey, V., Guasco, S., and Bonin, P.: Formation of pristane from a-tocopherol under simulated anoxic sedimentary conditions: A combination of biotic and abiotic degradative processes, Geochim. Cosmochim. Acta, 74, 252–263, 2010.
Rowland, S. J.: Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria, Org. Geochem., 15, 9–16, 1990.
Saager, P. M., de Baar, H. J. W., and Burkill, P. H.: Manganese and iron in Indian Ocean waters, Geochim. Cosmochim. Acta, 53, 2259–2267, 1989.
Sangiorgi, F., Fabbri, D., Comandini, M., Gabbianelli, G., Tagliavini, E.: The distribution of sterols and organic-walled dinoflagellate cysts in surface sediments of the North-western Adriatic Sea (Italy), Estuar. Coast. Shelf Sci., 64, 395–406, 2005.
Schenau, S. J., Reichart, G. J., and de Lange, G. J.: Oxygen minimum zone controlled Mn redistribution in Arabian Sea sediments during the Late Quaternary, Paleoceanogr., 17, 1058, https://doi.org/10.1029/2000PA000621, 2002.
Schouten, S., Hopmans, E. C., Schefu{ß}, E., and Sinninghe Damsté, J. S.: Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett., 204, 265–274, 2002.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry, Org. Geochem., 35, 567–571, 2004.
Schouten, S., Forster, A., Panato, E., and Sinninghe Damsté, J. S.: Towards the calibration of the TEX86 paleothermometer in ancient greenhouse worlds, Org. Geochem., 38, 1537–1546, 2007.
Schulte, S., Mangelsdorf, K., and Rullkötter, J.: Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry, Org. Geochem., 31, 1005–1022, 2000.
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., and Kölling, M.: Rhizon sampling of pore waters near the sediment-water interface of aquatic systems, Limnol. Oceanogr. Methods, 3, 361–371, 2005.
Shah, S. R., Mollenhauer, G., Ohkouchi, N., Eglinton, T. I., and Pearson, A.: Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis, Geochim. Cosmochim. Acta, 72, 4577-4594, 2008.
Shapiro, G. I. and Meschanov, S. L.: Distribution of Red Sea Water and salt lens formation in the northwest Indian Ocean, Deep Sea Res., 38, 21–34, 1991.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., and Reichart, G. J.: The influence of oxic degradation on the sedimentary biomarker record II. Evidence from Arabian Sea sediments, Geochim. Cosmochim. Acta, 66, 2737–2754, 2002.
Smallwood, B. J. and Wolff, G. A.: Molecular characterisation of organic matter in sediments underlying the oxygen minimum zone at the Oman Margin, Arabian Sea, Deep Sea Res. Part II, 47, 353–375, 2000.
Suess, E., Carson, B., Ritger, S. D., Moore, J. C., Jones, M. L., Kulm, L. D., and Cochrane, G. R.: Biological communities at vent sites along the subduction zone off Oregon, Biol. Soc. Wash. Bull., 6, 475–484, 1985.
Sun, M. Y. and Wakeham, S. G.: Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea Basin, Geochim. Cosmochim. Acta, 58, 3395–3406, 1994.
Sun, M. Y. and Wakeham, S. G.: A study of oxic/anoxic effects of degradation of sterols at the simulated sediment-water interface of coastal sediments, Org. Geochem., 28, 773–784, 1998.
Sun, M. Y., Wakeham, S. G., Aller, R. C., and Lee, C.: Impact of seasonal hypoxia on diagenesis of phytol and its derivatives in Long Island Sound, Mar. Chem., 62, 157–173, 1998.
van der Weijden, C. H., Reichert, G. J., and Visser, H. J.: Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea, Deep Sea Res. Part II, 46, 807–830, 1999.
van der Weijden, C. H., Reichart, G. J., and van Os, B. J. H.: Sedimentary trace element records over the last 200 kyr from within and below the northern Arabian Sea oxygen minimum zone, Mar. Geol., 231, 69–88, 2006.
Versteegh, G. J. M. and Zonneveld, K. A. F.: Use of selective degradation to separate preservation from productivity, Geology, 30, 615–618, 2002.
Versteegh, G. J. M., Bosch, H. J., and de Leeuw, J. W.: Potential palaeoenvironmental information from C24 to C36 mid-chain diols, keto-ols, and mid-chain hydroxyl fatty acids: a critical review, Org. Geochem., 27, 1–13, 1997.
Versteegh, G. J. M., Jansen, J. H. F., and Schneider, R. R.: Mid-chain diols and keto-ols in SE Atlantic sediments: a new tool for tracing past sea surface water masses? Geochim. Cosmochim. Acta, 64, 1879–1892, 2000.
Versteegh, G. J. M., Zonneveld, K. A. F., and de Lange, G. J.: Selective aerobic and anaerobic degradation of lipids and palynomorphs in the Eastern Mediterranean since the onset of sapropel S1 deposition, Mar. Geol., 278, 177–192, 2010.
Versteegh, G. J. M., Blokker, P., Bogus, K., Harding, I., Lewis, J., Oltmanns, S., Rochon, A., and Zonneveld, K. A. F.: Infra red spectroscopy, flash pyrolysis, thermally assisted hydrolysis and methylation (THM) in the presence of tetramethylammonium hydroxide (TMAH) of cultured and sediment-derived Lingulodinium polyedrum (Dinoflagellata) cyst walls, Org. Gechem., 43, 92–102, 2012.
Volkman, J. K., and Maxwell, J. R.: Acyclic isoprenoids as biological markers, edited by: Johns, R.B., in: Biological Markers in the Sedimentary Record, Elsevier, Amsterdam, 1–46, 1986.
Volkmann, J. K., Barrett, S. M., Dunstan, G. A., and Jeffrey, S. W.: Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom, Org. Geochem., 20, 7–15, 1993.
Volkmann, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L., and Gelin, F.: Microalgal biomarkers: a review of recent research developments, Org. Geochem., 29, 1163–1179, 1998.
Volkman, J. K., Rijpstra, W. I. C., de Leeuw, J. W., Mansour, M. P., Jackson, A. E., and Blackburn, S. I.: Sterols of four dinoflagellates from the genus Prorocentrum, Phytochem., 52, 659–668, 1999.
von Rad, U., Schulz, H., Ali Khan, A., Ansari, M., Berner, U., Cepek, P., Cowie, G., Dietrich, P., Erlenkeuser, H., Geyh, M., Jennerjahn, T., Lückge, A., Marchig, V., Riech, V., Rösch, H., Schäfer, P., Schulte, S., Sirocko, F., Tahir, M., and Weiss, M.: Sampling the oxygen minimum zone off Pakistan: glacial-interglacial variations of anoxia and productivity (preliminary results, SONNE 90 cruise), Mar. Geol., 125, 7–19, 1995.
von Rad, U., Rösch, H., Berner, U., Geyh, M., Marchig, V., and Schulz, H.: Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan, Mar. Geol., 136, 55–77, 1996.
von Rad, U., Schaaf, M., Michels, K. H., Schulz, H., Berger, W. H., and Sirocko, F.: A 5000-yr record of climate change in varied sediments from the oxygen minimum zone off Pakistan, Northeastern Arabian Sea, Quaternary Res., 51, 39–53, 1999.
Wakeham, S. G.: Reduction of stenols to stanols in particulate matter at oxic-anoxic boundaries in seawater, Nature, 342, 787–790, 1989.
Wakeham, S. G., Peterson, M. L., Hedges, J. I., and Lee, C.: Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean, Deep Sea Res. Part II, 49, 2265–2301, 2002.
Westerhausen, L., Poynter, J., Eglinton, G., Erlenkeuser, H., and Sarnthein, M.: Marine and terrigenous origin of organic matter in modern sediments of the equatorial East Atlantic: the $\partial $13C and molecular record, Deep Sea Res. Part I, 40, 1087–1121, 1993.
Witte, U. and Pfannkuche, O.: High rates of benthic carbon remineralisation in the abyssal Arabian Sea, Deep Sea Res. Part II, 47, 2785–2804, 2000.
Wuchter, C., Schouten, S., Coolen, M. J. L., and Sinninghe Damsté, J. S.: Temperature-dependent variations in the distribution of tetraether membrane lipids of marine Crenarchaeota: implications for TEX86 paleothermometry, Paleoceanogr. 19, PA4028, https://doi.org/10.1029/2004PA001041, 2004.
Wuchter, C., Schouten, S., Wakeham, S. G., and Sinninghe Damsté, J. S.: Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: implications for TEX86 paleothermometry, Paleoceanogr., 20, PA3013, https://doi.org/10.1029/2004PA001110, 2005.
Wuchter, C., Schouten, S., Wakeham, S. G., and Sinninghe Damsté, J. S.: Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: implications for TEX86 paleothermometry. Paleoceanogr. 21, PA4208, https://doi.org/10.1029/2006PA001279, 2006.
Wyrtki, K.: Physical oceanography of the Indian Ocean, In: Zeitschel, B., (Ed.), The Biology of the Indian Ocean, Springer, Berlin, 18–36, 1973.
Yamamoto, M., Okino, T., Sugisaki, S., and Sakamoto, T.: Late Pleistocene changes in terrestrial biomarkers in sediments from the central Arctic Ocean, Org. Geochem., 39, 754–763, 2008.
Zhang, Y. G., Zhang, C. L., Liu, X-L., Li, L., Hinrichs, K.-U., and Noakes, J. E.: Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates, Earth Planet. Sci. Lett., 307, 525–534, 2011.
Zonneveld, K. A. F., Versteegh, G. J. M., and de Lange, G. J.: Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: a 10,000 year natural experiment, Mar. Micropaleontol., 29, 393–405, 1997.
Zonneveld, K. A. F., Versteegh, G. J. M., and de Lange, G. J.: Palaeoproductivity and post depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean S1 sapropel, Mar. Geol., 172, 181–195, 2001.
Zonneveld, K. A. F., Bockelmann, F., and Holzwarth, U.: Selective preservation of organic-walled dinoflagellate cysts as a tool to quantify past net primary production and bottom water oxygen concentrations, Mar. Geol., 237, 109–126, 2007.
Zonneveld, K. A. F., Versteegh, G. J. M., and Kodrans-Nsiah, M.: Preservation and organic chemistry of Late Cenozoic organic-walled dinoflagellate cysts: A review, Mar. Micropaleontol., 68, 179–197, 2008.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and Wakeham, S. G.: Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record, Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Altmetrics
Final-revised paper
Preprint