Articles | Volume 10, issue 3
Biogeosciences, 10, 1869–1876, 2013
https://doi.org/10.5194/bg-10-1869-2013
Biogeosciences, 10, 1869–1876, 2013
https://doi.org/10.5194/bg-10-1869-2013

Research article 19 Mar 2013

Research article | 19 Mar 2013

The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

M. L. Kirwan et al.

Related authors

Biogeochemical and plant trait mechanisms drive enhanced methane emissions in response to whole-ecosystem warming
Genevieve L. Noyce and J. Patrick Megonigal
Biogeosciences, 18, 2449–2463, https://doi.org/10.5194/bg-18-2449-2021,https://doi.org/10.5194/bg-18-2449-2021, 2021
Short summary
Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest
Stephanie C. Pennington, Nate G. McDowell, J. Patrick Megonigal, James C. Stegen, and Ben Bond-Lamberty
Biogeosciences, 17, 771–780, https://doi.org/10.5194/bg-17-771-2020,https://doi.org/10.5194/bg-17-771-2020, 2020
Short summary
Temperature sensitivity of organic-matter decay in tidal marshes
M. L. Kirwan, G. R. Guntenspergen, and J. A. Langley
Biogeosciences, 11, 4801–4808, https://doi.org/10.5194/bg-11-4801-2014,https://doi.org/10.5194/bg-11-4801-2014, 2014

Related subject area

Biogeochemistry: Wetlands
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021,https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
High-resolution induced polarization imaging of biogeochemical carbon-turnover hot spots in a peatland
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-438,https://doi.org/10.5194/bg-2020-438, 2021
Revised manuscript accepted for BG
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Lianlian Zhu, Zhengmiao Deng, Yonghong Xie, Xu Li, Feng Li, Xinsheng Chen, Yeai Zou, Chengyi Zhang, and Wei Wang
Biogeosciences, 18, 1–11, https://doi.org/10.5194/bg-18-1-2021,https://doi.org/10.5194/bg-18-1-2021, 2021
Short summary
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020,https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020,https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary

Cited articles

Blum, L. K.: Spartina-Alterniflora Root Dynamics in a Virginia Marsh, Mar. Ecol.-Prog. Ser., 102, 169–178, 1993.
Blum L. K. and Christian, R. R.: Belowground production and decomposition along a tidal gradient in a Virginia salt marsh, in: The Ecogeomorphology of Tidal Marshes, edited by: Fagherazzi, S., Marani, M., and Blum, L. K., American Geophysical Union, Washington DC, 2004.
Bragazza L., Buttler, A., Habermacher, J., Brancaleoni, L., Gerdol, R., Fritze, H., Hanajik, P., Laiho R., and Johnson, D.: High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation, Global Change Biol., 18, 1163–1172, 2012.
Brinson, M. M.: Decomposition and nutrient exchange of litter in an alluvial swamp forest, Ecology, 58, 601–609, 1997.
Broder, T., Blodau, C., Biester, H., and Knorr, K. H.: Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia, Biogeosciences, 9, 1479–1491, https://doi.org/10.5194/bg-9-1479-2012, 2012.
Download
Altmetrics
Final-revised paper
Preprint