Articles | Volume 10, issue 6
https://doi.org/10.5194/bg-10-4341-2013
https://doi.org/10.5194/bg-10-4341-2013
Research article
 | 
27 Jun 2013
Research article |  | 27 Jun 2013

A model for variable phytoplankton stoichiometry based on cell protein regulation

J. A. Bonachela, S. D. Allison, A. C. Martiny, and S. A. Levin

Related authors

Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
A Bayesian approach to evaluation of soil biogeochemical models
Hua W. Xie, Adriana L. Romero-Olivares, Michele Guindani, and Steven D. Allison
Biogeosciences, 17, 4043–4057, https://doi.org/10.5194/bg-17-4043-2020,https://doi.org/10.5194/bg-17-4043-2020, 2020
Short summary
Changes in soil organic carbon storage predicted by Earth system models during the 21st century
K. E. O. Todd-Brown, J. T. Randerson, F. Hopkins, V. Arora, T. Hajima, C. Jones, E. Shevliakova, J. Tjiputra, E. Volodin, T. Wu, Q. Zhang, and S. D. Allison
Biogeosciences, 11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014,https://doi.org/10.5194/bg-11-2341-2014, 2014
Phosphate supply explains variation in nucleic acid allocation but not C : P stoichiometry in the western North Atlantic
A. E. Zimmerman, A. C. Martiny, M. W. Lomas, and S. D. Allison
Biogeosciences, 11, 1599–1611, https://doi.org/10.5194/bg-11-1599-2014,https://doi.org/10.5194/bg-11-1599-2014, 2014
Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
K. E. O. Todd-Brown, J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison
Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013,https://doi.org/10.5194/bg-10-1717-2013, 2013

Related subject area

Biogeochemistry: Modelling, Aquatic
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024,https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024,https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary
Validation of the coupled physical–biogeochemical ocean model NEMO–SCOBI for the North Sea–Baltic Sea system
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024,https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Investigating ecosystem connections in the shelf sea environment using complex networks
Ieuan Higgs, Jozef Skákala, Ross Bannister, Alberto Carrassi, and Stefano Ciavatta
Biogeosciences, 21, 731–746, https://doi.org/10.5194/bg-21-731-2024,https://doi.org/10.5194/bg-21-731-2024, 2024
Short summary
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
EGUsphere, https://doi.org/10.5194/egusphere-2024-123,https://doi.org/10.5194/egusphere-2024-123, 2024
Short summary

Cited articles

Ågren, G. I.: The \chemC:N:P stoichiometry of autotrophs – theory and observations, Ecol. Lett., 7, 185–191, 2004.
Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC Press, Boca Raton, FL, 2007.
Aksnes, D. L. and Egge, J. K.: A theoretical model for nutrient uptake in phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, 1991.
Armstrong, R. A.: Nutrient uptake rate as a function of cell size and surface transporter density: a Michaelis-like approximation to the model of Pasciak and Gavis, Deep-Sea Res. Pt. I, 55, 1311–1317, 2008.
Bonachela, J. A., Raghib, M., and Levin, S. A.: Dynamic model of flexible phytoplankton nutrient uptake, Proc. Natl. Acad. Sci. USA, 108, 20633–20638, 2011.
Download
Altmetrics
Final-revised paper
Preprint