Articles | Volume 10, issue 8
https://doi.org/10.5194/bg-10-5481-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-5481-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Cesium, iodine and tritium in NW Pacific waters – a comparison of the Fukushima impact with global fallout
P. P. Povinec
Centre for Nuclear and Accelerator Technologies (CENTA), Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
M. Aoyama
Department of Geochemistry, Meteorological Research Institute, Tsukuba, Japan
D. Biddulph
NSF Arizona AMS Laboratory, University of Arizona, Tucson, Arizona 85721, USA
R. Breier
Centre for Nuclear and Accelerator Technologies (CENTA), Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
K. Buesseler
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
C. C. Chang
NSF Arizona AMS Laboratory, University of Arizona, Tucson, Arizona 85721, USA
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
R. Golser
VERA Laboratory, Faculty of Physics, University of Vienna, Vienna, Austria
X. L. Hou
Center for Nuclear Technology, Technical University of Denmark, Risø, Roskilde, Denmark
M. Ješkovský
Centre for Nuclear and Accelerator Technologies (CENTA), Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
A. J. T. Jull
NSF Arizona AMS Laboratory, University of Arizona, Tucson, Arizona 85721, USA
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
Institute for Nuclear Research (ATOMKI), 4026 Debrecen, Hungary
J. Kaizer
Centre for Nuclear and Accelerator Technologies (CENTA), Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
M. Nakano
Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan
H. Nies
Environment Laboratories, International Atomic Energy Agency, Monte Carlo 9800, Monaco
L. Palcsu
Institute for Nuclear Research (ATOMKI), 4026 Debrecen, Hungary
L. Papp
Institute for Nuclear Research (ATOMKI), 4026 Debrecen, Hungary
M. K. Pham
Environment Laboratories, International Atomic Energy Agency, Monte Carlo 9800, Monaco
P. Steier
VERA Laboratory, Faculty of Physics, University of Vienna, Vienna, Austria
L. Y. Zhang
Center for Nuclear Technology, Technical University of Denmark, Risø, Roskilde, Denmark
Related authors
No articles found.
Brandon Stephens, Montserrat Roca-Martí, Amy Maas, Vinícius Amaral, Samantha Clevenger, Shawnee Traylor, Claudia Benitez-Nelson, Philip Boyd, Ken Buesseler, Craig Carlson, Nicolas Cassar, Margaret Estapa, Andrea Fassbender, Yibin Huang, Phoebe Lam, Olivier Marchal, Susanne Menden-Deuer, Nicola Paul, Alyson Santoro, David Siegel, and David Nicholson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2251, https://doi.org/10.5194/egusphere-2024-2251, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study combines new and previously published measurements of organic carbon supply and demand collected in August 2018 for the MZ in the subarctic North Pacific Ocean. Supply was insufficient to meet demand in August, but supply entering into the MZ in the spring of 2018 could have met the August demand. Results suggest observations over seasonal time scales may help to close MZ carbon budgets.
Yayoi Inomata and Michio Aoyama
Earth Syst. Sci. Data, 15, 1969–2007, https://doi.org/10.5194/essd-15-1969-2023, https://doi.org/10.5194/essd-15-1969-2023, 2023
Short summary
Short summary
The behavior of 137Cs in surface seawater in the global ocean was analyzed by using the HAMGlobal2021 database. Approximately 32 % of 137Cs existed in the surface seawater in 1970. The 137Cs released into the North Pacific Ocean by large-scale nuclear weapons tests was transported to the Indian Ocean and then the Atlantic Ocean on a 4–5 decadal timescale, whereas 137Cs released from nuclear reprocessing plants was transported northward to the Arctic Ocean on a decadal scale.
Elena Ceballos-Romero, Ken O. Buesseler, and María Villa-Alfageme
Earth Syst. Sci. Data, 14, 2639–2679, https://doi.org/10.5194/essd-14-2639-2022, https://doi.org/10.5194/essd-14-2639-2022, 2022
Short summary
Short summary
Thorium-234 is widely used for studying the removal rate of material on sinking particles from the upper ocean and for determining the downward flux of carbon. In this study, we present a compilation of the 50 years of 234Th measurements in the ocean and provide a broad overview of the character of the datasets. This provides a valuable resource useful to better understand and quantify how the contemporary oceanic carbon uptake functions and how it will change in future.
Daniel Glückman, Karin Hain, Claudia Joseph, Volker Metz, Francesca Quinto, Peter Steier, and Horst Geckeis
Saf. Nucl. Waste Disposal, 1, 153–154, https://doi.org/10.5194/sand-1-153-2021, https://doi.org/10.5194/sand-1-153-2021, 2021
Michio Aoyama, Sabine Charmasson, Yasunori Hamajima, Celine Duffa, Daisuke Tsumune, and Yutaka Tateda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-10, https://doi.org/10.5194/bg-2021-10, 2021
Manuscript not accepted for further review
Short summary
Short summary
Results of observations of the 3H activity concentrations at Fukushima coast showed the large effect of 3H flux through the rivers to coastal waters. The 3H activity concentration close to Fukushima accident site was significantly high compared to the 3H activity concentration in surrounding waters both north and south of the FNPP1 site and in river waters. The 3H/137Cs activity ratios in coastal waters were 1.2–2.2, which is significantly high compared to that observed just after the accident.
Michio Aoyama, Sabine Charmasson, Yasunori Hamajima, and Celine Duffa
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-491, https://doi.org/10.5194/bg-2020-491, 2021
Manuscript not accepted for further review
Short summary
Short summary
Our results showed that the dissolved radiocaesium activities were generally higher at coastal sites and decreased with distance from shore. The portion of particulate 137Cs to the total 137Cs ranged from 0.13 to 0.96.
The ratio of 137Cs to 134Cs activity in organic particles did not change with distance from shore and generally remained around 1.
The 137Cs / 134Cs activity ratio in seawater was estimated to be 1.074 ± 0.015 which was in good agreement with the ratio of 1.06 in core unit 1.
Zoltán Kern, Dániel Erdélyi, Polona Vreča, Ines Krajcar Bronić, István Fórizs, Tjaša Kanduč, Marko Štrok, László Palcsu, Miklós Süveges, György Czuppon, Balázs Kohán, and István Gábor Hatvani
Earth Syst. Sci. Data, 12, 2061–2073, https://doi.org/10.5194/essd-12-2061-2020, https://doi.org/10.5194/essd-12-2061-2020, 2020
Short summary
Short summary
Here we present the spatially continuous gridded database for amount-weighted annual mean tritium activity in precipitation for the period 1976 to 2017 for the Adriatic–Pannonian region, with a special focus on the years after 2010, which are not represented by existing global models. This AP3H database is capable of providing reliable spatiotemporal input for hydrogeological applications at any place within Slovenia, Hungary, and their surroundings.
Luyuan Zhang, Xiaolin Hou, Sheng Xu, Tian Feng, Peng Cheng, Yunchong Fu, and Ning Chen
Atmos. Chem. Phys., 20, 2623–2635, https://doi.org/10.5194/acp-20-2623-2020, https://doi.org/10.5194/acp-20-2623-2020, 2020
Short summary
Short summary
To trace the long-range transport of air pollutants and understand the atmospheric effect of iodine, the daily-resolution temporal variations of 129I and 127I in aerosols from a monsoonal city indicate the East Asian monsoon and fossil fuel combustion plays crucial roles on transport of 129I from Europe to East Asia and on elevated 127I concentrations. Through linking iodine isotopes with five major air pollutants, this study proposes the possible role of iodine in urban air pollution.
Michio Aoyama
Earth Syst. Sci. Data, 12, 487–499, https://doi.org/10.5194/essd-12-487-2020, https://doi.org/10.5194/essd-12-487-2020, 2020
Short summary
Short summary
A global nutrient gridded dataset that might be the basis for studies of more accurate spatial distributions of nutrients and their changes in the global ocean was created. This is an SI-traceable dataset of nitrate, phosphate, and silicate concentrations based on certified reference materials or reference materials (CRMs/RMs) of seawater nutrient concentration measurements used during many cruises by the author.
Yayoi Inomata, Michio Aoyama, Yasunori Hamajima, and Masatoshi Yamada
Ocean Sci., 14, 813–826, https://doi.org/10.5194/os-14-813-2018, https://doi.org/10.5194/os-14-813-2018, 2018
Short summary
Short summary
Analysing increased 137Cs and 134Cs / 137Cs ratio derived from the Fukushima Nuclear Power Plant accident in the Sea of Japan and its marginal sea, we found a rapid transport process associated with subduction in the subtropical mode water (STMW) formation region and obduction in the north East China Sea. The integrated amount of FNPP1 137Cs entering the Sea of Japan until 2016 was estimated to be 0.21 ± 0.03 PBq, which corresponds to 5.1 (3.4–8.0) % of the total amount of FNPP1 137Cs in the STMW.
Shigeto Nishino, Takashi Kikuchi, Amane Fujiwara, Toru Hirawake, and Michio Aoyama
Biogeosciences, 13, 2563–2578, https://doi.org/10.5194/bg-13-2563-2016, https://doi.org/10.5194/bg-13-2563-2016, 2016
Short summary
Short summary
We analysed mooring and ship-based data obtained from a biological hotspot in the southern Chukchi Sea. Mooring data were collected for the first time in this site and were captured during spring and autumn blooms with high chlorophyll a concentrations. The data suggest that a dome-like structure of the bottom water and nutrient regeneration at the bottom play important roles in maintaining the autumn bloom of the biological hotspot.
Luyuan Zhang, Xiaolin Hou, and Sheng Xu
Atmos. Chem. Phys., 16, 1971–1985, https://doi.org/10.5194/acp-16-1971-2016, https://doi.org/10.5194/acp-16-1971-2016, 2016
Short summary
Short summary
Speciation analysis of long-lived anthropogenic iodine isotopes (129I) in time series Danish aerosols shows that secondary emission from heavily 129I-contaminated seawater is a major source of 129I in the Atmosphere, at least in North Europe. Iodide is the major form of water-soluble iodine, while NaOH-soluble iodine is the dominant species of iodine in aerosol, which is likely bound with organic substances. The contribution of Fukushima-derived 129I is estimated to be negligible in Europe.
E. E. Black and K. O. Buesseler
Biogeosciences, 11, 5123–5137, https://doi.org/10.5194/bg-11-5123-2014, https://doi.org/10.5194/bg-11-5123-2014, 2014
T. P. Guilderson, S. J. Tumey, T. A. Brown, and K. O. Buesseler
Biogeosciences, 11, 4839–4852, https://doi.org/10.5194/bg-11-4839-2014, https://doi.org/10.5194/bg-11-4839-2014, 2014
J. Kameník, H. Dulaiova, K.O. Buesseler, S. M. Pike, and K. Št'astná
Biogeosciences, 10, 6045–6052, https://doi.org/10.5194/bg-10-6045-2013, https://doi.org/10.5194/bg-10-6045-2013, 2013
D. Tsumune, T. Tsubono, M. Aoyama, M. Uematsu, K. Misumi, Y. Maeda, Y. Yoshida, and H. Hayami
Biogeosciences, 10, 5601–5617, https://doi.org/10.5194/bg-10-5601-2013, https://doi.org/10.5194/bg-10-5601-2013, 2013
M. L. Estapa, K. Buesseler, E. Boss, and G. Gerbi
Biogeosciences, 10, 5517–5531, https://doi.org/10.5194/bg-10-5517-2013, https://doi.org/10.5194/bg-10-5517-2013, 2013
I. I. Rypina, S. R. Jayne, S. Yoshida, A. M. Macdonald, E. Douglass, and K. Buesseler
Biogeosciences, 10, 4973–4990, https://doi.org/10.5194/bg-10-4973-2013, https://doi.org/10.5194/bg-10-4973-2013, 2013
N. Casacuberta, P. Masqué, J. Garcia-Orellana, R. Garcia-Tenorio, and K.O. Buesseler
Biogeosciences, 10, 3649–3659, https://doi.org/10.5194/bg-10-3649-2013, https://doi.org/10.5194/bg-10-3649-2013, 2013
M. Aoyama, M. Uematsu, D. Tsumune, and Y. Hamajima
Biogeosciences, 10, 3067–3078, https://doi.org/10.5194/bg-10-3067-2013, https://doi.org/10.5194/bg-10-3067-2013, 2013
M. A. Charette, C. F. Breier, P. B. Henderson, S. M. Pike, I. I. Rypina, S. R. Jayne, and K. O. Buesseler
Biogeosciences, 10, 2159–2167, https://doi.org/10.5194/bg-10-2159-2013, https://doi.org/10.5194/bg-10-2159-2013, 2013
Related subject area
Biogeochemistry: Open Ocean
Ocean acidification trends and carbonate system dynamics across the North Atlantic subpolar gyre water masses during 2009–2019
Sedimentary organic matter signature hints at the phytoplankton-driven biological carbon pump in the central Arabian Sea
Hydrological cycle amplification imposes spatial patterns on the climate change response of ocean pH and carbonate chemistry
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models
Evaluation of CMIP6 model performance in simulating historical biogeochemistry across the southern South China Sea
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Ocean alkalinity enhancement impacts: regrowth of marine microalgae in alkaline mineral concentrations simulating the initial concentrations after ship-based dispersions
Climatic controls on metabolic constraints in the ocean
Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Spatial distributions of iron and manganese in surface waters in the Arctic’s Laptev and East Siberian seas
Short-term response of Emiliania huxleyi growth and morphology to abrupt salinity stress
Massive and localized export of selected marine snow types at eddy edges in the South Atlantic Ocean
Assessing the impact of CO2-equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system
Phosphomonoesterase and phosphodiesterase activities in the eastern Mediterranean in two contrasting seasonal situations
Net primary production annual maxima in the North Atlantic projected to shift in the 21st century
Biogeochemistry of climate driven shifts in Southern Ocean primary producers
Testing the influence of light on nitrite cycling in the eastern tropical North Pacific
Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary
Technical note: Assessment of float pH data quality control methods – a case study in the subpolar northwest Atlantic Ocean
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
All about nitrite: exploring nitrite sources and sinks in the eastern tropical North Pacific oxygen minimum zone
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 5561–5589, https://doi.org/10.5194/bg-21-5561-2024, https://doi.org/10.5194/bg-21-5561-2024, 2024
Short summary
Short summary
The study evaluated CO2–carbonate system dynamics in the North Atlantic subpolar gyre during 2009–2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of ocean acidification and improve our knowledge about its impact on marine ecosystems.
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024, https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
Allison Hogikyan and Laure Resplandy
Biogeosciences, 21, 4621–4636, https://doi.org/10.5194/bg-21-4621-2024, https://doi.org/10.5194/bg-21-4621-2024, 2024
Short summary
Short summary
Rising atmospheric CO2 influences ocean carbon chemistry, leading to ocean acidification. Global warming introduces spatial patterns in the intensity of ocean acidification. We show that the most prominent spatial patterns are controlled by warming-driven changes in rainfall and evaporation, not by the direct effect of warming on carbon chemistry and pH. These evaporation and rainfall patterns oppose acidification in saltier parts of the ocean and enhance acidification in fresher regions.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Lyuba Novi, Annalisa Bracco, Takamitsu Ito, and Yohei Takano
Biogeosciences, 21, 3985–4005, https://doi.org/10.5194/bg-21-3985-2024, https://doi.org/10.5194/bg-21-3985-2024, 2024
Short summary
Short summary
We explored the relationship between oxygen and stratification in the North Pacific Ocean using a combination of data mining and machine learning. We used isopycnic potential vorticity (IPV) as an indicator to quantify ocean ventilation and analyzed its predictability, a strong O2–IPV connection, and predictability for IPV in the tropical Pacific. This opens new routes for monitoring ocean O2 through few observational sites co-located with more abundant IPV measurements in the tropical Pacific.
Winfred Marshal, Jing Xiang Chung, Nur Hidayah Roseli, Roswati Md Amin, and Mohd Fadzil Bin Mohd Akhir
Biogeosciences, 21, 4007–4035, https://doi.org/10.5194/bg-21-4007-2024, https://doi.org/10.5194/bg-21-4007-2024, 2024
Short summary
Short summary
This study stands out for thoroughly examining CMIP6 ESMs' ability to simulate biogeochemical variables in the southern South China Sea, an economically important region. It assesses variables like chlorophyll, phytoplankton, nitrate, and oxygen on annual and seasonal scales. While global assessments exist, this study addresses a gap by objectively ranking 13 CMIP6 ocean biogeochemistry models' performance at a regional level, focusing on replicating specific observed biogeochemical variables.
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024, https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Short summary
Despite the ocean’s importance in the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 models to understand drivers of decadal trends of the past, present, and future ocean carbon sink. I show that 80 % of the decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends in atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024, https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary
Short summary
We calculate the amount of anthropogenic carbon (Cant) in the Atlantic for the years 1990, 2000, 2010 and 2020. Cant is the carbon that is taken up by the ocean as a result of humanmade CO2 emissions. To determine the amount of Cant, we apply a technique that is based on the observations of other humanmade gases (e.g., chlorofluorocarbons). Regionally, changes in ocean ventilation have an impact on the storage of Cant. Overall, the increase in Cant is driven by the rising CO2 in the atmosphere.
Stephanie Delacroix, Tor Jensen Nystuen, August E. Dessen Tobiesen, Andrew L. King, and Erik Höglund
Biogeosciences, 21, 3677–3690, https://doi.org/10.5194/bg-21-3677-2024, https://doi.org/10.5194/bg-21-3677-2024, 2024
Short summary
Short summary
The addition of alkaline minerals into the ocean might reduce excessive anthropogenic CO2 emissions. Magnesium hydroxide can be added in large amounts because of its low seawater solubility without reaching harmful pH levels. The toxicity effect results of magnesium hydroxide, by simulating the expected concentrations from a ship's dispersion scenario, demonstrated low impacts on both sensitive and local assemblages of marine microalgae when compared to calcium hydroxide.
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1834, https://doi.org/10.5194/egusphere-2024-1834, 2024
Short summary
Short summary
This article presents data on iron and manganese, which are essential micronutrients for primary producers, on the surface of the Arctic’s Laptev and East Siberian Seas (LESS). Observations were made in international cooperation with the NABOS expedition during the late summer of 2021 in the Arctic Ocean. The results from this study indicate that the major factors controlling these metal concentrations in LESS are river discharge and the input of shelf sediment.
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024, https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary
Short summary
How quickly do marine microorganisms respond to salinity stress? Our experiments with the calcifying marine plankton Emiliania huxleyi show that growth and cell morphology responded to salinity stress within as little as 24–48 hours, demonstrating that morphology and calcification are sensitive to salinity over a range of timescales. Our results have implications for understanding the short-term role of E. huxleyi in biogeochemical cycles and in size-based paleoproxies for salinity.
Alexandre Accardo, Rémi Laxenaire, Alberto Baudena, Sabrina Speich, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1558, https://doi.org/10.5194/egusphere-2024-1558, 2024
Short summary
Short summary
The open ocean helps mitigate climate change by storing CO2 through the biological carbon pump (BCP). The BCP involves processes like phytoplankton capturing CO2 and sequestering it in the deep ocean via marine snow production. We found significant marine snow accumulation from the surface to 600 meters deep in frontal regions between eddies. We suggest that the coupling of hydrodynamics at eddy edges and biological activity (via planktonic organisms) may enhanced this process.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
EGUsphere, https://doi.org/10.5194/egusphere-2024-990, https://doi.org/10.5194/egusphere-2024-990, 2024
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change the Southern Ocean will be warmer, more acidic, more productive and have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters, we propose ways of reducing this uncertainty.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024, https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Short summary
The marine CO2 system can be measured independently and continuously by BGC-Argo floats since numerous pH sensors have been developed to suit these autonomous measurements platforms. By applying the Argo correction routines to float pH data acquired in the subpolar North Atlantic Ocean, we report the uncertainty and lack of objective criteria associated with the choice of the reference method as well the reference depth for the pH correction.
Sabine Mecking and Kyla Drushka
Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024, https://doi.org/10.5194/bg-21-1117-2024, 2024
Short summary
Short summary
This study investigates whether northeastern North Pacific oxygen changes may be caused by surface density changes in the northwest as water moves along density horizons from the surface into the subsurface ocean. A correlation is found with a lag that about matches the travel time of water from the northwest to the northeast. Salinity is the main driver causing decadal changes in surface density, whereas salinity and temperature contribute about equally to long-term declining density trends.
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024, https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
Short summary
This study aims to estimate how much oceanic oxygen has been lost and its uncertainties. One major source of uncertainty comes from the statistical gap-filling methods. Outputs from Earth system models are used to generate synthetic observations where oxygen data are extracted from the model output at the location and time of historical oceanographic cruises. Reconstructed oxygen trend is approximately two-thirds of the true trend.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023, https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Short summary
In the Southern Ocean, abundant eddies behave opposite to our expectations. That is, anticyclonic (cyclonic) eddies are cold (warm). By investigating the variations of physical and biochemical parameters in eddies, we find that abnormal eddies have unique and significant effects on modulating the parameters. This study fills a gap in understanding the effects of abnormal eddies on physical and biochemical parameters in the Southern Ocean.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Daniela König and Alessandro Tagliabue
Biogeosciences, 20, 4197–4212, https://doi.org/10.5194/bg-20-4197-2023, https://doi.org/10.5194/bg-20-4197-2023, 2023
Short summary
Short summary
Using model simulations, we show that natural and anthropogenic changes in the global climate leave a distinct fingerprint in the isotopic signatures of iron in the surface ocean. We find that these climate effects on iron isotopes are often caused by the redistribution of iron from different external sources to the ocean, due to changes in ocean currents, and by changes in algal growth, which take up iron. Thus, isotopes may help detect climate-induced changes in iron supply and algal uptake.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023, https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Short summary
The oceans play a crucial role in the uptake of atmospheric carbon dioxide, particularly the Southern Ocean. The biological pumping of carbon from the surface to the deep ocean is key to this. Using sediment trap samples from the Scotia Sea, we examine biogeochemical fluxes of carbon, nitrogen, and biogenic silica and their stable isotope compositions. We find phytoplankton community structure and physically mediated processes are important controls on particulate fluxes to the deep ocean.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023, https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Short summary
This study shows that atmospheric deposition is the most important source of iron to the upper northern Indian Ocean for phytoplankton growth. This is followed by iron from continental-shelf sediment. Phytoplankton increase following iron addition is possible only with high background levels of nitrate. Vertical mixing is the most important physical process supplying iron to the upper ocean in this region throughout the year. The importance of ocean currents in supplying iron varies seasonally.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Cited articles
Aarkrog, A., Baxter, M. S., Bettencourt, A. O., Bojanowski, R., Bologa, A., Charmasson, S., Cunha, I., Delfanti, R., Duran, E., Holm, E., Jeffree, R., Livingston, H. D., Mahapanyawong, S., Nies, H., Osvath, I., Pingyu, L., Povinec, P. P., Sanchez, A., Smith, J. N., and Swift, D.: A comparison of doses from 137Cs and 210Po in marine food: A major international study, J. Environ. Radioact., 34, 69–90, 1997.
Aldahan, A., Alfimov, V., and Possnert, G.: 129I anthropogenic budget: Major source and sink, Appl. Geochem., 22, 606–618, 2007.
Aoyama, M. and Hirose, K.: Artificial radionuclides database in the Pacific Ocean: HAM database, Sci. World J., 4, 200–215, 2004.
Aoyama, M., Hirose, K., and Igarashi, Y.: Re-construction and up-dating our understanding on the global weapons tests 137Cs fallout, J. Environ. Monitor., 8, 431–438, 2006.
Aoyama, M., Tsumune, D., and Hamajima, Y.: Distribution of 137Cs and 134Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident, J. Radioanal. Nucl. Chem., https://doi.org/10.1007/s10967-012-2033-2, 2012.
Aoyama, M., Uematsu, M., Tsumune, D., and Hamajima, Y.: Surface pathway of radioactive plume of TEPCO Fukushima NPP1 released 134Cs and 137Cs, Biogeosciences, 10, 3067–3078, https://doi.org/10.5194/bg-10-3067-2013, 2013.
Bailly du Bois, P., Laguionie, P., Boust, D., Korsakissok, I., Didier, D., and Fievet, B.: Estimation of marine source-term following Fukushima Dai-ichi accident, J. Environ. Radioact., 114, 2–9, 2012.
Biddulph, D. L., Beck, J. W., Burr, G. S., Donahue D. J., Hatheway, A. L., and Jull, A. J. T.: Measurement of the radioisotope 129I at the NSF-Arizona AMS, Nucl. Instrum. Methods Phys. Res. B, 172, 693–698, 2000.
Bowyer, T. W., Biegalski, S. R., Cooper, M., Eslinger, P. W., Haas, D., Hayes, J. C., Miley, H. S., Strom, D. J., and Woods, V.: Elevated radioxenon detected remotely following the Fukushima nuclear accident, J. Environ. Radioact., 102, 681–687, 2011.
Buesseler, K., Aoyama, M., and Fukasawa, M.: Impacts of the Fukushima nuclear power plants on marine radioactivity, Environ. Sci. Technol., 45, 9931–9935, 2011.
Buesseler, K. O., Jayne, S. R., Fisher, N. S., Rypina, I. I., Baumann, H., Baumann, Z., Breier, C. F., Douglass, E. M., George, J., Macdonald, A. M., Miyamoto, H., Nishikawa, J., Pike, S. M., and Yoshida, S.: Fukushima-derived radionuclides in the ocean and biota off Japan, P. Natl. Acad. Sci. USA, 109, 5984–5988, 2012.
Casacuberta, N., Masqué, P., Garcia-Orellana, J., Garcia-Tenorio, R., and Buesseler, K. O.: 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident, Biogeosciences, 10, 3649–3659, https://doi.org/10.5194/bg-10-3649-2013, 2013.
Charette, M. A., Breier, C. F., Henderson, P. B., Pike, S. M., Rypina, I. I., Jayne, S. R., and Buesseler, K. O.: Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident, Biogeosciences, 10, 2159–2167, https://doi.org/10.5194/bg-10-2159-2013, 2013.
Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., and Yamazawa, H.: Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere, J. Nucl. Sci. Technol., 48, 1129–1134, 2011.
Dietze, H. and Kriest, I.: 137Cs off Fukushima Dai-ichi, Japan – model based estimates of dilution and fate, Ocean Sci., 8, 319–332, https://doi.org/10.5194/os-8-319-2012, 2012.
He, P., Aldahan, A., Possnert, G., and Hou, X.: A summary of global 129I in marine waters, Nucl. Instrum. Methods Phys. Res. B, 294, 537–541, 2013.
Hernández-Ceballos, M. A., Hong, G. H., Lozano, R. L., Kim, Y. I., Lee, H. M., Kim, S. H., Yeh, S. W., Bolívar, J. P., and Baskaran, M.: Tracking the complete revolution of surface westerlies over Northern Hemisphere using radionuclides emitted from Fukushima, Sci. Total Environ., 438, 80–85, 2012.
Hirose, K.: Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results, J. Environ. Radioact., 111, 13–17, 2012.
Honda, M., Aono, T., Aoyama, M., Hamajima, Y., Kawakami, H., Kitamura, M., Masumoto, Y., Miyazawa, Y., Takigawa, M., and Saino, T.: Dispersion of artificial caesium-134 and -137 in the Western North Pacific one month after the Fukushima accident, Geochem. J., 46, 1–9, 2012.
Hou, X. L.: Determination of 14C and 3H in reactor graphite and concrete for decommission. Appl. Rad. Isotopes, 62, 871–882, 2005.
Hou, X. L., Dahlgaard, H., and Nielsen, S. P.: Iodine-129 time series in Danish, Norwegian and Northwest Greenland coast and the Baltic Sea by seaweed, Estuar. Coast. Shelf Sci., 51, 571–584, 2000.
Hou, X. L., Dahlgaard, H., and Nielsen, S. P.: Chemical speciation analysis of 129I in seawater and a preliminary investigation to use it as a tracer for geochemical cycle study of stable iodine, Mar. Chem., 74, 145–155, 2001.
Hou, X. L., Fogh, C. L., Kučera, J., Andersson, K. G., Dahlgaard, H., and Nielsen, S. P.: Iodine-129 and Cesium-137 in Chernobyl contaminated soil and their chemical fractionation, Sci. Total Environ., 308, 97–109, 2003.
Hou, X. L., Aldahan, A., Nislen, S., Possnert, G., Nies, H., and Hedfords, J.: Speciation of 129I and 127I in seawater and implications for sources and transport pathways in North Sea, Environ. Sci. Technol., 41, 5993–5999, 2007.
Hou, X. L., Aldahan, A., Nielsen, S. P., and Possnert, G.: Time Series of 129I and 127I Speciation in Precipitation from Denmark, Environ. Sci. Technol., 43, 6522–6528, 2009a.
Hou, X. L., Hansen, V., Aldahan, A., Possnert, G., Lind, O. C., and Lujaniene, G.: A review on speciation of iodine-129 in the environmental and biological samples, Anal. Chim. Acta, 632, 181–196, 2009b.
Hou, X. L., Povinec, P. P. L. Y., Zhang, L. Y., Biddulph, D., Chang, C.-C., Fan, Y. K., Golser, R., Ješkovský, M., Jull, A. J. T., Liu, Q., Shi, K. L., Steier, P., and Zhou, W. J.: Iodine-129 in seawater offshore Fukushima: Distribution, speciation, sources, and budget, Environ. Sci. Technol., 47, 3091–3098, 2013.
IAEA, International Atomic Energy Agency: Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts, IAEA, Vienna, 2003.
IAEA, International Atomic Energy Agency: Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, Technical Reports Series no. 422, IAEA, Vienna, 2004.
IAEA, International Atomic Energy Agency: Worldwide marine radioactivity studies (WOMARS), Radionuclide levels in oceans and sea, IAEA-TECDOC-1429, IAEA, Vienna 2005.
IAEA, International Atomic Energy Agency: Briefings on Fukushima nuclear accident, www.iaea.org/, 2011.
Inomata, Y., Aoyama, M., and Hirose, K.: Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database, J. Environ. Monitor., 11, 116–125, 2009.
Inoue, M., Kofuji, H., Nagao, S., Yamamoto, M., Hamajima, Y., Yoshida, K., Fujimoto, K., Takada, T. , and Isoda, Y.: Lateral variation of 134Cs and 137Cs concentrations in surface seawater in and around the Japan Sea after the Fukushima Dai-ichi Nuclear Power Plant accident, J. Environ. Radioact., 109, 45–51, 2012a.
Inoue, M., Kofuji, H., Y. Hamajima, Y., Nagao, S., Yoshida, K., and Yamamoto, M.: 134Cs and 137Cs activities in coastal seawater along Northern Sanriku and Tsugaru Strait, northeastern Japan, after Fukushima Dai-ichi Nuclear Power Plant accident, J. Environ. Radioact., 111, 116–119, 2012b.
Ito, T., Aramaki, Kitamura, T., Otosaka, S., Suzuki, T., Togawa, O., Kobayashi, T., Senjyu, T., Chaykovskaya, E. L., Karasev, E. V., Lishavskaya, T. S., Novichkov, V. P., Tkalin, A. V., Shcherbinin, A. F., and Volkov, Y. N.: Anthropogenic radionuclides in the Japan Sea: their distributions and transport processes, J. Environ. Radioact., 68, 249–267, 2003.
JG: Japanese Government Report, http://www.kantei.go.jp/jp/Topics/2011/iaea_houkokusho.html (last access: 10 July 2012), 2011.
Kanai, Y.: Monitoring of aerosol in Tsukuba after Fukushima nuclear power plant incident in 2011, J. Environ. Radioact., 111, 33–37, 2012.
Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., Shima, S., and Awaji, T.: Preliminary numerical experiments on oceanic dispersion 131I and 137Cs discharged into the ocean because of the Fukushima Dai-ichi nuclear power plant disaster, J. Nucl. Sci. Technol., 48, 1349–1356, 2011.
Levy, I., Povinec, P. P., Aoyama, M., Hirose, K., Sanchez-Cabeza, J. A., Comanducci, J.-F., Gastaud, J., Eriksson, M., Hamajima, Y., Kim, C. S., Komura, K., Osvath, I., Roos, P., and Yim, S. A.: Marine anthropogenic radiotracers in the Southern Hemisphere: New sampling and analytical strategies, Progr. Oceanogr., 89, 120–133, 2011.
Livingston, H. D. and Povinec, P. P.: Anthropogenic marine radioactivity, Ocean Coast. Manage., 43, 689–712, 2000.
Livingston, H. D. and Povinec, P. P.: A millennium perspective on the contribution of global fallout radionuclides to ocean science, Health Phys., 82, 656–668, 2002.
Lujaniené, G., Jokšas, K., Šilobritiené, B., and Morkūniené, R.: Physical and chemical characteristics of 137Cs in the Baltic Sea, Radioactiv. Environ., 8, 165–179, 2006.
Lujaniené, G., Aninkevicius, V., and Lujanas, V: Artificial radionuclides in theatmosphere over Lithuania, J. Environ. Radioact., 100, 108–119, 2009.
Masson, O., Baeza, A., Bieringer, J., Brudecki, K., Bucci, S., Cappai, M., Carvalho, F. P., Connan, O., Cosma, C., Dalheimer, A. Didier, D., Depuydt, G., De Geer, L. E., De Vismes, A., Gini, L., Groppi, F., Gudnason, K., Gurriaran, R., Hainz, D., Halldorsson, O., Hammond, D., Hanley, O. Holey, K. Homoki, Zs., Ioannidou, A. , Isajenko, K., Jankovick M., Katzlberger, C., Kettunen, M., Kierepko, R., Kontro, R. Kwakman, P. J. M., Lecomte, M. , Leon Vintro, L. Leppänen, A.- P., Lind, B., Lujaniene, G., Mc Ginnity, P., Mc Mahon, C., Mala H., Manenti, S., Manolopoulou, M., Mattila, A., Mauring, A., Mietelski, J. W., Møller, B. S., Nielsen, P., Nikolick J., Overwater, R. M. W., Palsson, S. E., Papastefanou, C., Penev, I., Pham, M. K., Povinec, P. P., Ramebäck, H., Reis, M. C. , Ringer, W., Rodriguez, A., Rulík, P., Saey, P. R. J., Samsonov, V., Schlosser, C., Sgorbati, G. , Silobritiene, B. V., Söderström, C., Sogni, R., Solier, L., Sonck, M., Steinhauser, G., Steinkopff, T. , Steinmann, P., Stoulos, S., Sykora, I., Todorovic, D., Tooloutalaie, N., Tositti, L., Tschiersch, J., Ugron, A., Vagena, E., Vargas, A., Wershofen, A. H., and Zhukova, O.: Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European networks, Environ. Sci. Technol., 45, 7670–7677, 2011.
Masumoto, Y., Miyazawa, Y., Tsumune, D., Kobayashi, T., Estournel, C., Marsaleix, P., Lanerolle, L., Mehra, A., and Garraffo, Z. D.: Oceanic dispersion simulation of Cesium-137 from Fukushima Dai-ichi nuclear power plant, Elements, 8, 207–212, 2012.
MEXT, Ministry of Education, Culture, Sports, Science and Technology: Monitoring information of environmental radioactivity levels, http://radioactivity.mext.go.jp/en/ (last access: 10 October 2012), 2011.
Miyazawa, Y., Masumoto, Y., Varlamov, S. M., and Miyama, T.: Transport simulation of the radionuclide from the shelf to open ocean around Fukushima, Cont. Shelf Res., 50–51, 16–29, 2012a.
Miyazawa, Y., Masumoto, Y., Varlamov, S. M., Miyama, T., Takigawa, M., Honda, M., and Saino, T.: Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident, Biogeosciences, 10, 2349–2363, https://doi.org/10.5194/bg-10-2349-2013, 2013.
Mizutani, T., Koarashi, J., and Takeishi, M.: Monitoring of low-level radioactive liquid effluentin Tokai reprocessing plant, J. Nucl. Sci. Technol., 46, 665–672, 2009.
Morino, Y., Ohara, T., and Nishizawa, M.: Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011, Geophys. Res. Lett., 38, L00G11, https://doi.org/10.1029/2011GL048689, 2011.
Nakano, M. and Povinec, P. P.: Oceanic general circulation model for the assessment of the distribution of 137Cs in the world ocean, Deep-sea Res. II, 50, 2803–2816, 2003a.
Nakano, M. and Povinec, P. P.: Modelling the distribution of plutonium in the Pacific Ocean, J. Environ. Radioact., 69, 85–106, 2003b.
Nakano, M. and Povinec, P. P.: Long-term simulations of the 137Cs dispersion from the Fukushima accident in the world ocean, J. Environ. Radioact., 111, 109–115, 2012.
NERH, Nuclear Emergency Response Headquarters, Government of Japan: Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety – The accident at TEPCO's Fukushima Nuclear Power Stations, http://www.iaea.org/newscenter/focus/fukushima/japan-report/ (last access: 10 October 2012), 2011.
NISA, Nuclear and Industrial Safety Agency: Regarding the Evaluation of the Conditions on Reactor Cores of Unit 1, 2 and 3 related to the Accident at Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Co. Inc., http://www.meti.go.jp/english/earthquake/nuclear/japan-challenges/pdf/japan-challenges_d.pdf (last access: 10 November 2012), 2011.
NSCJ, Nuclear Safety Commission of Japan: Trial estimation of emission of radioactive materials (131I, 137Cs) into the atmosphere from Fukushima Dai-ichi nuclear power station, Tokyo, http://www.nsr.go.jp/archive/nsc/NSCenglish/index.htm, 2011.
Palcsu, L., Major, Z., Köllő, Z., and Papp, L.: Using an ultrapure 4He spike in tritium measurements of environmental water samples by the 3He-ingrowth method, Rapid Comm. Mass Spectr., 24, 698–704, 2010.
Pham, M. K., Betti, M., Povinec, P. P., Alfimov, V., Biddulph, D., Gastaud, J., Kieser, W. E., Lopez Gutierez J. M., Possnert, G., Sanchez-Cabeza, J. A., and Suzuki, T.: Certified reference material IAEA-418: 129I in Mediterranean Sea water, J. Radioanal. Nucl. Chem., 286, 121–127, 2010.
Pham, M. K., Betti, M., Nies, H., and Povinec, P. P.: Temporal changes of 7Be, 137Cs and 210Pb activity concentrations in surface air at Monaco and their correlation with meteorological parameters, J. Environ. Radioact., 102, 1045–1054, 2011a.
Pham, M. K., Betti, M., Povinec, P. P., Benmansour, M., Bünger, V., Drefvelin, J., Engeler, C., Flemal, J. M., Gascó, C., Guillevic, J., Gurriaran, R., Groening, M., Happel, J. D., Herrmann, J., Klemola, S., Kloster, M., Kanisch, G., Leonard, K., Long, S., Nielsen, S., Oh, J.-S., Rieth, P. U., Östergren, I., Pettersson, H., Pinhao, N., Pujol, L., Sato, K., Schikowski, J., Varga, Z., Vartti, V. P., and Zheng, J.: A certified reference material for radionuclides in the water sample from Irish Sea (IAEA-443), J. Radioanal. Nucl. Chem., 288, 603–611, 2011b.
Pham, M. K., Povinec, P. P., Nies, H., and Betti, M.: Dry and wet deposition of 7Be, 210Pb and 137Cs in Monaco air during 1998–2010: seasonal variations of deposition fluxes, J. Environ. Radioact., 120, 45–57, 2013.
Povinec, P. P., Oregioni, B., Jull, A. J. T., Kieser, W. E., and Zhao, X.-L.: AMS measurements of 14C and 129I in seawater around radioactive waste dump sites, Nucl. Instrum. Methods Phys. Res. B, 172, 672–678, 2000.
Povinec, P. P., Badie, C., Baeza, A., Barci-Funel, G., Bergan, T. D., Bojanowski, R., Burnett, W., Eikenberg, J., Fifield, L. K., Serradell, V., Gastaud, J., Goroncy, I., Herrmann, J., Hotchkis, M. A. C., Ikaheimonen, T. K., Jakobson, E., Kalimbadjan, J., La Rosa, J. J., Lee, S.-H., Liong Wee Kwong, L., Lueng, W. M., Nielsen, S. P., Noureddine, A., Pham, M. K., Rohou, J.-N., Sanchez-Cabeza, J. A., Suomela, J., Suplinska, M., and Wyse, E.: Certified reference material for radionuclides in seawater IAEA-381 (Irish Sea water), J. Radioanal. Nucl. Chem., 251, 369–374, 2002.
Povinec, P. P., Livingston, H. D., Shima, S., Aoyama, M., Gastaud, J., Goroncy, I., Hirose, K., Huyhn-Ngoc, L., Ikeuchi, Y., Ito, To., La Rosa, J., Liong Wee Kwong, L., Lee, S.-H., Moriya H., Mulsow, S., Oregioni, B., Pettersson, H., and Togawa, O.: IAEA'97 expedition to the NW Pacific Ocean – results of oceanographic and radionuclide investigations of the water column, Deep-Sea Res. II, 50, 2607–2638, 2003a.
Povinec, P. P., Bailly Du Bois, P., Kershaw, P. J., Nies, H., and Scotto, P.: Temporal and spatial trends in the distribution of 137Cs in surface waters of Northern European Seas – A record of 40 years of investigations, Deep-Sea Res. Pt. II, 50, 2785–2801, 2003b.
Povinec, P. P., Hirose, K., Honda, T., Ito, T., Scott, E. M., and Togawa, O.: Spatial distribution of 3H, 90Sr, 137Cs and 239,240Pu in surface waters of the Pacific and Indian Oceans – GLOMARD database, J. Environ. Radioact., 76, 113–137, 2004.
Povinec, P. P., Aarkrog, A., Buesseler, K. O., Delfanti, R., Hirose, K., Hong, G. H., Ito, T., Livingston, H. D., Nies, H., Noshkin, V. E., Shima, S., and Togawa, O.: 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans – WOMARS results, J. Environ. Radioact., 81, 63–87, 2005a.
Povinec, P. P., Comanducci, J. F., and Levy-Palomo, I.: IAEA-MEL's underground counting laboratory (CAVE) for the analysis of radionuclides in the environment at very low-levels, J. Radioanal. Nucl. Chem., 263, 441–445, 2005b.
Povinec, P. P., Lee, S. H., Liong Wee Kwong, L.,Oregioni, B., Jull, A. J. T., Kieser, W. E., Morgenstern, U., and Top, Z.: Tritium, radiocarbon, 90Sr and 129I in the Pacific and Indian Oceans, Nucl. Instrum. Methods Phys. Res. B, 268, 1214–1218, 2010.
Povinec, P. P., Breier, R., Coppola, L., Groening, M., Jeandel, C., Jull, A. J. T., Kieser, W. E., and Top, Z.: Tracing of water masses using a multi-isotope approach in the southern Indian Ocean, Earth Planet. Sci. Lett., 302, 14–26, 2011.
Povinec, P. P., Hirose, K., and Aoyama, M.: Radiostronium in the western North Pacific: Characteristics, behavior, and the Fukushima impact, Environ. Sci. Technol., 46, 10356–10363, 2012a.
Povinec, P. P., Eriksson, M., Scholten, J., and Betti, M.: Marine Radioactivity Analysis, in: Handbook on Radioactivity Analysis, edited by: L'Annunziata, M. F., Academic Press, Amsterdam, 770–832, 2012b.
Povinec, P. P., Gera, M., Hirose, K., Lujaniené G., Nakano, M., and Plastino, W.: Dispersion of Fukushima radionuclides in the global atmosphere and the ocean, Appl. Rad. Isot., in press, https://doi.org/10.1016/j.apradiso.2013.03.058, 2013.
Raisbeck, G. M. and Yiou, F.: 129I in the oceans: origins and applications, Sci. Total Environ., 237/238, 31–41, 1999.
Rypina, I. I., Jayne, S. R., Yoshida, S., Macdonald, A. M., Douglass, E., and Buesseler, K.: Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison, Biogeosciences Discuss., 10, 1517–1550, https://doi.org/10.5194/bgd-10-1517-2013, 2013.
Schlosser, P., Bayer, R., Boenisch, G., Cooper, L. W., Ekwurzel, B., Jenkins, W. J., Khatiwala, S., Pfirman, S., and Smethie, W. M.: Pathways and residence times of dissolved pollutants in the ocean derived from transient tracers and stable isotopes, Sci. Total Environ., 237/238, 15–30, 1999.
Shima, S., Gasa, S., Iseda, K., Nakayama, T., and Kawamura, H.: Distribution of anthropogenic radionuclides in the water column off Rokkasho, Japan, in: Radionuclides in the Environment, edited by: Povinec, P. P., Sanchez-Cabeza J. A., Elsevier, Amsterdam, 2006, 83–95.
Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313–2343, https://doi.org/10.5194/acp-12-2313-2012, 2012.
Suzuki, T., Minakawa, M., Amano, H., and Togawa, O.: The vertical profiles of iodine-129 in the Pacific Ocean and the Japan Sea before the routine operation of a new nuclear fuel reprocessing plant, Nucl. Instr. Methods Phys. Res. B, 268, 1229–1231, 2010.
Suzuki, T., Otosaka, S., Kuwabara, J., Kawamura, H., and Kobayashi, T.: Iodine-129 concentration in seawater near Fukushima before and after the accident at the Fukushima Daiichi Nuclear Power Plant, Biogeosciences Discuss., 10, 1401–1419, https://doi.org/10.5194/bgd-10-1401-2013, 2013.
Takemura, T., Nakamura, H., Takigawa, M., Kondo H., Satonuma, T., Miyasaka, T., and Nakajima, T.: A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi nuclear power plant, Scientific Online Letters on the Atmosphere, 7, 101–104, 2011.
TEPCO, Tokyo Electric Power Company: Result of radioactive nuclide analysis around Fukushima Daiichi Nuclear Power Station, http://www.tepco.co.jp/en/press/corp-com/release/11042103-e.html (last access: 20 December 2012), 2011.
TEPCO, Tokyo Electric Power Company: Fukushima Nuclear Accidents Investigation Report, http://www.tepco.co.jp/en/nu/fukushima-np/interim/index-e.html (last access: 20 December 2012), 2012.
Toyama, C., Muramatsu, Y., Uchida, Y., Igarashi, Y., Aoyama, M., and Matsuzaki, H.: Variations of 129I in the atmospheric fallout of Tokyo, Japan: 1963–2003, J. Environ. Radioact., 113, 116–122, 2012.
Tsumune, D., Tsubono, T., Aoyama, M., and Hirose, K.: Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model, J. Environ. Radioactiv., 111, 100–108, 2012.
Tsumune, D., Tsubono, T., Aoyama, M., Uematsu, M., Misumi, K., Maeda, Y., Yoshida, Y., and Hayami, H.: One-year, regional-scale simulation of 137Cs radioactivity in the ocean following the Fukushima Daiichi Nuclear Power Plant accident, Biogeosciences Discuss., 10, 6259–6314, https://doi.org/10.5194/bgd-10-6259-2013, 2013.
Tumey, S. J., Guilderson, T. P., Brown, T. A., Broek, T., and Buesseler, K. O.: Input of 129I into the western Pacific Ocean resulting from the Fukushima nuclear event, J. Radioanal. Nucl. Chem., 296, 957–962, 2013.
UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation: Sources and Effects of Ionizing Radiation. Report to the General Assembly, United Nations, New York, USA, 2008.
Yoshida, N. and Kanda, J.: Tracking the Fukushima Radionuclides, Science, 336, 1115–1116, 2012.
Altmetrics
Final-revised paper
Preprint