Articles | Volume 11, issue 10
https://doi.org/10.5194/bg-11-2583-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-2583-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011
Y. Liu
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China
Y. Zhou
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China
W. Ju
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China
S. Wang
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
X. Wu
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China
M. He
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China
G. Zhu
Department of Geography, Minjiang University, Fuzhou, 350108, China
Related authors
Y. Liu, Y. Zhou, W. Ju, J. Chen, S. Wang, H. He, H. Wang, D. Guan, F. Zhao, Y. Li, and Y. Hao
Hydrol. Earth Syst. Sci., 17, 4957–4980, https://doi.org/10.5194/hess-17-4957-2013, https://doi.org/10.5194/hess-17-4957-2013, 2013
Rong Shang, Xudong Lin, Jing M. Chen, Yunjian Liang, Keyan Fang, Mingzhu Xu, Yulin Yan, Weimin Ju, Guirui Yu, Nianpeng He, Li Xu, Liangyun Liu, Jing Li, Wang Li, Jun Zhai, and Zhongmin Hu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-574, https://doi.org/10.5194/essd-2024-574, 2025
Preprint under review for ESSD
Short summary
Short summary
Forest age is critical for carbon cycle modelling and effective forest management. Existing datasets, however, have low spatial resolutions or limited temporal coverage. This study introduces China's Annual Forest Age Dataset (CAFA), spanning 1986–2022 at 30-m resolution. By tracking forest disturbances, we annually update ages. Validation shows small errors for disturbed forests and larger for undisturbed forests. CAFA can enhance carbon cycle modelling and forest management in China.
Ran Yan, Jun Wang, Weimin Ju, Xiuli Xing, Miao Yu, Meirong Wang, Jingye Tan, Xunmei Wang, Hengmao Wang, and Fei Jiang
Biogeosciences, 21, 5027–5043, https://doi.org/10.5194/bg-21-5027-2024, https://doi.org/10.5194/bg-21-5027-2024, 2024
Short summary
Short summary
Our study reveals that the effects of the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China's gross primary production (GPP) are basically opposite, with obvious seasonal changes. Soil moisture primarily influences GPP during ENSO events (except spring) and temperature during IOD events (except fall). Quantitatively, China's annual GPP displays modest positive anomalies during La Niña and negative anomalies in El Niño years, driven by significant seasonal variations.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024, https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Short summary
Ecosystem carbonyl sulfide (COS) fluxes were employed to optimize GPP estimation across ecosystems with the Biosphere-atmosphere Exchange Process Simulator (BEPS), which was developed for simulating the canopy COS uptake under its state-of-the-art two-leaf modeling framework. Our results showcased the efficacy of COS in improving model prediction and reducing prediction uncertainty of GPP and enhanced insights into the sensitivity, identifiability, and interactions of parameters related to COS.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Xingyu Wang, Fei Jiang, Hengmao Wang, Zhengqi Zhang, Mousong Wu, Jun Wang, Wei He, Weimin Ju, and Jingming Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1568, https://doi.org/10.5194/egusphere-2024-1568, 2024
Short summary
Short summary
The role of Orbital Carbon Observatory 3 (OCO-3) satellites in estimating the global terrestrial near-Earth environment is unclear. So we study it by assimilating OCO-3 XCO2 alone and with OCO-2 XCO2 inversion. We found that assimilation OCO-3 XCO2 underestimated land sinks at high latitudes by retrieval alone. Joint assimilation of OCO-2 and OCO-3 XCO2 needs to be retrieved to better estimate global terrestrial NEEs.
Hui Li, Xiaobo Wang, Shaoqiang Wang, Jinyuan Liu, Yuanyuan Liu, Zhenhai Liu, Shiliang Chen, Qinyi Wang, Tongtong Zhu, Lunche Wang, and Lizhe Wang
Earth Syst. Sci. Data, 16, 1689–1701, https://doi.org/10.5194/essd-16-1689-2024, https://doi.org/10.5194/essd-16-1689-2024, 2024
Short summary
Short summary
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset named ChinaRiceCalendar. It exhibits strong alignment with field observations collected by agricultural meteorological stations across China. ChinaRiceCalendar stands as a reliable dataset for investigating and optimizing the spatiotemporal dynamics of rice phenology in China, particularly in the context of climate and land use changes.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Shuzhuang Feng, Fei Jiang, Zheng Wu, Hengmao Wang, Wei He, Yang Shen, Lingyu Zhang, Yanhua Zheng, Chenxi Lou, Ziqiang Jiang, and Weimin Ju
Geosci. Model Dev., 16, 5949–5977, https://doi.org/10.5194/gmd-16-5949-2023, https://doi.org/10.5194/gmd-16-5949-2023, 2023
Short summary
Short summary
We document the system development and application of a Regional multi-Air Pollutant Assimilation System (RAPAS v1.0). This system is developed to optimize gridded source emissions of CO, SO2, NOx, primary PM2.5, and coarse PM10 on a regional scale via simultaneously assimilating surface measurements of CO, SO2, NO2, PM2.5, and PM10. A series of sensitivity experiments demonstrates the advantage of the “two-step” inversion strategy and the robustness of the system in estimating the emissions.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Fei Jiang, Weimin Ju, Wei He, Mousong Wu, Hengmao Wang, Jun Wang, Mengwei Jia, Shuzhuang Feng, Lingyu Zhang, and Jing M. Chen
Earth Syst. Sci. Data, 14, 3013–3037, https://doi.org/10.5194/essd-14-3013-2022, https://doi.org/10.5194/essd-14-3013-2022, 2022
Short summary
Short summary
A 10-year (2010–2019) global monthly terrestrial NEE dataset (GCAS2021) was inferred from the GOSAT ACOS v9 XCO2 product. It shows strong carbon sinks over eastern N. America, the Amazon, the Congo Basin, Europe, boreal forests, southern China, and Southeast Asia. It has good quality and can reflect the impacts of extreme climates and large-scale climate anomalies on carbon fluxes well. We believe that this dataset can contribute to regional carbon budget assessment and carbon dynamics research.
Fei Jiang, Hengmao Wang, Jing M. Chen, Weimin Ju, Xiangjun Tian, Shuzhuang Feng, Guicai Li, Zhuoqi Chen, Shupeng Zhang, Xuehe Lu, Jane Liu, Haikun Wang, Jun Wang, Wei He, and Mousong Wu
Atmos. Chem. Phys., 21, 1963–1985, https://doi.org/10.5194/acp-21-1963-2021, https://doi.org/10.5194/acp-21-1963-2021, 2021
Short summary
Short summary
We present a 6-year inversion from 2010 to 2015 for the global and regional carbon fluxes using only the GOSAT XCO2 retrievals. We find that the XCO2 retrievals could significantly improve the modeling of atmospheric CO2 concentrations and that the inferred interannual variations in the terrestrial carbon fluxes in most land regions have a better relationship with the changes in severe drought area or leaf area index, or are more consistent with the previous estimates about drought impact.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Hengmao Wang, Fei Jiang, Jun Wang, Weimin Ju, and Jing M. Chen
Atmos. Chem. Phys., 19, 12067–12082, https://doi.org/10.5194/acp-19-12067-2019, https://doi.org/10.5194/acp-19-12067-2019, 2019
Short summary
Short summary
The differences in inverted global and regional carbon fluxes from GOSAT and OCO-2 XCO2 from 1 January to 31 December 2015 are studied. We find significant differences for inverted terrestrial carbon fluxes on both global and regional scales. Overall, GOSAT XCO2 has a better performance than OCO-2, and GOSAT data can effectively improve carbon flux estimates in the Northern Hemisphere, while OCO-2 data, with the specific version used in this study, show only slight improvement.
Wei He, Ivar R. van der Velde, Arlyn E. Andrews, Colm Sweeney, John Miller, Pieter Tans, Ingrid T. van der Laan-Luijkx, Thomas Nehrkorn, Marikate Mountain, Weimin Ju, Wouter Peters, and Huilin Chen
Geosci. Model Dev., 11, 3515–3536, https://doi.org/10.5194/gmd-11-3515-2018, https://doi.org/10.5194/gmd-11-3515-2018, 2018
Short summary
Short summary
We have implemented a regional, high-resolution, and computationally attractive carbon dioxide data assimilation system. This system, named CTDAS-Lagrange, is capable of simultaneously optimizing terrestrial biosphere fluxes and the lateral boundary conditions. The CTDAS-Lagrange system can be easily extended to assimilate an additional tracer, e.g., carbonyl sulfide (COS or OCS), for regional estimates of both net and gross carbon fluxes.
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Jingming Chen, Pierre Friedlingstein, Atul K. Jain, Ziqiang Jiang, Weimin Ju, Sebastian Lienert, Julia Nabel, Stephen Sitch, Nicolas Viovy, Hengmao Wang, and Andrew J. Wiltshire
Atmos. Chem. Phys., 18, 10333–10345, https://doi.org/10.5194/acp-18-10333-2018, https://doi.org/10.5194/acp-18-10333-2018, 2018
Short summary
Short summary
Based on the Mauna Loa CO2 records and TRENDY multi-model historical simulations, we investigate the different impacts of EP and CP El Niños on interannual carbon cycle variability. Composite analysis indicates that the evolutions of CO2 growth rate anomalies have three clear differences in terms of precursors (negative and neutral), amplitudes (strong and weak), and durations of peak (Dec–Apr and Oct–Jan) during EP and CP El Niños, respectively. We further discuss their terrestrial mechanisms.
F. Jiang, H. M. Wang, J. M. Chen, T. Machida, L. X. Zhou, W. M. Ju, H. Matsueda, and Y. Sawa
Atmos. Chem. Phys., 14, 10133–10144, https://doi.org/10.5194/acp-14-10133-2014, https://doi.org/10.5194/acp-14-10133-2014, 2014
Y. Liu, Y. Zhou, W. Ju, J. Chen, S. Wang, H. He, H. Wang, D. Guan, F. Zhao, Y. Li, and Y. Hao
Hydrol. Earth Syst. Sci., 17, 4957–4980, https://doi.org/10.5194/hess-17-4957-2013, https://doi.org/10.5194/hess-17-4957-2013, 2013
F. Jiang, H. W. Wang, J. M. Chen, L. X. Zhou, W. M. Ju, A. J. Ding, L. X. Liu, and W. Peters
Biogeosciences, 10, 5311–5324, https://doi.org/10.5194/bg-10-5311-2013, https://doi.org/10.5194/bg-10-5311-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Climate Change
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Effect of the 2022 summer drought across forest types in Europe
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Long-term impacts of global temperature stabilization and overshoot on exploited marine species
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Modelling the nutritional implications of ozone on wheat protein and amino acids
Global and regional hydrological impacts of global forest expansion
Effects of pH/pCO2 fluctuation on photosynthesis and fatty acid composition of two marine diatoms, with reference to consequence of coastal acidification
The biological and preformed carbon pumps in perpetually slower and warmer oceans
The Effectiveness of Agricultural Carbon Dioxide Removal using the University of Victoria Earth System Climate Model
Toward more robust NPP projections in the North Atlantic Ocean
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through coastal enhanced silicate weathering with olivine
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Direct foliar phosphorus uptake from wildfire ash
Unifying framework for assessing sensitivity for marine calcifiers to ocean alkalinity enhancement identifies winners, losers and biological thresholds – importance of caution with precautionary principle
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Consistency of global carbon budget between concentration- and emission-driven historical experiments simulated by CMIP6 Earth system models and suggestion for improved simulation of CO2 concentration
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Divergent responses of evergreen needle-leaf forests in Europe to the 2020 warm winter
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Anthropogenic climate change drives non-stationary phytoplankton internal variability
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Quantifying land carbon cycle feedbacks under negative CO2 emissions
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Ideas and perspectives: Land–ocean connectivity through groundwater
Bioclimatic change as a function of global warming from CMIP6 climate projections
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Drivers of intermodel uncertainty in land carbon sink projections
Reviews and syntheses: A framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Evaluation of soil carbon simulation in CMIP6 Earth system models
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Philipp Suessle, Jan Taucher, Silvan Urs Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
Biogeosciences, 22, 71–86, https://doi.org/10.5194/bg-22-71-2025, https://doi.org/10.5194/bg-22-71-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine communities and the particle export they drive. Here, impacts of carbonate-based OAE on the flux and attenuation of sinking particles in an oligotrophic plankton community are presented. Whilst biological parameters remained unaffected, abiotic carbonate precipitation occurred. Among counteracting OAE’s efficiency, it influenced mineral ballasting and particle sinking velocities, requiring monitoring.
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024, https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
Biogeosciences, 21, 5481–5494, https://doi.org/10.5194/bg-21-5481-2024, https://doi.org/10.5194/bg-21-5481-2024, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests an alarming level of vulnerability of forests across Europe to more frequent droughts.
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024, https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Short summary
The remaining carbon budget (RCB) represents the allowable future CO2 emissions before a temperature target is reached. Understanding the uncertainty in the RCB is critical for effective climate regulation and policy-making. One major source of uncertainty is the representation of the carbon cycle in Earth system models. We assessed how nutrient limitation affects the estimation of the RCB. We found a reduction in the estimated RCB when nutrient limitation is taken into account.
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024, https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
Short summary
Climate change is expected to increase the risk of forest fires. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. The findings suggest a longer fire season, more fires, and an increase in burnt area towards the end of the century.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3090, https://doi.org/10.5194/egusphere-2024-3090, 2024
Short summary
Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that only about half of the habitat loss for marine species is realized when temperature stabilization is initially reached. The maximum habitat loss happens over a century after peak warming in an overshoot scenario peaking at 2 °C before stabilizing at 1.5 °C. We also emphasize that species adaptation may play a key role in mitigating the long-term impacts of temperature stabilization and overshoot.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2968, https://doi.org/10.5194/egusphere-2024-2968, 2024
Short summary
Short summary
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential for nutrition, like lysine and methionine. Here, we improve the DO3SE-CropN model to simulate wheat’s protective processes against O3 and their impact on protein and amino acid concentrations. While the model captures O3-induced yield losses, it underestimates amino acid reductions. Further research is needed to refine the model, enabling future risk assessments of O3's impact on yields and nutrition.
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024, https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Yu Shang, Jingmin Qiu, Yuxi Weng, Xin Wang, Di Zhang, Yuwei Zhou, Juntian Xu, and Futian Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2430, https://doi.org/10.5194/egusphere-2024-2430, 2024
Short summary
Short summary
Coastal waters are characterized by dynamic pH due to a range of natural and anthropogenic factors. However, research on influences of dynamic pH on marine ecosystem is still in its infancy. We manipulated the culturing pH to simulate pH fluctuation and found lower pH could increase EPA and DHA production with unaltered growth and photosynthesis. Effects of seawater acidification on primary production could be overestimated if the prediction doesn’t take pH variability into account.
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Rebecca Chloe Evans and H. Damon Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2024-1810, https://doi.org/10.5194/egusphere-2024-1810, 2024
Short summary
Short summary
To mitigate our impact on the climate, research suggests that we will need to both drastically reduce emissions and perform carbon dioxide removal (CDR). We simulated future climates under three emissions scenarios, in which we removed some carbon from the air and put it into agricultural soil at varying rates. We found that agricultural CDR is much more effective at reducing global temperatures if done in a low emissions scenario and at a high rate, and it becomes less effective with time.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1820, https://doi.org/10.5194/egusphere-2024-1820, 2024
Short summary
Short summary
Phytoplankton net primary production (NPP) is influenced by many processes, and their representation varies across Earth-system models. This leads to differing projections for NPP's future under climate change, especially in the North Atlantic. To address this, we identified and assessed the processes controlling NPP in each model. This assessment helped us select the most reliable models, significantly improving NPP projections in the region.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024, https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Short summary
This paper explores the climate processes that drive increasing global average temperatures in zero-emission commitment (ZEC) simulations despite decreasing atmospheric CO2. ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1824, https://doi.org/10.5194/egusphere-2024-1824, 2024
Short summary
Short summary
Coastal enhanced silicate weathering (CESW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of CESW parameters and identifying aspects to consider when applying CESW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024, https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Short summary
We mapped the distribution of future potential afforestation regions based on future high-resolution climate data and climate–vegetation models. After considering the national afforestation policy and climate change, we found that the future potential afforestation region was mainly located around and to the east of the Hu Line. This study provides a dataset for exploring the effects of future afforestation.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024, https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary
Short summary
We present coherence and time lags in spectral response of three vegetation types in the European temperate zone to the influencing meteorological factors and teleconnection indices for the period 2002–2022. Vegetation condition in broadleaved forest, coniferous forest and pastures was measured with MODIS NDVI and EVI, and the coherence between NDVI and EVI and meteorological elements was described using the methods of wavelet coherence and Pearson’s linear correlation with time lag.
Anton Lokshin, Daniel Palchan, and Avner Gross
Biogeosciences, 21, 2355–2365, https://doi.org/10.5194/bg-21-2355-2024, https://doi.org/10.5194/bg-21-2355-2024, 2024
Short summary
Short summary
Ash particles from wildfires are rich in phosphorus (P), a crucial nutrient that constitutes a limiting factor in 43 % of the world's land ecosystems. We hypothesize that wildfire ash could directly contribute to plant nutrition. We find that fire ash application boosts the growth of plants, but the only way plants can uptake P from fire ash is through the foliar uptake pathway and not through the roots. The fertilization impact of fire ash was also maintained under elevated levels of CO2.
Nina Bednaršek, Greg Pelletier, Hanna van de Mortel, Marisol García-Reyes, Richard Feely, and Andrew Dickson
EGUsphere, https://doi.org/10.5194/egusphere-2024-947, https://doi.org/10.5194/egusphere-2024-947, 2024
Short summary
Short summary
The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. A conceptual framework was developed showing 40 % of species to respond positively, 20 % negatively and 40 % with neutral response upon alkalinity addition. Biological thresholds were found between 10 to 500 µmol/kg NaOH addition, emphasizing lab experiments to be conducted at lower dosages. A precautionary approach is warranted to avoid potential risks.
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024, https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Short summary
The general impact of afforestation on the regional climate conditions in Europe during the period 1986–2015 is investigated. For this purpose, a regional climate model simulation is performed, in which afforestation during this period is considered, and results are compared to a simulation in which this is not the case. Results show that afforestation had discernible impacts on the climate change signal in Europe, which may have mitigated the local warming trend, especially in summer in Europe.
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2024-188, https://doi.org/10.5194/egusphere-2024-188, 2024
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations. We successfully identified problems of global carbon budget in each model. We also found urgent issues that should be solved in the latest generation of models, land use change CO2 emissions.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2964, https://doi.org/10.5194/egusphere-2023-2964, 2024
Short summary
Short summary
Effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter in 2020 on the forest CO2 fluxes across 14 sites in Europe and found that in colder sites net ecosystem productivity (NEP) declined during the warm winter, while in the warmer sites NEP increased. Warming leads to increased respiration fluxes but if not translated into a direct warming of the soil might not enhance productivity, if the soil within the rooting zone remains frozen.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023, https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton internal variability using an Earth system model ensemble and identify a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Koramanghat Unnikrishnan Jayakrishnan and Govindasamy Bala
Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, https://doi.org/10.5194/bg-20-1863-2023, 2023
Short summary
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Cited articles
Aires, L. M., Pio, C. A., and Pereira, J. S.: The effect of drought on energy and water vapour exchange above a mediterranean C3/C4 grassland in Southern Portugal, Agr. Forest Meteorol., 148, 565–579, 2008.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, For. Ecol. Manage., 259, 660–684, 2010.
Arnone, J. A., III, Verburg, P. S. J., Johnson, D. W., Larsen, J. D., Jasoni, R. L., Lucchesi, A. J., Batts, C. M., von Nagy, C., Coulombe, W. G., Schorran, D. E., Buck, P. E., Braswell, B. H., Coleman, J. S., Sherry, R. A., Wallace, L. L., Luo, Y., and Schimel, D. S.: Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year, Nature, 455, 383–386, 2008.
Baldocchi, D.: Environmental science: The carbon cycle under stress, Nature, 437, 483–484, 2005.
Barr, A. G., Black, T. A., Hogg, E. H., Kljun, N., Morgenstern, K., and Nesic, Z.: Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production, Agr. Forest Meteorol., 126, 237–255, 2004.
Barr, A. G., Black, T. A., Hogg, E. H., Griffis, T. J., Morgenstern, K., Kljun, N., Theede, A., and Nesic, Z.: Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003, Glob. Change Biol., 13, 561–576, 2007.
Barriopedro, D., Gouveia, C. M., Trigo, R. M., and Wang, L.: The 2009/10 drought in China: possible causes and impacts on vegetation, J. Hydrometeorol., 13, 1251–1267, 2012.
Cao, M. K., Prince, S. D., Li, K. R., Tao, B., Small, J., and Shao, X. M.: Response of terrestrial carbon uptake to climate interannual variability in China, Glob. Change Biol., 9, 536–546, 2003.
Chen, G., Tian, H., Zhang, C., Liu, M., Ren, W., Zhu, W., Chappelka, A. H., Prior, S. A., and Lockaby, G. B.: Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage, Clim. Change, 114, 379–397, 2012a.
Chen, J. M., Liu, J., Cihlar, J., and Goulden, M. L.: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications, Ecol. Model., 124, 99–119, 1999.
Chen, J. M., Chen, X. Y., Ju, W. M., and Geng, X. Y.: Distributed hydrological model for mapping evapotranspiration using remote sensing inputs, J. Hydrol., 305, 15–39, 2005.
Chen, J. M., Deng, F., and Chen, M. Z.: Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter, IEEE Trans. Geosci. Remote Sensing, 44, 2230–2238, 2006.
Chen, J. M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., and Chan, D.: Effects of foliage clumping on the estimation of global terrestrial gross primary productivity, Global Biogeochem. Cy., 26, GB1019, https://doi.org/10.1029/2010gb003996, 2012b.
Chen, T., Werf, G. R., Jeu, R. A. M., Wang, G., and Dolman, A. J.: A global analysis of the impact of drought on net primary productivity, Hydrol. Earth Syst. Sc., 17, 3885–3894, 2013.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437, 529–533, 2005.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187, 2000.
Dai, A.: Increasing drought under global warming in observations and models, Nature Clim. Change, 3, 52–58, 2013.
Dai, A. G.: Drought under global warming: a review, Wires. Clim. Change, 2, 45–65, 2011.
Deng, F., Chen, J. M., Plummer, S., Chen, M. Z., and Pisek, J.: Algorithm for global leaf area index retrieval using satellite imagery, IEEE Trans. Geosci. Remote Sens., 44, 2219–2229, 2006.
Dong, G., Guo, J. X., Chen, J. Q., Sun, G., Gao, S., Hu, L. J., and Wang, Y. L.: Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in Northeast China, Ecohydrology, 4, 211–224, 2011.
Fang, J. Y., Guo, Z. D., Piao, S. L., and Chen, A. P.: Terrestrial vegetation carbon sinks in China, 1981–2000, Sci. China Ser. D., 50, 1341–1350, 2007.
Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Feng, X., Liu, G., Chen, J. M., Chen, M., Liu, J., Ju, W. M., Sun, R., and Zhou, W.: Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing, J. Environ. Manage., 85, 563–573, 2007.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, 2010.
Gao, H. and Yang, S.: A severe drought event in northern China in winter 2008–2009 and the possible influences of La Nina and Tibetan Plateau, J. Geophys. Res.-Atmos., 114, D24104, https://doi.org/10.1029/2009JD012430, 2009.
Garrigues, S., Lacaze, R., Baret, F., Morisette, J. T., Weiss, M., Nickeson, J. E., Fernandes, R., Plummer, S., Shabanov, N. V., Myneni, R. B., Knyazikhin, Y., and Yang, W.: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data, J. Geophys. Res.-Biogeosci., 113, 20, G02028, https://doi.org/10.1029/2007jg000635, 2008.
Granier, A., Reichstein, M., Breda, N., Janssens, I. A., Falge, E., Ciais, P., Grunwald, T., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Kostner, B., Lagergren, F., Lindroth, A., Longdoz, B., Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E., Papale, D., Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C., Rodrigues, A., Seufert, G., Tenhunen, J., Vesala, I., and Wang, Q.: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003, Agr. Forest Meteorol., 143, 123–145, 2007.
Guo, Z. D., Hu, H. F., Li, P., Li, N. Y., and Fang, J. Y.: Spatio-temporal changes in biomass carbon sinks in China's forests from 1977–2008, Sci. China Life Sci., 56, 661–671, 2013.
Hayes, M. J., Svoboda, M. D., Wilhite, D. A., and Vanyarkho, O. V.: Monitoring the 1996 drought using the standardized precipitation index, Bull. Am. Meteorol. Soc., 80, 429–438, 1999.
He, B., Lu, A. F., Wu, J. J., Zhao, L., and Liu, M.: Drought hazard assessment and spatial characteristics analysis in China, J. Geogr. Sci., 21, 235–249, 2011.
Houghton, R. A. and Hackler, J. L.: Sources and sinks of carbon from land-use change in China, Global Biogeochem. Cy., 17, 1034, https://doi.org/10.1029/2002gb001970, 2003.
Hu, Z., Yu, G., Fan, J., Zhong, H., Wang, S., and Li, S.: Precipitation-use efficiency along a 4500-km grassland transect, Glob. Ecol. Biogeogr., 19, 842–851, 2010.
Huang, K., Wang, S., Zhou, L., Wang, H., Liu, Y., and Yang, F.: Effects of drought and ice rain on potential productivity of a subtropical coniferous plantation from 2003 to 2010 based on eddy covariance flux observation, Environ. Res. Lett., 8, 035021, https://doi.org/10.1088/1748-9326/8/3/035021, 2013.
IPCC: Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, 2007.
Jain, S. K., Keshri, R., Goswami, A., and Sarkar, A.: Application of meteorological and vegetation indices for evaluation of drought impact: a case study for Rajasthan, India, Nat. Hazards, 54, 643–656, 2010.
Jarvis, P. G.: The interpretation of variations in leaf water potential and stomatal conductance found in canopies in field, Philos. T. Roy. Soc. B, 273, 593–610, 1976.
Ji, L. and Peters, A. J.: Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices, Remote Sens. Environ., 87, 85–98, 2003.
Jongen, M., Pereira, J. S., Igreja Aires, L. M., and Pio, C. A.: The effects of drought and timing of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland, Agr. Forest Meteorol., 151, 595–606, 2011.
Ju, W. M., Chen, J. M., Black, T. A., Barr, A. G., Liu, J., and Chen, B. Z.: Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest, Agr. Forest Meteorol., 140, 136–151, 2006.
Ju, W. M., Gao, P., Zhou, Y. L., Chen, J. M., Chen, S., and Li, X. F.: Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of the Jiangsu Province, China, Internat. J. Remote Sens., 31, 1573–1587, 2010a.
Ju, W. M., Gao, P., Wang, J., Zhou, Y. L., and Zhang, X. H.: Combining an ecological model with remote sensing and GIS techniques to monitor soil water content of croplands with a monsoon climate, Agr. Water Manage., 97, 1221-1231, 2010b.
Kljun, N., Black, T. A., Griffis, T. J., Barr, A. G., Gaumont-Guay, D., Morgenstern, K., McCaughey, J. H., and Nesic, Z.: Response of net ecosystem productivity of three boreal forest stands to drought, Ecosystems, 10, 1039–1055, 2007.
Krishnan, P., Black, T. A., Grant, N. J., Barr, A. G., Hogg, E. T. H., Jassal, R. S., and Morgenstern, K.: Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought, Agr. Forest Meteorol., 139, 208–223, 2006.
Law, B. E., Falge, E., Gu, L., Baldocchi, D. D., Bakwin, P., Berbigier, P., Davis, K., Dolman, A. J., Falk, M., Fuentes, J. D., Goldstein, A., Granier, A., Grelle, A., Hollinger, D., Janssens, I. A., Jarvis, P., Jensen, N. O., Katul, G., Mahli, Y., Matteucci, G., Meyers, T., Monson, R., Munger, W., Oechel, W., Olson, R., Pilegaard, K., Paw, K. T., Thorgeirsson, H., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agr. Forest Meteorol., 113, 97–120, 2002.
Liu, J., Chen, J. M., Cihlar, J., and Park, W. M.: A process-based boreal ecosystem productivity simulator using remote sensing inputs, Remote Sens. Environ., 62, 158–175, 1997.
Liu, J., Chen, J. M., Cihlar, J., and Chen, W.: Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data, J. Geophys. Res.-Atmos., 104, 27735–27754, 1999.
Liu, J., Chen, J. M., and Cihlar, J.: Mapping evapotranspiration based on remote sensing: An application to Canada's landmass, Water Resour. Res., 39, 1189, https://doi.org/10.1029/2002WR001680, 2003.
Liu, Y., Ju, W., Chen, J., Zhu, G., Xing, B., Zhu, J., and He, M.: Spatial and temporal variations of forest LAI in China during 2000-2010, Chinese Sci. Bull., 57, 2846–2856, 2012.
Liu, Y., Ju, W., He, H., Wang, S., Sun, R., and Zhang, Y.: Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data, Front. Earth Sci., 7, 112–127, 2013a.
Liu, Y., Zhou, Y., Ju, W., Chen, J., Wang, S., He, H., Wang, H., Guan, D., Zhao, F., Li, Y., and Hao, Y.: Evapotranspiration and water yield over China's landmass from 2000 to 2010, Hydrol. Earth Syst. Sc., 17, 4957–4980, 2013b.
Lotsch, A., Friedl, M. A., Anderson, B. T., and Tucker, C. J.: Coupled vegetation-precipitation variability observed from satellite and climate records, Geophys. Res. Lett., 30, 1774, https://doi.org/10.1029/2003gl017506, 2003.
Lotsch, A., Friedl, M. A., Anderson, B. T., and Tucker, C. J.: Response of terrestrial ecosystems to recent Northern Hemispheric drought, Geophys. Res. Lett., 32, L06705, https://doi.org/10.1029/2004gl022043, 2005.
Lu, E., Luo, Y., Zhang, R., Wu, Q., and Liu, L.: Regional atmospheric anomalies responsible for the 2009-2010 severe drought in China, J. Geophys. Res.-Atmos., 116, D21114, https://doi.org/10.1029/2011jd015706, 2011.
Ma, Z., Peng, C., Zhu, Q., Chen, H., Yu, G., Li, W., Zhou, X., Wang, W., and Zhang, W.: Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests, Proc. Natl. Acad. Sci. USA, 109, 2423–2427, 2012.
Matsushita, B. and Tamura, M.: Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia, Remote Sens. Environ., 81, 58–66, 2002.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, 8th Conference on Applied Climatology, 179–184, 1993.
Meir, P., Metcalfe, D. B., Costa, A. C. L., and Fisher, R. A.: The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests, Philos. T. Roy. Soc. B, 363, 1849–1855, 2008.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 204–216, 2010.
Mo, X. G., Chen, J. M., Ju, W. M., and Black, T. A.: Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble Kalman filter, Ecol. Model., 217, 157–173, 2008.
Mu, Q., Zhao, M., Running, S. W., Liu, M., and Tian, H.: Contribution of increasing CO2 and climate change to the carbon cycle in China's ecosystems, J. Geophys. Res.-Biogeosci., 113, G01018, https://doi.org/10.1029/2006jg000316, 2008.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300, 1560–1563, 2003.
Nunes, E. L., Costa, M. H., Malhado, A. C. M., Dias, L. C. P., Vieira, S. A., Pinto, L. B., and Ladle, R. J.: Monitoring carbon assimilation in South America's tropical forests: Model specification and application to the Amazonian droughts of 2005 and 2010, Remote Sens. Environ., 117, 449–463, 2012.
Pan, Y. D., Luo, T. X., Birdsey, R., Hom, J., and Melillo, J.: New estimates of carbon storage and sequestration in China's forests: Effects of age-class and method on inventory-based carbon estimation, Clim. Change, 67, 211–236, 2004.
Pan, Y. D., Birdsey, R. A., Fang, J. Y., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S. L., Rautiainen, A., Sitch, S., and Hayes, D.: A large and persistent carbon sink in the world's forests, Science, 333, 988–993, 2011.
Pannatier, E. G., Dobbertin, M., Heim, A., Schmitt, M., Thimonier, A., Waldner, P., and Frey, B.: Response of carbon fluxes to the 2003 heat wave and drought in three mature forests in Switzerland, Biogeochemistry, 107, 295–317, 2012.
Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J. C., Seastedt, T., Moya, E. G., Kamnalrut, A., and Kinyamario, J. I.: Observations and Modeling of Biomass and Soil Organic-Matter Dynamics for the Grassland Biome Worldwide, Global Biogeochem. Cy., 7, 785–809, 1993.
Pasho, E., Julio Camarero, J., de Luis, M., and Vicente-Serrano, S. M.: Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain, Agr. Forest Meteorol., 151, 1800–1811, 2011.
Pei, F., Li, X., Liu, X., and Lao, C.: Assessing the impacts of droughts on net primary productivity in China, J. Environ. Manage., 114, 362–371, 2013.
Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., and Zhou, X.: A drought-induced pervasive increase in tree mortality across Canada's boreal forests, Nat. Clim. Change, 1, 467–471, 2011.
Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., David, J. S., Andrade, V., Banza, J., David, T. S., Paço, T. A., and Rodrigues, A.: Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought, Biogeosciences, 4, 791–802, https://doi.org/10.5194/bg-4-791-2007, 2007.
Peters, A. J., Walter-Shea, E. A., Ji, L., Vina, A., Hayes, M., and Svoboda, M. D.: Drought monitoring with NDVI-based standardized vegetation index, Photogramm. Eng. Rem. S., 68, 71–75, 2002.
Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends, Glob. Change Biol., 19, 2117–2132, 2013.
Piao, S. L., Friedlingstein, P., Ciais, P., de Noblet-Ducoudre, N., Labat, D., and Zaehle, S.: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends, Proceedings of the National Academy of Sciences of the United States of America, 104, 15242–15247, https://doi.org/10.1073/pnas.0707213104, 2007.
Piao, S. L., Fang, J. Y., Ciais, P., Peylin, P., Huang, Y., Sitch, S., and Wang, T.: The carbon balance of terrestrial ecosystems in China, Nature, 458, 1009–U1082, 2009a.
Piao, S. L., Yin, L., Wang, X. H., Ciais, P., Peng, S. S., Shen, Z. H., and Seneviratne, S. I.: Summer soil moisture regulated by precipitation frequency in China, Environ. Res. Lett., 4, 044012, https://doi.org/10.1088/1748-9326/4/4/044012, 2009b.
Piao, S. L., Ito, A., Li, S. G., Huang, Y., Ciais, P., Wang, X. H., Peng, S. S., Nan, H. J., Zhao, C., Ahlström, A., Andres, R. J., Chevallier, F., Fang, J. Y., Hartmann, J., Huntingford, C., Jeong, S., Levis, S., Levy, P. E., Li, J. S., Lomas, M. R., Mao, J. F., Mayorga, E., Mohammat, A., Muraoka, H., Peng, C. H., Peylin, P., Poulter, B., Shen, Z. H., Shi, X., Sitch, S., Tao, S., Tian, H. Q., Wu, X. P., Xu, M., Yu, G. R., Viovy, N., Zaehle, S., Zeng, N., and Zhu, B.: The carbon budget of terrestrial ecosystems in East Asia over the last two decades, Biogeosciences, 9, 3571–3586, https://doi.org/10.5194/bg-9-3571-2012, 2012.
Pisek, J., Chen, J. M., and Deng, F.: Assessment of a global leaf area index product from SPOT-4 VEGETATION data over selected sites in Canada, Can. J. Remote Sens., 33, 341–356, 2007.
Ponce Campos, G. E., Moran, M. S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T. E., Eamus, D., Bosch, D. D., Buda, A. R., Gunter, S. A., Scalley, T. H., Kitchen, S. G., McClaran, M. P., McNab, W. H., Montoya, D. S., Morgan, J. A., Peters, D. P. C., Sadler, E. J., Seyfried, M. S., and Starks, P. J.: Ecosystem resilience despite large-scale altered hydroclimatic conditions, Nature, 494, 349–352, 2013.
Potter, C., Klooster, S., Hiatt, C., Genovese, V., and Castilla-Rubio, J. C.: Changes in the carbon cycle of Amazon ecosystems during the 2010 drought, Environ. Res. Lett., 6, 034024, https://doi.org/10.1088/1748-9326/6/3/034024, 2011.
Qin, N., Chen, X., Fu, G., Zhai, J., and Xue, X.: Precipitation and temperature trends for the Southwest China: 1960-2007, Hydrol. Process., 24, 3733–3744, 2010.
Quiring, S. M. and Ganesh, S.: Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas, Agr. Forest Meteorol., 150, 330–339, 2010.
Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J. M., Rambal, S., Miglietta, F., Peressotti, A., Pecchiari, M., Tirone, G., and Valentini, R.: Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses ?, Glob. Change Biol., 8, 999–1017, 2002.
Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N., Cramer, W., Granier, A., Ogee, J., Allard, V., Aubinet, M., Bernhofer, C., Buchmann, N., Carrara, A., Grunwald, T., Heimann, M., Heinesch, B., Knohl, A., Kutsch, W., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Pilegaard, K., Pumpanen, J., Rambal, S., Schaphoff, S., Seufert, G., Soussana, J. F., Sanz, M. J., Vesala, T., and Zhao, M.: Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis, Glob. Change Biol., 13, 634–651, 2007.
Running, S. W.: Climate change – Ecosystem disturbance, carbon, and climate, Science, 321, 652–653, 2008.
Running, S. W. and Coughlan, J. C.: A general model of forest ecosystem processes for regional applications 1. hydrologic balance, canopy gas exchange and primary production processes, Ecol. Model., 42, 125–154, 1988.
Saigusa, N., Ichii, K., Murakami, H., Hirata, R., Asanuma, J., Den, H., Han, S.-J., Ide, R., Li, S.-G., Ohta, T., Sasai, T., Wang, S.-Q., and Yu, G.-R.: Impact of meteorological anomalies in the 2003 summer on Gross Primary Productivity in East Asia, Biogeosciences, 7, 641–655, https://doi.org/10.5194/bg-7-641-2010, 2010.
Samanta, A., Costa, M. H., Nunes, E. L., Vieira, S. A., Xu, L., and Myneni, R. B.: Comment on "Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009", Science, 333, 1093, https://doi.org/10.1126/science.1199048, 2011.
Schwalm, C. R., Williams, C. A., Schaefer, K., Arneth, A., Bonal, D., Buchmann, N., Chen, J. Q., Law, B. E., Lindroth, A., Luyssaert, S., Reichstein, M., and Richardson, A. D.: Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis, Glob. Change Biol., 16, 657–670, 2010a.
Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain, M. A., Baker, I., Barr, A., Black, T. A., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A., Dietze, M., Dragoni, D., Fischer, M. L., Flanagan, L. B., Grant, R., Gu, L., Hollinger, D., Izaurralde, R. C., Kucharik, C., Lafleur, P., Law, B. E., Li, L., Li, Z., Liu, S., Lokupitiya, E., Luo, Y., Ma, S., Margolis, H., Matamala, R., McCaughey, H., Monson, R. K., Oechel, W. C., Peng, C., Poulter, B., Price, D. T., Riciutto, D. M., Riley, W., Sahoo, A. K., Sprintsin, M., Sun, J., Tian, H., Tonitto, C., Verbeeck, H., and Verma, S. B.: A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis, Journal of Geophysical Research: Biogeosciences, 115, G00H05, https://doi.org/10.1029/2009jg001229, 2010b.
Schwalm, C. R., Williams, C. A., Schaefer, K., Baldocchi, D., Black, T. A., Goldstein, A. H., Law, B. E., Oechel, W. C., Paw U, K. T., and Scott, R. L.: Reduction in carbon uptake during turn of the century drought in western North America, Nature Geosci., 5, 551–556, 2012.
Shangguan, W., Dai, Y., Liu, B., Ye, A., and Yuan, H.: A soil particle-size distribution dataset for regional land and climate modelling in China, Geoderma, 171–172, 85–91, 2012.
Sonnentag, O., Chen, J. M., Roulet, N. T., Ju, W., and Govind, A.: Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography, J. Geophys. Res.-Biogeosci., 113, G02005, https://doi.org/10.1029/2007JG000605, 2008.
Sprintsin, M., Chen, J. M., Desai, A., and Gough, C. M.: Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America, J. Geophys. Res.-Biogeosci., 117, G01023, https://doi.org/10.1029/2010jg001407, 2012.
Sun, C. and Yang, S.: Persistent severe drought in southern China during winter-spring 2011: Large-scale circulation patterns and possible impacting factors, J. Geophys. Res.-Atmos., 117, D10112, https://doi.org/10.1029/2012jd017500, 2012.
Sun, R., Chen, J. M., Zhu, Q. J., Zhou, Y. Y., Liu, J., Li, J. T., Liu, S. H., Yan, G. J., and Tang, S. H.: Spatial distribution of net primary productivity and evapotranspiration in Changbaishan Natural Reserve, China, using Landsat ETM+ data, Can. J. Remote Sens., 30, 731–742, 2004.
Thomas, K., Sabina, D., and Mario, M.-H.: Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands, Environ. Res. Lett., 8, 015015, https://doi.org/10.1088/1748-9326/8/1/015015, 2013.
Tian, H. Q., Xu, X. F., Lu, C. Q., Liu, M. L., Ren, W., Chen, G. S., Melillo, J., and Liu, J. Y.: Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming, J. Geophys. Res.-Biogeosci., 116, G02011, https://doi.org/10.1029/2010jg001393, 2011a.
Tian, H. Q., Melillo, J., Lu, C. Q., Kicklighter, D., Liu, M. L., Ren, W., Xu, X. F., Chen, G. S., Zhang, C., Pan, S. F., Liu, J. Y., and Running, S.: China's terrestrial carbon balance: Contributions from multiple global change factors, Global Biogeochem. Cy., 25, GB1007, https://doi.org/10.1029/2010gb003838, 2011b.
van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law, B. E., Meir, P., Peters, W., Phillips, O. L., Reichstein, M., Chen, T., Dekker, S. C., Doubkova, M., Friedl, M. A., Jung, M., van den Hurk, B., de Jeu, R. A. M., Kruijt, B., Ohta, T., Rebel, K. T., Plummer, S., Seneviratne, S. I., Sitch, S., Teuling, A. J., van der Werf, G. R., and Wang, G.: Drought and ecosystem carbon cycling, Agr. Forest Meteorol., 151, 765–773, 2011.
Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N., and Heimann, M.: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models, Biogeosciences, 5, 561–583, https://doi.org/10.5194/bg-5-561-2008, 2008.
Vicente-Serrano, S. M., Gouveia, C., Julio Camarero, J., Begueria, S., Trigo, R., Lopez-Moreno, J. I., Azorin-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Moran-Tejeda, E., and Sanchez-Lorenzo, A.: Response of vegetation to drought time-scales across global land biomes, Proc. Natl. Ac. Sci. USA, 110, 52–57, 2013.
Wang, A., Lettenmaier, D. P., and Sheffield, J.: Soil moisture drought in China, 1950–2006, J. Climate, 24, 3257–3271, 2011.
Wang, H., Zhang, R., Liu, M., and Bi, J.: The carbon emissions of Chinese cities, Atmos. Chem. Phys, 12, 6197–6206, https://doi.org/10.5194/acp-12-6197-2012, 2012a.
Wang, L., Li, C., Ying, Q., Cheng, X., Wang, X., Li, X., Hu, L., Liang, L., Yu, L., Huang, H., and Gong, P.: China's urban expansion from 1990 to 2010 determined with satellite remote sensing, Chinese Sci. Bull., 57, 2802–2812, 2012b.
Wang, Q., Tenhunen, J., Falge, E., Bernhofer, C., Granier, A., and Vesala, T.: Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests, Glob. Change Biol., 10, 37–51, 2004.
Wang, Q. F., Niu, D., Yu, G. R., Ren, C. Y., Wen, X. F., Chen, J. M., and Ju, W. M.: Simulating the exchanges of carbon dioxide, water vapor and heat over Changbai Mountains temperate broadleaved Korean pine mixed forest ecosystem, Sci. China Ser. D, 48, 148–159, 2005.
Wu, C. and Chen, J. M.: Diverse responses of vegetation production to interannual summer drought in North America, International J. Appl. Earth Observat. Geoinformat., 21, 1–6, 2013.
Wu, Z. Y., Lu, G. H., Wen, L., and Lin, C. A.: Reconstructing and analyzing China's fifty-nine year (1951–2009) drought history using hydrological model simulation, Hydrol. Earth Syst. Sc., 15, 2881–2894, 2011.
Xiao, J. F., Zhuang, Q. L., Liang, E. Y., McGuire, A. D., Moody, A., Kicklighter, D. W., Shao, X. M., and Melillo, J. M.: Twentieth-century droughts and their impacts on terrestrial carbon cycling in China, Earth Interact., 13, 10, https://doi.org/10.1175/2009ei275.1, 2009.
Xiao, J. F., Zhuang, Q. L., Law, B. E., Baldocchi, D. D., Chen, J. Q., Richardson, A. D., Melillo, J. M., Davis, K. J., Hollinger, D. Y., Wharton, S., Oren, R., Noormets, A., Fischer, M. L., Verma, S. B., Cook, D. R., Sun, G., McNulty, S., Wofsy, S. C., Bolstad, P. V., Burns, S. P., Curtis, P. S., Drake, B. G., Falk, M., Foster, D. R., Gu, L. H., Hadley, J. L., Katulk, G. G., Litvak, M., Ma, S. Y., Martinz, T. A., Matamala, R., Meyers, T. P., Monson, R. K., Munger, J. W., Oechel, W. C., Paw, U. K. T., Schmid, H. P., Scott, R. L., Starr, G., Suyker, A. E., and Torn, M. S.: Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations, Agr. Forest Meteorol., 151, 60–69, 2011.
Xu, X., Piao, S., Wang, X., Chen, A., Ciais, P., and Myneni, R. B.: Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades, Environ. Res. Lett., 7, 035701, https://doi.org/10.1088/1748-9326/7/3/035701, 2012.
Yan, J., Zhang, Y., Yu, G., Zhou, G., Zhang, L., Li, K., Tan, Z., and Sha, L.: Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China, Agr. Forest Meteorol., 182–183, 257–265, 2013.
Yang, F. and Zhou, G.: Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in inner mongolia, china, Plos One, 8, e55418–e55418, https://doi.org/10.1371/journal.pone.0055418, 2013.
Yu, G. R., Zhu, X. J., Fu, Y. L., He, H. L., Wang, Q. F., Wen, X. F., Li, X. R., Zhang, L. M., Zhang, L., Su, W., Li, S. G., Sun, X. M., Zhang, Y. P., Zhang, J. H., Yan, J. H., Wang, H. M., Zhou, G. S., Jia, B. R., Xiang, W. H., Li, Y. N., Zhao, L., Wang, Y. F., Shi, P. L., Chen, S. P., Xin, X. P., Zhao, F. H., Wang, Y. Y., and Tong, C. L.: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China, Glob. Change Biol., 19, 798–810, 2013.
Yuan, W. P., Liu, D., Dong, W. J., Liu, S. G., Zhou, G. S., Yu, G. R., Zhao, T. B., Feng, J. M., Ma, Z. G., Chen, J. Q., Chen, Y., Chen, S. P., Han, S. J., Huang, J. P., Li, L. H., Liu, H. Z., Liu, S. M., Ma, M. G., Wang, Y. F., Xia, J. Z., Xu, W. F., Zhang, Q., Zhao, X. Q., and Zhao, L.: Multiyear precipitation reduction strongly decrease carbon uptake over North China, Biogeosciences Discuss., 10, 1605–1634, https://doi.org/10.5194/bgd-10-1605-2013, 2013.
Zeng, N., Qian, H. F., Munoz, E., and Iacono, R.: How strong is carbon cycle-climate feedback under global warming?, Geophys. Res. Lett., 31, L20203, https://doi.org/10.1029/2004gl020904, 2004.
Zeng, N., Qian, H. F., Roedenbeck, C., and Heimann, M.: Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle, Geophys. Res. Lett., 32, L22709, https://doi.org/10.1029/2005gl024607, 2005.
Zhai, J., Su, B., Krysanova, V., Vetter, T., Gao, C., and Jiang, T.: Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China, J. Climate, 23, 649–663, 2010.
Zhang, A. and Jia, G.: Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data, Remote Sens. Environ., 134, 12–23, 2013.
Zhang, C., Ju, W., Chen, J. M., Zan, M., Li, D., Zhou, Y., and Wang, X.: China's forest biomass carbon sink based on seven inventories from 1973 to 2008, Clim. Change, 118, 933–948, 2013.
Zhang, F., Ju, W., Chen, J., Wang, S., Yu, G., Li, Y., Han, S., and Jun, A.: Study on evapotranspiration in East Asia using the BEPS ecological model, J. Nat. Resour., 25, 1596–1606, 2010.
Zhang, F., Chen, J. M., Chen, J., Gough, C. M., Martin, T. A., and Dragoni, D.: Evaluating spatial and temporal patterns of MODIS GPP over the conterminous U.S. against flux measurements and a process model, Remote Sens. Environ., 124, 717–729, 2012b.
Zhang, F., Ju, W., Shen, S., Wang, S., Yu, G., and Han, S.: Variations of terrestrial net primary productivity in East Asia, Terr. Atmos. Ocean Sci., 23, 425–437, 2012c.
Zhang, L., Xiao, J., Li, J., Wang, K., Lei, L., and Guo, H.: The 2010 spring drought reduced primary productivity in southwestern China, Environ. Res. Lett., 6, 045706, https://doi.org/10.1088/1748-9326/6/4/045508, 2012a.
Zhang, Y. Q. and Wegehenkel, M.: Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration, Remote Sens. Environ., 104, 393–408, 2006.
Zhao, M. and Running, S. W.: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009, Science, 329, 940–943, 2010.
Zou, X. K., Zhai, P. M., and Zhang, Q.: Variations in droughts over China: 1951–2003, Geophys. Res. Lett., 32, L04707, https://doi.org/10.1029/2004gl021853, 2005.
Altmetrics
Final-revised paper
Preprint