Articles | Volume 11, issue 20
https://doi.org/10.5194/bg-11-5657-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-5657-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain)
D. Sperlich
Centre for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
C. T. Chang
Centre for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
J. Peñuelas
Centre for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Global Ecology Unit CSIC-CEAB-CREAF, CREAF, Facultat de Ciencies, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
C. Gracia
Centre for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
S. Sabaté
Centre for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
Related authors
C. T. Chang, S. Sabaté, D. Sperlich, S. Poblador, F. Sabater, and C. Gracia
Biogeosciences, 11, 6173–6185, https://doi.org/10.5194/bg-11-6173-2014, https://doi.org/10.5194/bg-11-6173-2014, 2014
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Yuanyuan Luo, Olga Garmash, Haiyan Li, Frans Graeffe, Arnaud P. Praplan, Anssi Liikanen, Yanjun Zhang, Melissa Meder, Otso Peräkylä, Josep Peñuelas, Ana María Yáñez-Serrano, and Mikael Ehn
Atmos. Chem. Phys., 22, 5619–5637, https://doi.org/10.5194/acp-22-5619-2022, https://doi.org/10.5194/acp-22-5619-2022, 2022
Short summary
Short summary
Diterpenes were only recently observed in the atmosphere, and little is known of their atmospheric fates. We explored the ozonolysis of the diterpene kaurene in a chamber, and we characterized the oxidation products for the first time using chemical ionization mass spectrometry. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation.
Lore T. Verryckt, Sara Vicca, Leandro Van Langenhove, Clément Stahl, Dolores Asensio, Ifigenia Urbina, Romà Ogaya, Joan Llusià, Oriol Grau, Guille Peguero, Albert Gargallo-Garriga, Elodie A. Courtois, Olga Margalef, Miguel Portillo-Estrada, Philippe Ciais, Michael Obersteiner, Lucia Fuchslueger, Laynara F. Lugli, Pere-Roc Fernandez-Garberí, Helena Vallicrosa, Melanie Verlinden, Christian Ranits, Pieter Vermeir, Sabrina Coste, Erik Verbruggen, Laëtitia Bréchet, Jordi Sardans, Jérôme Chave, Josep Peñuelas, and Ivan A. Janssens
Earth Syst. Sci. Data, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, https://doi.org/10.5194/essd-14-5-2022, 2022
Short summary
Short summary
We provide a comprehensive dataset of vertical profiles of photosynthesis and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N and P, and other leaf nutrients, in photosynthesis in tropical forests.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Elodie Alice Courtois, Clément Stahl, Benoit Burban, Joke Van den Berge, Daniel Berveiller, Laëtitia Bréchet, Jennifer Larned Soong, Nicola Arriga, Josep Peñuelas, and Ivan August Janssens
Biogeosciences, 16, 785–796, https://doi.org/10.5194/bg-16-785-2019, https://doi.org/10.5194/bg-16-785-2019, 2019
Short summary
Short summary
Measuring greenhouse gases (GHGs) from a natural ecosystem remains a contemporary challenge. We tested the use of appropriate technology for the estimation of soil fluxes of the three main GHGs in a tropical rainforest for 4 months. We showed that our design allowed the continuous high-frequency measurement of the three gases in a tropical biome and provide recommendations for its implementation. This study is a major step in the estimation of the global GHG budget of tropical forests.
Yilong Wang, Philippe Ciais, Daniel Goll, Yuanyuan Huang, Yiqi Luo, Ying-Ping Wang, A. Anthony Bloom, Grégoire Broquet, Jens Hartmann, Shushi Peng, Josep Penuelas, Shilong Piao, Jordi Sardans, Benjamin D. Stocker, Rong Wang, Sönke Zaehle, and Sophie Zechmeister-Boltenstern
Geosci. Model Dev., 11, 3903–3928, https://doi.org/10.5194/gmd-11-3903-2018, https://doi.org/10.5194/gmd-11-3903-2018, 2018
Short summary
Short summary
We present a new modeling framework called Global Observation-based Land-ecosystems Utilization Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) that combines a data-constrained C-cycle analysis with data-driven estimates of N and P inputs and losses and with observed stoichiometric ratios. GOLUM-CNP provides a traceable tool, where a consistency between different datasets of global C, N, and P cycles has been achieved.
Yasmina Loozen, Karin T. Rebel, Derek Karssenberg, Martin J. Wassen, Jordi Sardans, Josep Peñuelas, and Steven M. De Jong
Biogeosciences, 15, 2723–2742, https://doi.org/10.5194/bg-15-2723-2018, https://doi.org/10.5194/bg-15-2723-2018, 2018
Short summary
Short summary
Nitrogen (N) is an essential nutrient for plant growth. It would be interesting to detect it using satellite data. The goal was to investigate if it is possible to remotely sense the canopy nitrogen concentration and content of Mediterranean trees using a product calculated from satellite reflectance data, the MERIS Terrestrial Chlorophyll Index (MTCI). The tree plots were located in Catalonia, NE Spain. The relationship between MTCI and canopy N was present but dependent on the type of trees.
Marta Camino-Serrano, Bertrand Guenet, Sebastiaan Luyssaert, Philippe Ciais, Vladislav Bastrikov, Bruno De Vos, Bert Gielen, Gerd Gleixner, Albert Jornet-Puig, Klaus Kaiser, Dolly Kothawala, Ronny Lauerwald, Josep Peñuelas, Marion Schrumpf, Sara Vicca, Nicolas Vuichard, David Walmsley, and Ivan A. Janssens
Geosci. Model Dev., 11, 937–957, https://doi.org/10.5194/gmd-11-937-2018, https://doi.org/10.5194/gmd-11-937-2018, 2018
Short summary
Short summary
Global models generally oversimplify the representation of soil organic carbon (SOC), and thus its response to global warming remains uncertain. We present the new soil module ORCHIDEE-SOM, within the global model ORCHIDEE, that refines the representation of SOC dynamics and includes the dissolved organic carbon (DOC) processes. The model is able to reproduce SOC stocks and DOC concentrations in four different ecosystems, opening an opportunity for improved predictions of SOC in global models.
Fei Lun, Junguo Liu, Philippe Ciais, Thomas Nesme, Jinfeng Chang, Rong Wang, Daniel Goll, Jordi Sardans, Josep Peñuelas, and Michael Obersteiner
Earth Syst. Sci. Data, 10, 1–18, https://doi.org/10.5194/essd-10-1-2018, https://doi.org/10.5194/essd-10-1-2018, 2018
Short summary
Short summary
We quantified in detail the P budgets in agricultural systems and PUE on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils, with the rest lost to bodies of water. There are great differences in P budgets and PUE in agricultural systems on global, regional, and national scales. International trade played a significant role in P redistribution and P in fertilizer and food among countries.
Daniel S. Goll, Nicolas Vuichard, Fabienne Maignan, Albert Jornet-Puig, Jordi Sardans, Aurelie Violette, Shushi Peng, Yan Sun, Marko Kvakic, Matthieu Guimberteau, Bertrand Guenet, Soenke Zaehle, Josep Penuelas, Ivan Janssens, and Philippe Ciais
Geosci. Model Dev., 10, 3745–3770, https://doi.org/10.5194/gmd-10-3745-2017, https://doi.org/10.5194/gmd-10-3745-2017, 2017
Short summary
Short summary
We describe a representation of the terrestrial phosphorus cycle for the ORCHIDEE land surface model. The model is able to reproduce the observed shift from nitrogen to phosphorus limited net primary productivity along a soil formation chronosequence in Hawaii, as well as the contrasting responses of net primary productivity to nutrient addition. However, the simulated nutrient use efficiencies are lower, as observed primarily due to biases in the nutrient content and turnover of woody biomass.
Marta Camino-Serrano, Elisabeth Graf Pannatier, Sara Vicca, Sebastiaan Luyssaert, Mathieu Jonard, Philippe Ciais, Bertrand Guenet, Bert Gielen, Josep Peñuelas, Jordi Sardans, Peter Waldner, Sophia Etzold, Guia Cecchini, Nicholas Clarke, Zoran Galić, Laure Gandois, Karin Hansen, Jim Johnson, Uwe Klinck, Zora Lachmanová, Antti-Jussi Lindroos, Henning Meesenburg, Tiina M. Nieminen, Tanja G. M. Sanders, Kasia Sawicka, Walter Seidling, Anne Thimonier, Elena Vanguelova, Arne Verstraeten, Lars Vesterdal, and Ivan A. Janssens
Biogeosciences, 13, 5567–5585, https://doi.org/10.5194/bg-13-5567-2016, https://doi.org/10.5194/bg-13-5567-2016, 2016
Short summary
Short summary
We investigated the long-term trends of dissolved organic carbon (DOC) in soil solution and the drivers of changes in over 100 forest monitoring plots across Europe. An overall increasing trend was detected in the organic layers, but no overall trend was found in the mineral horizons. There are strong interactions between controls acting at local and regional scales. Our findings are relevant for researchers focusing on the link between terrestrial and aquatic ecosystems and for C-cycle models.
Albert Rivas-Ubach, Yina Liu, Jordi Sardans, Malak M. Tfaily, Young-Mo Kim, Eric Bourrianne, Ljiljana Paša-Tolić, Josep Peñuelas, and Alex Guenther
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-209, https://doi.org/10.5194/amt-2016-209, 2016
Revised manuscript not accepted
Anna B. Harper, Peter M. Cox, Pierre Friedlingstein, Andy J. Wiltshire, Chris D. Jones, Stephen Sitch, Lina M. Mercado, Margriet Groenendijk, Eddy Robertson, Jens Kattge, Gerhard Bönisch, Owen K. Atkin, Michael Bahn, Johannes Cornelissen, Ülo Niinemets, Vladimir Onipchenko, Josep Peñuelas, Lourens Poorter, Peter B. Reich, Nadjeda A. Soudzilovskaia, and Peter van Bodegom
Geosci. Model Dev., 9, 2415–2440, https://doi.org/10.5194/gmd-9-2415-2016, https://doi.org/10.5194/gmd-9-2415-2016, 2016
Short summary
Short summary
Dynamic global vegetation models (DGVMs) are used to predict the response of vegetation to climate change. We improved the representation of carbon uptake by ecosystems in a DGVM by including a wider range of trade-offs between nutrient allocation to photosynthetic capacity and leaf structure, based on observed plant traits from a worldwide data base. The improved model has higher rates of photosynthesis and net C uptake by plants, and more closely matches observations at site and global scales.
K. Naudts, J. Ryder, M. J. McGrath, J. Otto, Y. Chen, A. Valade, V. Bellasen, G. Berhongaray, G. Bönisch, M. Campioli, J. Ghattas, T. De Groote, V. Haverd, J. Kattge, N. MacBean, F. Maignan, P. Merilä, J. Penuelas, P. Peylin, B. Pinty, H. Pretzsch, E. D. Schulze, D. Solyga, N. Vuichard, Y. Yan, and S. Luyssaert
Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, https://doi.org/10.5194/gmd-8-2035-2015, 2015
Short summary
Short summary
Despite the potential of forest management to mitigate climate change, none of today's predictions of future climate accounts for the impact of forest management. To address this gap in modelling capability, we developed and parametrised a land-surface model to simulate biogeochemical and biophysical effects of forest management. Comparison of model output against data showed an increased model performance in reproducing large-scale spatial patterns and inter-annual variability over Europe.
R. Wang, Y. Balkanski, O. Boucher, L. Bopp, A. Chappell, P. Ciais, D. Hauglustaine, J. Peñuelas, and S. Tao
Atmos. Chem. Phys., 15, 6247–6270, https://doi.org/10.5194/acp-15-6247-2015, https://doi.org/10.5194/acp-15-6247-2015, 2015
Short summary
Short summary
This study makes a first attempt to estimate the temporal trend of Fe emissions from anthropogenic and natural combustion sources from 1960 to 2007 and the emissions of Fe from mineral dust based on a recent mineralogical database. The new emission inventory is introduced into a global aerosol model. The simulated total Fe and soluble Fe concentrations in surface air as well as the deposition of total Fe are evaluated by observations over major continental and oceanic regions globally.
C. T. Chang, S. Sabaté, D. Sperlich, S. Poblador, F. Sabater, and C. Gracia
Biogeosciences, 11, 6173–6185, https://doi.org/10.5194/bg-11-6173-2014, https://doi.org/10.5194/bg-11-6173-2014, 2014
J. P. Greenberg, J. Peñuelas, A. Guenther, R. Seco, A. Turnipseed, X. Jiang, I. Filella, M. Estiarte, J. Sardans, R. Ogaya, J. Llusia, and F. Rapparini
Atmos. Meas. Tech., 7, 2263–2271, https://doi.org/10.5194/amt-7-2263-2014, https://doi.org/10.5194/amt-7-2263-2014, 2014
S. Vicca, M. Bahn, M. Estiarte, E. E. van Loon, R. Vargas, G. Alberti, P. Ambus, M. A. Arain, C. Beier, L. P. Bentley, W. Borken, N. Buchmann, S. L. Collins, G. de Dato, J. S. Dukes, C. Escolar, P. Fay, G. Guidolotti, P. J. Hanson, A. Kahmen, G. Kröel-Dulay, T. Ladreiter-Knauss, K. S. Larsen, E. Lellei-Kovacs, E. Lebrija-Trejos, F. T. Maestre, S. Marhan, M. Marshall, P. Meir, Y. Miao, J. Muhr, P. A. Niklaus, R. Ogaya, J. Peñuelas, C. Poll, L. E. Rustad, K. Savage, A. Schindlbacher, I. K. Schmidt, A. R. Smith, E. D. Sotta, V. Suseela, A. Tietema, N. van Gestel, O. van Straaten, S. Wan, U. Weber, and I. A. Janssens
Biogeosciences, 11, 2991–3013, https://doi.org/10.5194/bg-11-2991-2014, https://doi.org/10.5194/bg-11-2991-2014, 2014
R. Seco, J. Peñuelas, I. Filella, J. Llusia, S. Schallhart, A. Metzger, M. Müller, and A. Hansel
Atmos. Chem. Phys., 13, 4291–4306, https://doi.org/10.5194/acp-13-4291-2013, https://doi.org/10.5194/acp-13-4291-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Leaf habit and nutrient availability drive leaf nutrient resorption globally
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Biomass Yield Potential, Feedstock Quality, and Nutrient Removal of Perennial Buffer Strips under Continuous Zero Fertilizer Application
Microclimate mapping using novel radiative transfer modelling
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Water uptake patterns of pea and barley responded to drought but not to cropping systems
Geodiversity and biodiversity on a volcanic island: the role of scattered phonolites for plant diversity and performance
The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc)
The biogeographic pattern of microbial communities inhabiting terrestrial mud volcanoes across the Eurasian continent
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Gabriela Sophia, Silvia Caldararu, Benjamin Stocker, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-687, https://doi.org/10.5194/egusphere-2024-687, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect in its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and Do Kyoung Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-203, https://doi.org/10.5194/egusphere-2024-203, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass, as potential income for farmers. In this study, the forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type showed better sustainability than the forage buffer and a continuous yield supply potential.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
David Kienle, Anna Walentowitz, Leyla Sungur, Alessandro Chiarucci, Severin D. H. Irl, Anke Jentsch, Ole R. Vetaas, Richard Field, and Carl Beierkuhnlein
Biogeosciences, 19, 1691–1703, https://doi.org/10.5194/bg-19-1691-2022, https://doi.org/10.5194/bg-19-1691-2022, 2022
Short summary
Short summary
Volcanic islands consist mainly of basaltic rocks. Additionally, there are often occurrences of small phonolite rocks differing in color and surface. On La Palma (Canary Islands), phonolites appear to be more suitable for plants than the omnipresent basalts. Therefore, we expected phonolites to be species-rich with larger plant individuals compared to the surrounding basaltic areas. Indeed, as expected, we found more species on phonolites and larger plant individuals in general.
Vera Porwollik, Susanne Rolinski, Jens Heinke, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Biogeosciences, 19, 957–977, https://doi.org/10.5194/bg-19-957-2022, https://doi.org/10.5194/bg-19-957-2022, 2022
Short summary
Short summary
The study assesses impacts of grass cover crop cultivation on cropland during main-crop off-season periods applying the global vegetation model LPJmL (V.5.0-tillage-cc). Compared to simulated bare-soil fallowing practices, cover crops led to increased soil carbon content and reduced nitrogen leaching rates on the majority of global cropland. Yield responses of main crops following cover crops vary with location, duration of altered management, crop type, water regime, and tillage practice.
Tzu-Hsuan Tu, Li-Ling Chen, Yi-Ping Chiu, Li-Hung Lin, Li-Wei Wu, Francesco Italiano, J. Bruce H. Shyu, Seyed Naser Raisossadat, and Pei-Ling Wang
Biogeosciences, 19, 831–843, https://doi.org/10.5194/bg-19-831-2022, https://doi.org/10.5194/bg-19-831-2022, 2022
Short summary
Short summary
This investigation of microbial biogeography in terrestrial mud volcanoes (MVs) covers study sites over a geographic distance of up to 10 000 km across the Eurasian continent. It compares microbial community compositions' coupling with geochemical data across a 3D space. We demonstrate that stochastic processes operating at continental scales and environmental filtering at local scales drive the formation of patchy habitats and the pattern of diversification for microbes in terrestrial MVs.
Cited articles
Allen, D. J. and Ort, D. R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants, Trends Plant Sci., 6, 36–42, 2001.
Aro, E. M., Virgin, I., and Andersson, B.: Photoinhibition of photosystem, II. Inactivation, protein damage and turnover, Biochim. Biophys. Acta–Bioenerg., 1143, 113–134, 1993.
Aschmann, H.: Distribution and Peculiarity of Mediterranean Ecosystems, in: Mediterranean Type Ecosystems, vol. 7, edited by: Castri, F. and Mooney, H. A., Springer Berlin Heidelberg, Berlin, Heidelberg, 11–19, 1973.
Bernacchi, C. J., Portis, A. R., Nakano, H., Caemmerer, S. Von and Long, S. P.: Temperature response of mesophyll conductance, implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo, Plant Physiol., 130, 1992–1998, https://doi.org/10.1104/pp.008250.water, 2002.
Bertolli, S. C. and Souza, G. M.: The level of environmental noise affects the physiological performance of Glycine max under water deficit, Theor. Exp. Plant Physiol., 25, 36–45, 2013.
Beyschlag, W., Lange, O. L., and Tenhunen, J. D.: Photosynthesis und Wasserhaushalt der immergrünen mediterranen Hartlaubpflanze Arbutus unedo L. im Jahresverlauf am Freilandstandort in Portugal I. Tagesläufe von CO2-Gaswechsel und Transpiration unter natürlichen Bedingungen, Flora, 178, 409–444, 1986.
Björkman, O. and Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins, Planta, 170, 489–504, 1987.
Blumler, M. A.: Winter-deciduous versus evergreen habit in mediterranean regions?: a model, USDA For. Serv. Gen. Tech. Rep PSW-126, 194–197, 1991.
Buckley, T. N. and Diaz-Espejo, A.: Reporting estimates of maximum potential electron transport rate, New Phytol., https://doi.org/10.1111/nph.13018, 2014.
Buschmann, C.: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves, Photosynth. Res., 92, 261–71, https://doi.org/10.1007/s11120-007-9187-8, 2007.
Bussotti, F., Bettini, D., Grossoni, P., Mansuino, S., Nibbi, R., Soda, C., and Tani, C.: Structural and functional traits of Quercus ilex in response to water availability, Eviron. Exp. Bot., 47, 11–23, 2002.
Canadell, J. and Lopez-Soria, L.: Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs, Funct. Ecol., 12, 31–38, https://doi.org/10.1046/j.1365-2435.1998.00154.x, 1998.
Canadell, J., Djema, A., López, B., Lloret, F., Sabaté, S., Siscart, D., and Gracia, C. A.: Structure and dynamics of the root system, in: Ecology of Mediterranean Evergreen Oak Forests, edited by: Rodà, F., Retana, J., Gracia, C. A., and Bellot, J., Springer Berlin, Heidelberg, 47–59, 1999.
Carnicer, J., Barbeta, A., Sperlich, D., Coll, M., and Peñuelas, J.: Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale, Front. Plant Sci., 4, 409, https://doi.org/10.3389/fpls.2013.00409, 2013.
Corcuera, L., Morales, F., Abadia, A., and Gil-Pelegrin, E.: The effect of low temperatures on the photosynthetic apparatus of Quercus ilex subsp. ballota at its lower and upper altitudinal limits in the Iberian peninsula and during a single freezing-thawing cycle, Trees, 19, 99–108, https://doi.org/10.1007/s00468-004-0368-1, 2004.
Cowling, R. M., Rundel, P. W., Lamont, B. B., Arroyo, M. K., and Arianoutsou, M.: Plant diversity in Mediterranean-climate regions, Trends Ecol. Evol., 11, 362–366, 1996.
D'Ambrosio, N., Arena, C., and De Santo, A. V.: Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L., Environ. Exp. Bot., 55, 248–257, https://doi.org/10.1016/j.envexpbot.2004.11.006, 2006.
Demmig-Adams, B. and Adams, W. W.: Photoprotection and other responses of plants to high light stress, Annu. Rev. Pant Physiol. Plant Mol. Biol., 43, 599–626, 1992.
Demmig-Adams, B. and Adams, W. W.: The role of xantophyll cycle carotenoids in the protection of photosynthesis, Trends Plant Sci., 1, 21–26, 1996.
Dolman, a. J., Moors, E. J., and Elbers, J. a.: The carbon uptake of a mid latitude pine forest growing on sandy soil, Agr. Forest Meteorol., 111, 157–170, https://doi.org/10.1016/S0168-1923(02)00024-2, 2002.
Ensminger, I., Berninger, F., and Streb, P.: Response of photosynthesis to low temperature, in: Terrestrial Photosynthesis in a Changing Environment – A Molecular, Physiological and Ecological Approach, edited by: Flexas, J., Loreto, F., and Medrano, H., Cambridge University Press, Cambridge, 272–289, 2012.
Epron, D. and Dreyer, E.: Effects of severe dehydration on leaf photosynthesis in Quercus petruea (Matt.) Liebl.: photosystem II efficiency, photochemical and nonphotochemical fluorescence quenching and electrolyte leakage, Tree Physiol., 10, 273–284, 1992.
Espelta, J. M., Sabaté, S., and Retana, J.: Resprouting dynamics, in: Ecology of Mediterranean Evergreen Oak Forests, edited by: Rodà, F., Retana, J., Gracia, C. A., and Bellot, J., 61–71, 1999.
Farquhar, G. D. and Sharkey, T. D.: Stomatal conductance and photosynthesis, Annu. Rev. Plant Physiol., 33, 317–345, https://doi.org/10.1146/annurev.pp.33.060182.001533, 1982.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthesis CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Flexas, J., Badger, M., Chow, W., Medrano, H., and Osmond, C.: Analysis of the relative increase in photosynthetic O uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress, Plant Physiol., 121, 675–684, 1999.
Flexas, J., Diaz-Espejo, A., Galmés, J., Kaldenhoff, R., Medrano, H., and Ribas-Carbo, M.: Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves, Plant. Cell Environ., 30, 1284–1298, https://doi.org/10.1111/j.1365-3040.2007.01700.x, 2007.
Flexas, J., Escalona, J. M. and Medrano, H.: Down-regulation of photosynthesis by drought under field conditions in grapevine leaves, Aust. J. Plant Physiol., 25(Eq. (8)), 893, https://doi.org/10.1071/PP98054, 1998.
Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., and Medrano, H.: Mesophyll conductance to CO2: current knowledge and future prospects, Plant. Cell Environ., 31, 602–621, https://doi.org/10.1111/j.1365-3040.2007.01757.x, 2008.
Flexas, J., Loreto, F., and Medrano, H.: Terrestrial photosynthesis in a changing environment – a molecular, physiological and ecological approach, edited by: Flexas, J., Loretto, F., and Medrano, H., Cambridge University Press, Cambridge, 2012.
Friend, A. D.: Terrestrial plant production and climate change, J. Exp. Bot., 61, 1293–309, https://doi.org/10.1093/jxb/erq019, 2010.
Fryer, M. J., Andrews, J. R., Oxborough, K., Blowers, D. A., and Baker, N. R.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature, Plant Physiol., 116, 571–580, 1998.
García-Plazaola, J. I., Artetxe, U., and Becceril, María, J.: Diurnal changes in antioxidant and carotenoid composition in the Mediterranean schlerophyll tree Quercus ilex (L.) during winter, Plant Sci., 143, 125–133, 1999a.
García-Plazaola, J. I., Artetxe, U., Duñabeitia, M. K., and Becerril, J. M.: Role of photoprotective systems of Holm-Oak (Quercus ilex) in the adaptation to winter conditions, J. Plant Physiol., 155, 625–630, https://doi.org/10.1016/S0176-1617(99)80064-9, 1999b.
García-Plazaola, J. I., Faria, T., Abadia, J., Abadia, A., Chaves, M. M. and Pereira, J. S.: Seasonal changes in xanthophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under mediterranean climate, J. Experimantal Bot., 48(314), 1667–1674, 1997.
Garcia-Plazaola, J. I., Olano, J. M., Hernandez, A., and Becerril, J. M.: Photoprotection in evergreen Mediterranean plants during sudden periods of intense cold weather, Trees, 17, 285–291, https://doi.org/10.1007/s00468-002-0234-y, 2003a.
Garcia-Plazaola, J. I., Olano, J. M., Hernandez, A., and Becerril, J. M.: Photoprotection in evergreen Mediterranean plants during sudden periods of intense cold weather, Trees, 17, 285–291, https://doi.org/10.1007/s00468-002-0234-y, 2003b.
Genty, B., Briantais, J.-M., and Baker, N. R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 990, 87–92, 1989.
Gracia, C. A., Tello, E., Sabat, S., and Bellot, J.: GOTILWA: an integrated model of water dynamics and forest growth. Ecology of mediterranean evergreen oak forests, in: Ecology of Mediterranean Evergreen Oak Forests, edited by: Rodà, F., Retana, J., Gracia, C. A., and Bellot, J., Springer Berlin Heidelberg, Berlin, 163–178, 1999.
Gratani, L. and Ghia, E.: Adaptive strategy at the leaf level of Arbutus unedo L. to cope with Mediterranean climate, Flora, 197, 275–284, 2002a.
Gratani, L. and Ghia, E.: Changes in morphological and physiological traits during leaf expansion of Arbutus unedo, Environ. Exp. Bot., 48, 51–60, 2002b.
Gratani, L., Pesoli, P., Crescente, M. F., Aichner, K., and Larcher, W.: Photosynthesis as a temperature indicator in Quercus ilex L., Global Planet. Change, 24, 153–163, https://doi.org/10.1016/S0921-8181(99)00061-2, 2000.
Guidi, L. and Calatayud, A.: Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas, Environ. Exp. Bot., 103, 42–52, https://doi.org/10.1016/j.envexpbot.2013.12.007, 2014.
Haldimann, P. and Feller, U.: Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat- dependent reduction of the activation state of ribulose-1, 5- bisphosphate carboxylase/oxy, Plant Cell Environ., 27, 1169–1183, 2004.
Harley, P. C., Loreto, F., Di Marco, G., and Sharkey, T. D.: Theoretical Considerations when Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photosynthesis to CO2, Plant Physiol., 98, 1429–1436, 1992.
Hikosaka, K., Murakami, A., and Hirose, T.: Balancing carboxylation and regeneration of ribulose-1,5- bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia, Plant Cell Environ., 22, 841–849, https://doi.org/10.1046/j.1365-3040.1999.00442.x, 1999.
Huner, N. P. A., Öquist, G., and Sarhan, F.: Energy balance and acclimation to light and cold, Trends Plant Sci., 3, 224–230, https://doi.org/10.1016/S1360-1385(98)01248-5, 1998.
Hurry, V., Strand, A., Furbank, R., and Stitt, M.: The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana, Plant J., 24, 383–396, 2000.
IPCC: IPCC, 2013: Summary for policymakers, in: Climate Change 2013: The Physical Science Basis, edited by: S. T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and Midgley, P. M., Cambridge University Press, Cambridge (UK) and New York (USA), 2013.
Jordan, D. N. and Smith, W. K.: Simulated influence of leaf geometry on sunlight interception and photosynthesis in conifer needles, Tree Physiol., 13, 29–39, 1993.
Kang, C.-Y., Lian, H.-L., Wang, F.-F., Huang, J.-R., and Yang, H.-Q.: Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis, Plant Cell, 21, 2624–2641, https://doi.org/10.1105/tpc.109.069765, 2009.
Kok, B.: A critical consideration of the quantum yield of Chlorella-photosynthesis, Enzymologia, 13, 1–56, 1948.
Kull, O. and Niinemets, U.: Variations in leaf morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellana L., and Lonicera xylosteum L., Tree Physiol., 12, 311–318, 1993.
Kyparissis, A., Drilias, P., and Manetas, Y.: Seasonal fluctuations in photoprotective xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms, Aust. J. Plant Physiol., 27, 265–272, 2000.
Laisk, A., Oja, V., Rasulov, B., Rämma, H., Eichelmann, H., Kasparova, I., Pettai, H., and Padu, E.: A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus, Plant Cell Environ., 25, 923–943, 2002.
Lambrev, P. H., Miloslavina, Y., Jahns, P., and Holzwarth, A. R.: On the relationship between non-photochemical quenching and photoprotection of Photosystem II, Biochim. Biophys. Acta, 1817, 760–769, https://doi.org/10.1016/j.bbabio.2012.02.002, 2012.
Levizou, E., Drilias, P., and Kyparissis, A.: Exceptional photosynthetic performance of Capparis spinosa L. under adverse conditions of Mediterranean summer, Photosynthetica, 42, 229–235, 2004.
Lusk, C. H., Wright, I., and Reich, P. B.: Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats, New Phytol., 160, 329–336, 2003.
Maestre, F. T. and Cortina, J.: Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas?, For. Ecol. Manage., 198, 303–317, https://doi.org/10.1016/j.foreco.2004.05.040, 2004.
Martinez-Ferri, E., Balaguer, L., Valladares, F., Chico, J. M., and Manrique, E.: Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer, Tree Physiol., 20, 131–138, https://doi.org/10.1093/treephys/20.2.131, 2000.
Martínez-Ferri, E., Manrique, E., Valladares, F., and Balaguer, L.: Winter photoinhibition in the field involves different processes in four co-occurring Mediterranean tree species, Tree Physiol., 24, 981–990, 2004.
Matesanz, S. and Valladares, F.: Ecological and evolutionary responses of Mediterranean plants to global change, Environ. Exp. Bot., 103, 53–67, https://doi.org/10.1016/j.envexpbot.2013.09.004, 2014.
Maxwell, K. and Johnson, G. N.: Chlorophyll fluorescence – a practical guide, J. Exp. Bot., 51, 659–668, 2000.
Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. and Woodruff, D. R.: Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance, Funct. Ecol., 23, 922–930, https://doi.org/10.1111/j.1365-2435.2009.01577.x, 2009.
Mitrakos, K.: A theory for Mediterranean plant life, Acta Oecologica/Oecologia Plant., 1, 245–252, 1980.
Mott, K. A. and Buckley, T. N.: Stomatal heterogeneity, J. Experimantal Bot., 49(March), 407–417, 1998.
Mott, K. A. and Buckley, T. N.: Patchy stomatal conductance: emergent collective behaviour of stomata, Trends Plant Sci., 1385, 258–262, 2000.
Mulo, P., Sakurai, I., and Aro, E.-M.: Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair, Biochim. Biophys. Acta, 1817, 247–257, https://doi.org/10.1016/j.bbabio.2011.04.011, 2012.
Munné-Bosch, S. and Peñuelas, J.: Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions, Plant Sci., 166, 1105–1110, https://doi.org/10.1016/j.plantsci.2003.12.034, 2004.
Niinemets, Ü., Oja, V., and Kull, O.: Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees, Plant. Cell Environ., 22, 1497–1513, https://doi.org/10.1046/j.1365-3040.1999.00510.x, 1999.
Niinemets, Ü., Cescatti, A., Rodeghiero, M., and Tosens, T.: Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species, Plant Cell Environ., 28, 1552–1566, https://doi.org/10.1111/j.1365-3040.2005.01392.x, 2005.
Niinemets, Ü., Cescatti, A., Rodeghiero, M., and Tosens, T.: Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex, Plant Cell Environ., 29, 1159–1178, https://doi.org/10.1111/j.1365-3040.2006.01499.x, 2006.
Niinemets, U., Flexas, J., and Peñuelas, J.: Evergreens favored by higher responsiveness to increased CO2, Trends Ecol. Evol., 26, 136–42, https://doi.org/10.1016/j.tree.2010.12.012, 2011.
Ninyerola, M., Pons, X., and Roure, J. M.: A methodological approach of climatological modelling of air temperature and precipitation, Int. J. Climatol., 20, 1823–1841, 2000.
Ogaya, R. and Peñuelas, J.: Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holm Oak Forest, Flora, 198, 132–141, 2003.
Ogaya, R. and Peñuelas, J.: Leaf mass per area ratio in Quercus ilex leaves under a wide range of climatic conditions. The importance of low temperatures, Acta Oecologica, 31(Eq. (2)), 168–173, https://doi.org/10.1016/j.actao.2006.07.004, 2007.
Ogaya, R. and Peñuelas, J.: Leaf mass per area ratio in Quercus ilex leaves under a wide range of climatic conditions. The importance of low temperatures, Acta Oecol., 31, 168–173, https://doi.org/10.1016/j.actao.2006.07.004, 2007.
Oliveira, G. and Peñuelas, J.: Comparative photochemical and phenomorphological responses to winter stress of an evergreen (Quercus ilex L.) and a semi-deciduous (Cistus albidus L.) Mediterranean woody species, Acta Oecologica, 21, 97–107, 2000.
Oliveira, G. and Peñuelas, J.: Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L., and Quercus ilex L., Plant Ecol., 175, 179–191, 2004.
Onoda, Y., Hikosaka, K., and Hirose, T.: Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum., J. Exp. Bot., 56(412), 755–63, https://doi.org/10.1093/jxb/eri052, 2005.
Öquist, G., and Huner, N. P. A.: Photosynthesis of overwintering evergreen plants, Annu. Rev. Plant Biol., 54, 329–55, https://doi.org/10.1146/annurev.arplant.54.072402.115741, 2003.
Orshan, G.: Approaches to the definition of Mediterranean growth forms, in: Mediterranean Type-Ecosystems – the Role of Nutrients, edited by: Kruger, F. J., Mitchell, D. T., and Jarvis, J. U. M., 86–100, Springer-Verlag, Berlin, Heidelberg, 1983.
Peñuelas, J. and Filella, I.: Responses to a Warming World, Science (80), 294, 794–795, https://doi.org/10.1126/science.1066860, 2001.
Peñuelas, J., Sardans, J., Estiarte, M., Ogaya, R., Carnicer, J., Coll, M., Barbeta, A., Rivas-Ubach, A., Llusià, J., Garbulsky, M., Filella, I., and Jump, A. S.: Evidence of current impact of climate change on life: a walk from genes to the biosphere, Glob. Change Biol., 19, 2303–2338, https://doi.org/10.1111/gcb.12143, 2013.
Reich, P. B., Ellsworth, D. S., and Walters, M. B.: Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups, Funct. Ecol., 12, 948–958, https://doi.org/10.1046/j.1365-2435.1998.00274.x, 1998.
Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J.-M., Rambal, S., Dore, S., and Valentini, R.: Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics, Funct. Ecol., 16, 27–39, https://doi.org/10.1046/j.0269-8463.2001.00597.x, 2002.
Sabaté, S. and Gracia, C. A.: Water processes in trees: transpiration and photosynthesis, in: Water for Forests and People in the Mediterranean – What Science Can Tell Us, edited by: Birot, Y., Gracia, C. A., and Palahí, M., European Forest Institut, Joensuu, available at: http://www.efi.int/portal/virtual_library/publications/what_science_can_tell_us/, 72–75, 2011.
Sabaté, S., Sala, A., and Gracia, C. A.: Leaf Traits and Canopy Organisation, in: Ecology of Mediterranean Evergreen Oak Forests, edited by: Rodà, F., Retana, J., Gracia, C. A., and Bellot, J., Springer, Berlin, Heidelberg, 121–131, 1999.
Sanchez-Humanes, B. and Espelta, J. M.: Increased drought reduces acorn production in Quercus ilex coppices: thinning mitigates this effect but only in the short term, Forestry, 84, 73–82, https://doi.org/10.1093/forestry/cpq045, 2011.
Savé, R., Castell, C., and Terrades, J.: Gas Exchange and Water Relations, in Ecology of Mediterranean Evergreen Oak Forests, edited by: Rodà, F., Retana, J., Gracia, C. A., and Bellot, J., Springer, Berlin Heidelberg, 135–144, 1999.
Sharkey, T. D.: Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations., Bot. Rev., 51, 53–105, 1985.
Somot, S., Sevault, F., Déqué, M., and Crépon, M.: 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model, Glob. Planet. Change, 63, 112–126, https://doi.org/10.1016/j.gloplacha.2007.10.003, 2008.
Specht, R. L.: A comparison of the sclerophyllous vegetation characteristics of Mediterranean type climates in France, California, and southern Australia, I. Structure, morphology, and succession, Aust. J. Bot., 17, 277–292, 1969.
Taz, L. and Zeiger, E.: Plant Physiology, 5th edn., edited by: Taz, L. and Zeiger, E. Sinauer Associates, Inc., Sunderland, 2010.
Terashima, I. and Hikosaka, K.: Comparative ecophysiology of leaf and canopy photosynthesis, Plant Cell Environ., 18, 1111–1128, 1995.
Tretiach, M., Bolognini, G., and Rondi, A.: Photosynthetic activity of Quercus ilex at the extremes of a transect between Mediterranean and submediterranean vegetation (Trieste-NE Italy), Flora, 192, 369–378, 1997.
Turnbull, M. H., Whitehead, D., Tissue, D. T., Schuster, W. S. F., Brown, K. J., and Griffin, K. L.: Scaling foliar respiration in two contrasting forest canopies, Funct. Ecol., 17, 101–114, https://doi.org/10.1046/j.1365-2435.2003.00713.x, 2003.
Valladares, F. and Niinemets, Ü.: Shade tolerance, a key plant feature of complex nature and consequences, Annu. Rev. Ecol. Evol. S., 39, 237–257, https://doi.org/10.1146/annurev.ecolsys.39.110707.173506, 2008.
Valladares, F. and Niinemets, Ü.: Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences, Annu. Rev. Ecol. Evol. Syst., 39, 237–257, https://doi.org/10.1146/annurev.ecolsys.39.110707.173506, 2008.
Valladares, F., Zaragoza-Castells, J., Sánchez-Gómez, D., Matesanz, S., Alonso, B., Portsmuth, A., Delgado, A., and Atkin, O. K.: Is shade beneficial for mediterranean shrubs experiencing periods of extreme drought and late-winter frosts?, Ann. Bot., 102, 923–933, https://doi.org/10.1093/aob/mcn182, 2008.
Vass, I.: Molecular mechanisms of photodamage in the Photosystem II complex., Biochim. Biophys. Acta, 1817, 209–217, https://doi.org/10.1016/j.bbabio.2011.04.014, 2012.
Vaz, M., Maroco, J., Ribeiro, N., Gazarini, L. C., Pereira, J. S., and Chaves, M. M.: Leaf-level responses to light in two co-occurring Quercus (Quercus ilex and Quercus suber): leaf structure, chemical composition and photosynthesis, Agroforestry Systems, 82, 173–181, https://doi.org/10.1007/s10457-010-9343-6, 2011.
Verhoeven, A.: Sustained energy dissipation in winter evergreens, New Phytol., 201, 57–65, https://doi.org/10.1111/nph.12466, 2014.
Werner, C., Correia, O., and Beyschlag, W.: Characteristic patterns of chronic and dynamic photoinhibition of different functional grops in a Mediterranean ecosystem, Funct. Plant Biol., 29, 99–1011, 2002.
Wullschleger, S. D.: Biochemical limitations to carbon assimilation in C3 plants – a retrospective analysis of the j curves from 109 species, J. Experimantal Bot., 44, 907–920, 1993.
Yin, X., Struik, P. C., Romero, P., Harbinson, J., Evers, J. B., van der Putten, P. E. L., and Vos, J.: Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy., Plant. Cell Environ., 32, 448–464, https://doi.org/10.1111/j.1365-3040.2009.01934.x, 2009.
Yin, X., Sun, Z., Struik, P. C., and Gu, J.: Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements, J. Exp. Bot., 62, 3489–3499, https://doi.org/10.1093/jxb/err038, 2011.
Zaragoza-Castells, J., Sánchez-Gómez, D., Valladares, F., Hurry, V., and Atkin, O. K.: Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves, Plant. Cell Environ., 30, 820–833, https://doi.org/10.1111/j.1365-3040.2007.01672.x, 2007.
Zavala, M. A., Espelta, J. M., and Retana, J.: Constraints and trade-offs in Mediterranean plant communities: the case of Holm Oak–Aleppo Pine forests, Bot. Rev., 66, 119–149, 2000.
Altmetrics
Final-revised paper
Preprint