Articles | Volume 11, issue 24
https://doi.org/10.5194/bg-11-7331-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-7331-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland, Australia)
K. J. Bloomfield
CORRESPONDING AUTHOR
Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
previously at: School of Geography, University of Leeds, Leeds, LS2 9JT, UK
T. F. Domingues
Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, São Paulo, Brazil
previously at: School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK
Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Garmisch-Partenkirchen, Germany
previously at: School of Geography & Geosciences, University of Saint Andrews, Saint Andrews, KY16 9AL, UK
M. I. Bird
School of Earth and Environmental Sciences and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia
D. M. Crayn
Australian Tropical Herbarium and Centre for Tropical Biodiversity and Climate Change, James Cook University, Cairns, Queensland, Australia
A. Ford
CSIRO Ecosystem Sciences Tropical Forest Research Centre, Atherton, Queensland, Australia
D. J. Metcalfe
CSIRO Ecosystem Sciences Tropical Forest Research Centre, Atherton, Queensland, Australia
G. D. Farquhar
Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
School of Marine and Tropical Biology and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia
previously at: School of Geography, University of Leeds, Leeds, LS2 9JT, UK
Related authors
Henrique Fürstenau Togashi, Iain Colin Prentice, Owen K. Atkin, Craig Macfarlane, Suzanne M. Prober, Keith J. Bloomfield, and Bradley John Evans
Biogeosciences, 15, 3461–3474, https://doi.org/10.5194/bg-15-3461-2018, https://doi.org/10.5194/bg-15-3461-2018, 2018
Short summary
Short summary
Ecosystem models commonly assume that photosynthetic traits, such as carboxylation capacity measured at a standard temperature, are constant in time and therefore do not acclimate. Optimality hypotheses suggest this assumption may be incorrect. We investigated acclimation by carrying out measurements on woody species during distinct seasons in Western Australia. Our study shows evidence that carboxylation capacity should acclimate so that it increases somewhat with growth temperature.
E. M. Veenendaal, M. Torello-Raventos, T. R. Feldpausch, T. F. Domingues, F. Gerard, F. Schrodt, G. Saiz, C. A. Quesada, G. Djagbletey, A. Ford, J. Kemp, B. S. Marimon, B. H. Marimon-Junior, E. Lenza, J. A. Ratter, L. Maracahipes, D. Sasaki, B. Sonké, L. Zapfack, D. Villarroel, M. Schwarz, F. Yoko Ishida, M. Gilpin, G. B. Nardoto, K. Affum-Baffoe, L. Arroyo, K. Bloomfield, G. Ceca, H. Compaore, K. Davies, A. Diallo, N. M. Fyllas, J. Gignoux, F. Hien, M. Johnson, E. Mougin, P. Hiernaux, T. Killeen, D. Metcalfe, H. S. Miranda, M. Steininger, K. Sykora, M. I. Bird, J. Grace, S. Lewis, O. L. Phillips, and J. Lloyd
Biogeosciences, 12, 2927–2951, https://doi.org/10.5194/bg-12-2927-2015, https://doi.org/10.5194/bg-12-2927-2015, 2015
Short summary
Short summary
When nearby forest and savanna stands are compared, they are not as structurally different as first seems. Moreover, savanna-forest transition zones typically occur at higher rainfall for South America than for Africa but with coexistence confined to a well-defined edaphic-climate envelope. With interacting soil cation-soil water storage–precipitations effects on canopy cover also observed we argue that both soils and climate influence the location of the two major tropical vegetation types.
Rahayu Adzhar, Douglas I. Kelley, Ning Dong, Charles George, Mireia Torello Raventos, Elmar Veenendaal, Ted R. Feldpausch, Oliver L. Phillips, Simon L. Lewis, Bonaventure Sonké, Herman Taedoumg, Beatriz Schwantes Marimon, Tomas Domingues, Luzmila Arroyo, Gloria Djagbletey, Gustavo Saiz, and France Gerard
Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, https://doi.org/10.5194/bg-19-1377-2022, 2022
Short summary
Short summary
The MODIS Vegetation Continuous Fields (VCF) product underestimates tree cover compared to field data and could be underestimating tree cover significantly across the tropics. VCF is used to represent land cover or validate model performance in many land surface and global vegetation models and to train finer-scaled Earth observation products. Because underestimation in VCF may render it unsuitable for training data and bias model predictions, it should be calibrated before use in the tropics.
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Weiwei Sun, Enlou Zhang, Jie Chang, James Shulmeister, Michael I. Bird, Cheng Zhao, Qingfeng Jiang, and Ji Shen
Clim. Past, 16, 833–845, https://doi.org/10.5194/cp-16-833-2020, https://doi.org/10.5194/cp-16-833-2020, 2020
Carlos Alberto Quesada, Claudia Paz, Erick Oblitas Mendoza, Oliver Lawrence Phillips, Gustavo Saiz, and Jon Lloyd
SOIL, 6, 53–88, https://doi.org/10.5194/soil-6-53-2020, https://doi.org/10.5194/soil-6-53-2020, 2020
Short summary
Short summary
Amazon soils hold as much carbon (C) as is contained in the vegetation. In this work we sampled soils across 8 different Amazonian countries to try to understand which soil properties control current Amazonian soil C concentrations. We confirm previous knowledge that highly developed soils hold C through clay content interactions but also show a previously unreported mechanism of soil C stabilization in the younger Amazonian soil types which hold C through aluminium organic matter interactions.
Amelie Baomalgré Bougma, Korodjouma Ouattara, Halidou Compaore, Hassan Bismarck Nacro, Caleb Melenya, Samuel Ayodele Mesele, Vincent Logah, Azeez Jamiu Oladipupo, Elmar Veenendaal, and Jonathan Lloyd
SOIL Discuss., https://doi.org/10.5194/soil-2019-87, https://doi.org/10.5194/soil-2019-87, 2020
Preprint withdrawn
Short summary
Short summary
To better understand the development of forest islands in west Africa, our study focused on soil aggregates stability of these patches across a precipitation transect. Soil samples were taken from 0 to 5 cm and 5 to 10 cm depths and aggregate fractions with diameters: > 500, 500–250 μm and 250–53 μm determined using the water sieving method. The results showed significant higher proportion of stable meso and macroaggregates in forest islands and natural savanna compared to agricultural soil.
Friederike Gerschlauer, Gustavo Saiz, David Schellenberger Costa, Michael Kleyer, Michael Dannenmann, and Ralf Kiese
Biogeosciences, 16, 409–424, https://doi.org/10.5194/bg-16-409-2019, https://doi.org/10.5194/bg-16-409-2019, 2019
Short summary
Short summary
Mount Kilimanjaro is an iconic environmental asset under serious threat due to increasing human pressures and climate change constraints. We studied variations in the stable isotopic composition of carbon and nitrogen in plant, litter, and soil material sampled along a strong land-use and altitudinal gradient. Our results show that, besides management, increasing temperatures in a changing climate may promote carbon and nitrogen losses, thus altering the stability of Kilimanjaro ecosystems.
Henrique Fürstenau Togashi, Iain Colin Prentice, Owen K. Atkin, Craig Macfarlane, Suzanne M. Prober, Keith J. Bloomfield, and Bradley John Evans
Biogeosciences, 15, 3461–3474, https://doi.org/10.5194/bg-15-3461-2018, https://doi.org/10.5194/bg-15-3461-2018, 2018
Short summary
Short summary
Ecosystem models commonly assume that photosynthetic traits, such as carboxylation capacity measured at a standard temperature, are constant in time and therefore do not acclimate. Optimality hypotheses suggest this assumption may be incorrect. We investigated acclimation by carrying out measurements on woody species during distinct seasons in Western Australia. Our study shows evidence that carboxylation capacity should acclimate so that it increases somewhat with growth temperature.
David Pelster, Mariana Rufino, Todd Rosenstock, Joash Mango, Gustavo Saiz, Eugenio Diaz-Pines, German Baldi, and Klaus Butterbach-Bahl
Biogeosciences, 14, 187–202, https://doi.org/10.5194/bg-14-187-2017, https://doi.org/10.5194/bg-14-187-2017, 2017
Short summary
Short summary
In order to quantify greenhouse gas fluxes from typical eastern African smallholder farms, we measured flux rates every week for 1 year at 59 farms in western Kenya. These upland soils tend to be small sinks for CH4 and small sources of N2O. The management intensity of the farm plots had no effect on emissions, likely because the variability was low. Plots with trees had higher CH4 uptake than other plots. This suggests that emissions from small, low-input farms in this region are quite low.
Kaniska Mallick, Ivonne Trebs, Eva Boegh, Laura Giustarini, Martin Schlerf, Darren T. Drewry, Lucien Hoffmann, Celso von Randow, Bart Kruijt, Alessandro Araùjo, Scott Saleska, James R. Ehleringer, Tomas F. Domingues, Jean Pierre H. B. Ometto, Antonio D. Nobre, Osvaldo Luiz Leal de Moraes, Matthew Hayek, J. William Munger, and Steven C. Wofsy
Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, https://doi.org/10.5194/hess-20-4237-2016, 2016
Short summary
Short summary
While quantifying vegetation water use over multiple plant function types in the Amazon Basin, we found substantial biophysical control during drought as well as a water-stress period and dominant climatic control during a water surplus period. This work has direct implication in understanding the resilience of the Amazon forest in the spectre of frequent drought menace as well as the role of drought-induced plant biophysical functioning in modulating the water-carbon coupling in this ecosystem.
J. Lloyd and E. M. Veenendaal
Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-660, https://doi.org/10.5194/bg-2015-660, 2016
Revised manuscript not accepted
Short summary
Short summary
Fire has been proposed as the key driver of tropical forest and savanna biome distributions with many tropical ecologists believing that these biomes constitute alternate stable states (ASS). Contributing to an ongoing debate as evidence supporting the existence of ASS in the terrestrial tropics, we find all current arguments presented as supporting the existence of ASS to be flawed, with five specific fallacious argumentation types identified.
J. Lloyd, T. F. Domingues, F. Schrodt, F. Y. Ishida, T. R. Feldpausch, G. Saiz, C. A. Quesada, M. Schwarz, M. Torello-Raventos, M. Gilpin, B. S. Marimon, B. H. Marimon-Junior, J. A. Ratter, J. Grace, G. B. Nardoto, E. Veenendaal, L. Arroyo, D. Villarroel, T. J. Killeen, M. Steininger, and O. L. Phillips
Biogeosciences, 12, 6529–6571, https://doi.org/10.5194/bg-12-6529-2015, https://doi.org/10.5194/bg-12-6529-2015, 2015
Short summary
Short summary
Across tropical South America, forest soils are typically of a higher cation status than their savanna equivalents with soil exchangeable potassium a key soil nutrient differentiating these two vegetation types. Differences in soil water storage capacity are also important – interacting with both potassium availability and precipitation regimes in a relatively complex manner.
G. Saiz, M. Bird, C. Wurster, C. A. Quesada, P. Ascough, T. Domingues, F. Schrodt, M. Schwarz, T. R. Feldpausch, E. Veenendaal, G. Djagbletey, G. Jacobsen, F. Hien, H. Compaore, A. Diallo, and J. Lloyd
Biogeosciences, 12, 5041–5059, https://doi.org/10.5194/bg-12-5041-2015, https://doi.org/10.5194/bg-12-5041-2015, 2015
Short summary
Short summary
We demonstrate and explain differential patterns in SOM dynamics in C3/C4 mixed ecosystems at various spatial scales across contrasting climate and soils. This study shows that the interdependence between biotic and abiotic factors ultimately determines whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results also highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM.
M. Liu, M. Dannenmann, S. Lin, G. Saiz, G. Yan, Z. Yao, D. E. Pelster, H. Tao, S. Sippel, Y. Tao, Y. Zhang, X. Zheng, Q. Zuo, and K. Butterbach-Bahl
Biogeosciences, 12, 4831–4840, https://doi.org/10.5194/bg-12-4831-2015, https://doi.org/10.5194/bg-12-4831-2015, 2015
Short summary
Short summary
We demonstrate for the first time that a ground cover rice production system (GCRPS) significantly increased soil organic C and total N stocks at spatially representative paired sites under varying edaphic conditions. Our results suggest that GCRPS is a stable and sustainable technique that maintains key soil functions, while increasing rice yield and expanding the cultivation into regions where it has been hampered by low seasonal temperatures and/or a lack of irrigation water.
E. M. Veenendaal, M. Torello-Raventos, T. R. Feldpausch, T. F. Domingues, F. Gerard, F. Schrodt, G. Saiz, C. A. Quesada, G. Djagbletey, A. Ford, J. Kemp, B. S. Marimon, B. H. Marimon-Junior, E. Lenza, J. A. Ratter, L. Maracahipes, D. Sasaki, B. Sonké, L. Zapfack, D. Villarroel, M. Schwarz, F. Yoko Ishida, M. Gilpin, G. B. Nardoto, K. Affum-Baffoe, L. Arroyo, K. Bloomfield, G. Ceca, H. Compaore, K. Davies, A. Diallo, N. M. Fyllas, J. Gignoux, F. Hien, M. Johnson, E. Mougin, P. Hiernaux, T. Killeen, D. Metcalfe, H. S. Miranda, M. Steininger, K. Sykora, M. I. Bird, J. Grace, S. Lewis, O. L. Phillips, and J. Lloyd
Biogeosciences, 12, 2927–2951, https://doi.org/10.5194/bg-12-2927-2015, https://doi.org/10.5194/bg-12-2927-2015, 2015
Short summary
Short summary
When nearby forest and savanna stands are compared, they are not as structurally different as first seems. Moreover, savanna-forest transition zones typically occur at higher rainfall for South America than for Africa but with coexistence confined to a well-defined edaphic-climate envelope. With interacting soil cation-soil water storage–precipitations effects on canopy cover also observed we argue that both soils and climate influence the location of the two major tropical vegetation types.
G. Saiz, J. G. Wynn, C. M. Wurster, I. Goodrick, P. N. Nelson, and M. I. Bird
Biogeosciences, 12, 1849–1863, https://doi.org/10.5194/bg-12-1849-2015, https://doi.org/10.5194/bg-12-1849-2015, 2015
Short summary
Short summary
Around half of all pyrogenic carbon (charcoal+soot) derived from wildfires comes from semi-annual burning of tropical savannas. This pyrogenic carbon is significant because it is a component of global aerosols capable of modulating the greenhouse effect and is resistant to degradation. We use controlled field burns in northern Australian savannas to determine how much pyrogenic carbon is formed, how much of this is recalcitrant and how it is partitioned between ground residues and airborne soot.
M. O. Johnson, M. Gloor, M. J. Kirkby, and J. Lloyd
Biogeosciences, 11, 6873–6894, https://doi.org/10.5194/bg-11-6873-2014, https://doi.org/10.5194/bg-11-6873-2014, 2014
Short summary
Short summary
We present a soil evolution model which incorporates the major processes of pedogenesis: mineral weathering, leaching, erosion, bioturbation, nutrient cycling and organic carbon inputs. We compare the modelled soil properties with soil chronosequences from Hawaii and demonstrate that the model captures well the key components of soil development. The model also highlights the important role that vegetation plays in accelerating the weathering and the release of globally important nutrients.
N. M. Fyllas, E. Gloor, L. M. Mercado, S. Sitch, C. A. Quesada, T. F. Domingues, D. R. Galbraith, A. Torre-Lezama, E. Vilanova, H. Ramírez-Angulo, N. Higuchi, D. A. Neill, M. Silveira, L. Ferreira, G. A. Aymard C., Y. Malhi, O. L. Phillips, and J. Lloyd
Geosci. Model Dev., 7, 1251–1269, https://doi.org/10.5194/gmd-7-1251-2014, https://doi.org/10.5194/gmd-7-1251-2014, 2014
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Gap geometry, seasonality and associated losses of biomass – combining UAV imagery and field data from a Central Amazon forest
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Water uptake patterns of pea and barley responded to drought but not to cropping systems
Geodiversity and biodiversity on a volcanic island: the role of scattered phonolites for plant diversity and performance
The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc)
The biogeographic pattern of microbial communities inhabiting terrestrial mud volcanoes across the Eurasian continent
Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems
Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes
Bioaerosols and atmospheric ice nuclei in a Mediterranean dryland: community changes related to rainfall
Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50 ha plot
Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model
Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment – results from UAS-based high-resolution remote sensing
Patterns in recent and Holocene pollen accumulation rates across Europe – the Pollen Monitoring Programme Database as a tool for vegetation reconstruction
Capturing functional strategies and compositional dynamics in vegetation demographic models
Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest: reconciling remote sensing data and field observations
Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests
The motion of trees in the wind: a data synthesis
The importance of antecedent vegetation and drought conditions as global drivers of burnt area
Evaluating the potential for Haloarchaea to serve as ice nucleating particles
A survey of proximal methods for monitoring leaf phenology in temperate deciduous forests
Recent above-ground biomass changes in central Chukotka (Russian Far East) using field sampling and Landsat satellite data
Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-47, https://doi.org/10.5194/bg-2023-47, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather which would be omitted in more controlled settings. They offer a high level of realism, but are underused in combination with vegetation models, used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for earth system understanding.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-251, https://doi.org/10.5194/bg-2022-251, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Our study confirms the reliability of drone images for monitoring canopy dynamics of dense tropical forests. We combined two years of monthly drone-acquired RGB (red-green-blue) imagery with field surveys in a Central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Although not related to variations in gap area, the studied modes of tree mortality and branch fall were associated with biomass losses.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
David Kienle, Anna Walentowitz, Leyla Sungur, Alessandro Chiarucci, Severin D. H. Irl, Anke Jentsch, Ole R. Vetaas, Richard Field, and Carl Beierkuhnlein
Biogeosciences, 19, 1691–1703, https://doi.org/10.5194/bg-19-1691-2022, https://doi.org/10.5194/bg-19-1691-2022, 2022
Short summary
Short summary
Volcanic islands consist mainly of basaltic rocks. Additionally, there are often occurrences of small phonolite rocks differing in color and surface. On La Palma (Canary Islands), phonolites appear to be more suitable for plants than the omnipresent basalts. Therefore, we expected phonolites to be species-rich with larger plant individuals compared to the surrounding basaltic areas. Indeed, as expected, we found more species on phonolites and larger plant individuals in general.
Vera Porwollik, Susanne Rolinski, Jens Heinke, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Biogeosciences, 19, 957–977, https://doi.org/10.5194/bg-19-957-2022, https://doi.org/10.5194/bg-19-957-2022, 2022
Short summary
Short summary
The study assesses impacts of grass cover crop cultivation on cropland during main-crop off-season periods applying the global vegetation model LPJmL (V.5.0-tillage-cc). Compared to simulated bare-soil fallowing practices, cover crops led to increased soil carbon content and reduced nitrogen leaching rates on the majority of global cropland. Yield responses of main crops following cover crops vary with location, duration of altered management, crop type, water regime, and tillage practice.
Tzu-Hsuan Tu, Li-Ling Chen, Yi-Ping Chiu, Li-Hung Lin, Li-Wei Wu, Francesco Italiano, J. Bruce H. Shyu, Seyed Naser Raisossadat, and Pei-Ling Wang
Biogeosciences, 19, 831–843, https://doi.org/10.5194/bg-19-831-2022, https://doi.org/10.5194/bg-19-831-2022, 2022
Short summary
Short summary
This investigation of microbial biogeography in terrestrial mud volcanoes (MVs) covers study sites over a geographic distance of up to 10 000 km across the Eurasian continent. It compares microbial community compositions' coupling with geochemical data across a 3D space. We demonstrate that stochastic processes operating at continental scales and environmental filtering at local scales drive the formation of patchy habitats and the pattern of diversification for microbes in terrestrial MVs.
Sami W. Rifai, Martin G. De Kauwe, Anna M. Ukkola, Lucas A. Cernusak, Patrick Meir, Belinda E. Medlyn, and Andy J. Pitman
Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, https://doi.org/10.5194/bg-19-491-2022, 2022
Short summary
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Renée Hermans, Rebecca McKenzie, Roxane Andersen, Yit Arn Teh, Neil Cowie, and Jens-Arne Subke
Biogeosciences, 19, 313–327, https://doi.org/10.5194/bg-19-313-2022, https://doi.org/10.5194/bg-19-313-2022, 2022
Short summary
Short summary
Peatlands are a significant global carbon store, which can be compromised by drainage and afforestation. We measured the peat decomposition under a 30-year-old drained forest plantation: 115 ± 16 g C m−2 yr−1, ca. 40 % of total soil respiration. Considering input of litter from trees, our results indicate that the soils in these 30-year-old drained and afforested peatlands are a net sink for C, since substantially more C enters the soil as organic matter than is decomposed heterotrophically.
Kai Tang, Beatriz Sánchez-Parra, Petya Yordanova, Jörn Wehking, Anna T. Backes, Daniel A. Pickersgill, Stefanie Maier, Jean Sciare, Ulrich Pöschl, Bettina Weber, and Janine Fröhlich-Nowoisky
Biogeosciences, 19, 71–91, https://doi.org/10.5194/bg-19-71-2022, https://doi.org/10.5194/bg-19-71-2022, 2022
Short summary
Short summary
Metagenomic sequencing and freezing experiments of aerosol samples collected on Cyprus revealed rain-related short-term changes of bioaerosol and ice nuclei composition. Filtration experiments showed a rain-related enhancement of biological ice nuclei > 5 µm and < 0.1 µm. The observed effects of rainfall on the composition of atmospheric bioaerosols and ice nuclei may influence the hydrological cycle as well as the health effects of air particulate matter (pathogens, allergens).
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021, https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Short summary
Our study contributed to improving the understanding of temporal variation and climate correlates of canopy disturbances mainly caused by treefalls and branchfalls. We used a unique dataset of 5 years of approximately monthly drone-acquired RGB (red–green–blue) imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama. We found that canopy disturbance rates were highly temporally variable, were higher in the wet season, and were related to extreme rainfall events.
Adrian Gustafson, Paul A. Miller, Robert G. Björk, Stefan Olin, and Benjamin Smith
Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021, https://doi.org/10.5194/bg-18-6329-2021, 2021
Short summary
Short summary
We performed model simulations of vegetation change for a historic period and a range of climate change scenarios at a high spatial resolution. Projected treeline advance continued at the same or increased rates compared to our historic simulation. Temperature isotherms advanced faster than treelines, revealing a lag in potential vegetation shifts that was modulated by nitrogen availability. At the year 2100 projected treelines had advanced by 45–195 elevational metres depending on the scenario.
Marc Wehrhan, Daniel Puppe, Danuta Kaczorek, and Michael Sommer
Biogeosciences, 18, 5163–5183, https://doi.org/10.5194/bg-18-5163-2021, https://doi.org/10.5194/bg-18-5163-2021, 2021
Short summary
Short summary
UAS remote sensing provides a promising tool for new insights into Si biogeochemistry at catchment scale. Our study on an artificial catchment shows surprisingly high silicon stocks in the biomass of two grass species (C. epigejos, 7 g m−2; P. australis, 27 g m−2). The distribution of initial sediment properties (clay, Tiron-extractable Si, nitrogen, plant-available potassium) controlled the spatial distribution of C. epigejos. Soil wetness determined the occurrence of P. australis.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Boris Sakschewski, Werner von Bloh, Markus Drüke, Anna Amelia Sörensson, Romina Ruscica, Fanny Langerwisch, Maik Billing, Sarah Bereswill, Marina Hirota, Rafael Silva Oliveira, Jens Heinke, and Kirsten Thonicke
Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, https://doi.org/10.5194/bg-18-4091-2021, 2021
Short summary
Short summary
This study shows how local adaptations of tree roots across tropical and sub-tropical South America explain patterns of biome distribution, productivity and evapotranspiration on this continent. By allowing for high diversity of tree rooting strategies in a dynamic global vegetation model (DGVM), we are able to mechanistically explain patterns of mean rooting depth and the effects on ecosystem functions. The approach can advance DGVMs and Earth system models.
Toby D. Jackson, Sarab Sethi, Ebba Dellwik, Nikolas Angelou, Amanda Bunce, Tim van Emmerik, Marine Duperat, Jean-Claude Ruel, Axel Wellpott, Skip Van Bloem, Alexis Achim, Brian Kane, Dominick M. Ciruzzi, Steven P. Loheide II, Ken James, Daniel Burcham, John Moore, Dirk Schindler, Sven Kolbe, Kilian Wiegmann, Mark Rudnicki, Victor J. Lieffers, John Selker, Andrew V. Gougherty, Tim Newson, Andrew Koeser, Jason Miesbauer, Roger Samelson, Jim Wagner, Anthony R. Ambrose, Andreas Detter, Steffen Rust, David Coomes, and Barry Gardiner
Biogeosciences, 18, 4059–4072, https://doi.org/10.5194/bg-18-4059-2021, https://doi.org/10.5194/bg-18-4059-2021, 2021
Short summary
Short summary
We have all seen trees swaying in the wind, but did you know that this motion can teach us about ecology? We summarized tree motion data from many different studies and looked for similarities between trees. We found that the motion of trees in conifer forests is quite similar to each other, whereas open-grown trees and broadleaf forests show more variation. It has been suggested that additional damping or amplification of tree motion occurs at high wind speeds, but we found no evidence of this.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Jessie M. Creamean, Julio E. Ceniceros, Lilyanna Newman, Allyson D. Pace, Thomas C. J. Hill, Paul J. DeMott, and Matthew E. Rhodes
Biogeosciences, 18, 3751–3762, https://doi.org/10.5194/bg-18-3751-2021, https://doi.org/10.5194/bg-18-3751-2021, 2021
Short summary
Short summary
Microorganisms have the unique ability to form ice in clouds at relatively warm temperatures, especially specific types of plant bacteria. However, to date, members of the domain Archaea have not been evaluated for their cloud-forming capabilities. Here, we show the first results of Haloarchaea that have the ability to form cloud ice at moderate supercooled temperatures that are found in hypersaline environments on Earth.
Kamel Soudani, Nicolas Delpierre, Daniel Berveiller, Gabriel Hmimina, Jean-Yves Pontailler, Lou Seureau, Gaëlle Vincent, and Éric Dufrêne
Biogeosciences, 18, 3391–3408, https://doi.org/10.5194/bg-18-3391-2021, https://doi.org/10.5194/bg-18-3391-2021, 2021
Short summary
Short summary
We present an exhaustive comparative survey of eight proximal methods to estimate forest phenology. We focused on methodological aspects and thoroughly assessed deviations between predicted and observed phenological dates and pointed out their main causes. We show that proximal methods provide robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Dushyant Kumar, Mirjam Pfeiffer, Camille Gaillard, Liam Langan, and Simon Scheiter
Biogeosciences, 18, 2957–2979, https://doi.org/10.5194/bg-18-2957-2021, https://doi.org/10.5194/bg-18-2957-2021, 2021
Short summary
Short summary
In this paper, we investigated the impact of climate change and rising CO2 on biomes using a vegetation model in South Asia, an often neglected region in global modeling studies. Understanding these impacts guides ecosystem management and biodiversity conservation. Our results indicate that savanna regions are at high risk of woody encroachment and transitioning into the forest, and the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and CO2.
Cited articles
Acres, B. D., Bower, R. P., Burrough, P. A., Folland, C. J., Kalsi, M. S., Thomas, P., and Wright, P. S.: The soils of Sabah, Ministry of Overseas Development, Surrey, England, 1975.
Adam, P.: Australian rainforests, Clarendon Press, Oxford, 1992.
Asner, G. P., Martin, R. E., Ford, A. J., Metcalfe, D. J., and Liddell, M. J.: Leaf chemical and spectral diversity in Australian tropical forests, Ecol. Appl., 19, 236–253, 2009.
Banin, L., Lewis, S. L., Lopez-Gonzalez, G., Baker, T. R., Quesada, C. A., Chao, K.-J., Burslem, D. F. R. P., Nilus, R., Abu Salim, K., Keeling, H. C., Tan, S., Davies, S. J., Monteagudo Mendoza, A., Vásquez, R., Lloyd, J., Neill, D. A., Pitman, N., and Phillips, O. L.: Tropical forest wood production: a cross-continental comparison, J. Ecol., 102, 1025–1037, 2014.
Beadle, N. C. W.: Soil phosphate and delimitation of plant communities in Eastern Australia II, Ecology, 43, 281–288, 1962.
Beadle, N. C. W.: Soil phosphate and its role in molding segments of Australian flora and vegetation with special reference to xeromorphy and sclerophylly, Ecology, 47, 992–1007, 1966.
Booth, B. B. B., Jones, C. D., Collins, M., Totterdell, I. J., Cox, P. M., Sitch, S., Huntingford, C., Betts, R. A., Harris, G. R., and Lloyd, J.: High sensitivity of future global warming to land carbon cycle processes, Environ. Res. Lett., 7, 024002, 2012.
Buckley, T. N., Miller, J. M., and Farquhar, G. D.: The mathematics of linked optimisation for water and nitrogen use in a canopy, Silva Fennica, 36, 639–669, 2002.
Burrows, G. E.: Comparative anatomy of the photosynthetic organs of 39 xeromorphic species from subhumid New South Wales, Australia, Internat. J. Plant Sci., 162, 411–430, 2001.
Carswell, F. E., Meir, P., Wandelli, E. V., Bonates, L. C. M., Kruijt, B., Barbosa, E. M., Nobre, A. D., Grace, J., and Jarvis, P. G.: Photosynthetic capacity in a central Amazonian rain forest, Tree Physiol., 20, 179–186, 2000.
Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M., and Turner, B. L.: Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia, Agr. Forest Meteorol., 151, 1462–1470, 2011.
Cernusak, L. A., Winter, K., and Turner, B. L.: Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls, New Phytol., 185, 770–779, 2010.
Chazdon, R. L.: Photosynthetic plasticity of two rain forest shrubs across natural gap transects, Oecologia, 92, 586–595, 1992.
Cochrane, T. T.: Chemical properties of native savanna and forest soils in central Brazil, Soil Sci. Soc. Am. J., 53, 139–141, 1989.
Coste, S., Roggy, J. C., Imbert, P., Born, C., Bonal, D., and Dreyer, E.: Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance, Tree Physiol., 25, 1127–1137, 2005.
Crayn, D. M., Costion, C., and Harrington, M.: The Sahul-Sunda floristic exchange: dated molecular phylogenies document post-Miocene intercontinental dispersal dynamics, J. Biogeogr., 42, 11–24, 2014.
Crisp, M. D., West, J. G., and Linder, H. P.: Biogeography of the terrestrial flora, in: Flora of Australia, edited by: Orchard, A. E. and Thompson, H. S., CSIRO, Melbourne, 1999.
Denton, M. D., Veneklaas, E. J., Freimoser, F. M., and Lambers, H.: Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus, Plant Cell Environ., 30, 1557–1565, 2007.
Domingues, T. F., Ishida, F. Y., Feldpausch, T. R., Grace, J., Meir, P., Saiz, G., Sene, O., Schrodt, F., Sonké, B., Taedoumg, H., Veenendaal, E. M., Lewis, S., and Lloyd, J.: Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon, Oecologia, in press, 2014.
Domingues, T. F., Meir, P., Feldpausch, T. R., Saiz, G., Veenendaal, E. M., Schrodt, F., Bird, M., Djagbletey, G., Hien, F., Compaore, H., Diallo, A., Grace, J., and Lloyd, J.: Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands, Plant Cell Environ., 33, 959–980, 2010.
Flexas, J., Ribas-Carbo, M., Diaz-Espejo, A., Galmes, J., and Medrano, H.: Mesophyll conductance to CO2: current knowledge and future prospects, Plant Cell Environ., 31, 602–621, 2008.
Fyllas, N. M., Patiño, S., Baker, T. R., Bielefeld Nardoto, G., Martinelli, L. A., Quesada, C. A., Paiva, R., Schwarz, M., Horna, V., Mercado, L. M., Santos, A., Arroyo, L., Jiménez, E. M., Luizão, F. J., Neill, D. A., Silva, N., Prieto, A., Rudas, A., Silviera, M., Vieira, I. C. G., Lopez-Gonzalez, G., Malhi, Y., Phillips, O. L., and Lloyd, J.: Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate, Biogeosciences, 6, 2677–2708, https://doi.org/10.5194/bg-6-2677-2009, 2009.
Fyllas, N. M., Quesada, C. A., and Lloyd, J.: Deriving Plant Functional Types for Amazonian forests for use in vegetation dynamics models, Perspectives in Plant Ecol. Evolut. System., 14, 97–110, 2012.
Gleason, S. M., Read, J., Ares, A., and Metcalfe, D. J.: Phosphorus economics of tropical rainforest species and stands across soil contrasts in Queensland, Australia: understanding the effects of soil specialization and trait plasticity, Funct. Ecol., 23, 1157–1166, 2009.
Gloor, M., Gatti, L., Brienen, R., Feldpausch, T. R., Phillips, O. L., Miller, J., Ometto, J. P., Rocha, H., Baker, T., de Jong, B., Houghton, R. A., Malhi, Y., Aragão, L. E. O. C., Guyot, J.-L., Zhao, K., Jackson, R., Peylin, P., Sitch, S., Poulter, B., Lomas, M., Zaehle, S., Huntingford, C., Levy, P., and Lloyd, J.: The carbon balance of South America: a review of the status, decadal trends and main determinants, Biogeosciences, 9, 5407–5430, https://doi.org/10.5194/bg-9-5407-2012, 2012.
Harrison, M. T., Edwards, E. J., Farquhar, G. D., Nicotra, A. B., and Evans, J. R.: Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency, Plant Cell Environ., 32, 259–270, 2009.
Hikosaka, K.: Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance, J. Plant Res., 117, 481–494, 2004.
Hikosaka, K. and Shigeno, A.: The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity, Oecologia, 160, 443–451, 2009.
Hoffmann, W. A., Adasme, R., Haridasan, M., de Carvalho, M. T., Geiger, E. L., Pereira, M. A. B., Gotsch, S. G., and Franco, A. C.: Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil, Ecology, 90, 1326–1337, 2009.
Hoffmann, W. A., Geiger, E. L., Gotsch, S. G., Rossatto, D. R., Silva, L. C. R., Lau, O. L., Haridasan, M., and Franco, A. C.: Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes, Ecol. Lett., 15, 759–768, 2012.
Hothorn, T., Hornik, K., van de Wiel, M. A. V., and Zeileis, A.: Implementing a Class of Permutation Tests: The coin Package, J. Statist. Software, 28, 1–23, 2008.
Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., Lomas, M., Walker, A. P., Jones, C. D., Booth, B. B. B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, S. L., Phillips, O. L., Atkin, O. K., Lloyd, J., Gloor, E., Zaragoza-Castells, J., Meir, P., Betts, R., Harris, P. P., Nobre, C., Marengo, J., and Cox, P. M.: Simulated resilience of tropical rainforests to CO2-induced climate change, Nat. Geosci., 6, 268–273, 2013.
Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models, Glob. Change Biol., 15, 976–991, 2009.
Larcher, W.: Effect of environmental and physiological variables on carbon dioxide gas exchange of trees, Photosynthetica, 3, 167–198, 1969.
Legendre, P. and Legendre, L.: Numerical ecology, Elsevier, Amsterdam, 2012.
Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A., and Bond, W. J.: Deciphering the distribution of the savanna biome, New Phytologist, 191, 197–209, 2011.
Lloyd, J., Bird, M. I., Vellen, L., Miranda, A. C., Veenendaal, E. M., Djagbletey, G., Miranda, H. S., Cook, G., and Farquhar, G. D.: Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate, Tree Physiol., 28, 451-=468, 2008.
Lloyd, J., Bloomfield, K., Domingues, T. F., and Farquhar, G. D.: Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand?, New Phytologist, 199, 311=-321, 2013.
Lloyd, J., Goulden, M., Ometto, J. P., Fyllas, N. M., Quesada, C. A., and Patiño, S.: Ecophysiology of forest and savanna vegetation, in: Amazonia and Global Change, edited by: Keller, M., Gash, J., and Silva Dias, P., American Geophysical Union, Washington, DC, 463–484, 2009.
Lloyd, J., Patiño, S., Paiva, R. Q., Nardoto, G. B., Quesada, C. A., Santos, A. J. B., Baker, T. R., Brand, W. A., Hilke, I., Gielmann, H., Raessler, M., Luizão, F. J., Martinelli, L. A., and Mercado, L. M.: Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees, Biogeosciences, 7, 1833–1859, https://doi.org/10.5194/bg-7-1833-2010, 2010.
Malhi, Y., Aragao, L., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., and Meir, P.: Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest, Proc. Natl. Acad. Sci. USA, 106, 20610–20615, 2009.
Maximov, N. A.: The plant in relation to water: a study of the physiological basis of drought resistance, George Allen and Unwin, London, 1929.
McKenzie, N. J., Jacquier, D., Isbell, R. F., and Brown, K.: Australian soils and landscapes: an illustrated compendium, CSIRO Publishing, Collingwood, Victoria, 2004.
Medina, E.: Nutrient balance and physiological processes at the leaf level, in: Physiological ecology of plants of the wet tropics, edited by: Medina, E., Mooney, H. A., and Vázuez-Yánes, C., W. Junk Publishers, The Hague, 139–154, 1984.
Meir, P., Levy, P. E., Grace, J., and Jarvis, P. G.: Photosynthetic parameters from two contrasting woody vegetation types in West Africa, Plant Ecology, 192, 277–287, 2007.
Mercado, L. M., Patiño, S., Domingues, T. F., Fyllas, N. M., Weedon, G. P., Sitch, S., Quesada, C. A., Phillips, O. L., Aragao, L., Malhi, Y., Dolman, A. J., Restrepo-Coupe, N., Saleska, S. R., Baker, T. R., Almeida, S., Higuchi, N., and Lloyd, J.: Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply, Philosoph. Trans. Roy. Soc. B, 366, 3316–3329, 2011.
Mott, K. A., Gibson, A. C., and Oleary, J. W.: The adaptive significance of amphistomatic leaves, Plant Cell Environ., 5, 455–460, 1982.
Niinemets, U.: Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species, Funct. Ecol., 11, 518–531, 1997.
Ohta, S. and Effendi, S.: Ultisols of "lowland Dipterocarp forest" in East Kalimantan, Indonesia II. Status of carbon, nitrogen and phosphorus, Soil Sci. Plant Nutrit., 38, 207–216, 1992.
Parkhurst, D. F.: The adaptive significance of stomatal occurrence on one or both surfaces of leaves, J. Ecol., 66, 367–383, 1978.
Poorter, L.: Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits, Funct. Ecol., 13, 396–410, 1999.
Popma, J., Bongers, F., and Werger, M. J. A.: Gap-dependence and leaf characteristics of trees in a tropical lowland rain-forest in Mexico, Oikos, 63, 207–214, 1992.
Prior, L. D., Bowman, D., and Eamus, D.: Intra-specific variation in leaf attributes of four savanna tree species across a rainfall gradient in tropical Australia, Austr. J. Bot., 53, 323–335, 2005.
Pyykko, M.: The leaf anatomy of East Patagonian xerophytic plants, Ann. bot. fennici, 3, 453–622, 1966.
Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C., Fyllas, N. M., Martinelli, L., Nardoto, G. B., Schmerler, J., Santos, A. J. B., Hodnett, M. G., Herrera, R., Luizão, F. J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W. A., Geilmann, H., Moraes Filho, J. O., Carvalho, F. P., Araujo Filho, R. N., Chaves, J. E., Cruz Junior, O. F., Pimentel, T. P., and Paiva, R.: Variations in chemical and physical properties of Amazon forest soils in relation to their genesis, Biogeosciences, 7, 1515–1541, https://doi.org/10.5194/bg-7-1515-2010, 2010.
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, S., Alvarez Dávila, E., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E. M., Killeen, T., Lezama, A. T., Lloyd, G., López-González, G., Luizão, F. J., Malhi, Y., Monteagudo, A., Neill, D. A., Núñez Vargas, P., Paiva, R., Peacock, J., Peñuela, M. C., Peña Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., Ramírez, H., Rudas, A., Salomão, R., Santos, A. J. B., Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., and Lloyd, J.: Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate, Biogeosciences, 9, 2203–2246, https://doi.org/10.5194/bg-9-2203-2012, 2012.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2011.
Raaimakers, D., Boot, R. G. A., Dijkstra, P., Pot, S., and Pons, T.: Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees, Oecologia, 102, 120–125, 1995.
Ratter, J. A.: Transition between Cerrado and forest vegetation in Brazil, in: Nature and dynamics of forest-savanna boundaries, edited by: Furley, P., Proctor, J. and Ratter, J. A., Chapman and Hall, London, 417–429, 1992.
Reich, P. B., Oleksyn, J., and Wright, I. J.: Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species, Oecologia, 160, 207–212, 2009.
Russell-Smith, J., Stanton, P. J., Whitehead, P. J., and Edwards, A.: Rain forest invasion of eucalypt-dominated woodland savanna, iron range, north-eastern Australia: I. Successional processes, J. Biogeogr., 31, 1293–1303, 2004.
Saiz, G., Bird, M. I., Domingues, T., Schrodt, F., Schwarz, M., Feldpausch, T. R., Veenendaal, E., Djagbletey, G., Hien, F., Compaore, H., Diallo, A., and Lloyd, J.: Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa, Glob. Change Biol., 18, 1670–1683, 2012.
Santiago, L. S. and Mulkey, S. S.: A test of gas exchange measurements on excised canopy branches of ten tropical tree species, Photosynthetica, 41, 343–347, 2003.
Schmimper, A. F. W.: Plant-geography upon a Physiological Basis, Clarendon Press, Oxford, 1903.
Schrodt, F., Domingues, T. F., Feldpausch, T. R., Saiz, G., Quesada, C. A., Schwarz, M., Ishida, F. Y., Compaore, H., Diallo, A., Djagbletey, G., Hien, F., Hiernaux, P., Mougin, E., Sonké, B., Zapfack, L., Bird, M., Lewis, S. L., Meir, P., Phillips, O. L., Grace, J., Veenendaal, E. M., and Lloyd, J.: Foliar trait contrasts between African forest and savanna trees: Genetic versus environmental effects, Funct. Plant Biol., 42, 63–83, 2014.
Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C., and Woodward, F. I.: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs), Glob. Change Biol., 14, 2015–2039, 2008.
Sniderman, J. M. K. and Jordan, G. J.: Extent and timing of floristic exchange between Australian and Asian rain forests, J. Biogeogr., 38, 1445–1455, 2011.
Spain, A. V.: Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils, Australian Journal of Soil Research, 28, 825–839, 1990.
Swaine, M. D. and Whitmore, T. C.: On the definition of ecological species groups in tropical rain forests, Vegetatio, 75, 81–86, 1988.
Takashima, T., Hikosaka, K., and Hirose, T.: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species, Plant Cell Environ., 27, 1047–1054, 2004.
Tessins, E. and Jusop, S.: Quantitative relationships between mineralogy and properties of tropical soils, Universiti Pertanian Malaysia, Serdang, Selangor, 1983.
Thompson, J., Viana, J., Proctor, J., and Ratter, J. A.: Contrasting forest-savanna boundaries on Maraca Island, Roraima, Brazil, in: Nature and dynamics of forest-savanna boundaries, edited by: Furley, P., Proctor, J., and Ratter, J. A., Chapman and Hall, London, 367–392, 1992.
Torello-Raventos, M., Feldpausch, T. R., Veenendaal, E., Schrodt, F., Saiz, G., Domingues, T. F., Djagbletey, G., Ford, A., Kemp, J., Marimon, B. S., Marimon, B. H., Lenza, E., Ratter, J. A., Maracahipes, L., Sasaki, D., Sonke, B., Zapfack, L., Taedoumg, H., Villarroel, D., Schwarz, M., Quesada, C. A., Ishida, F. Y., Nardoto, G. B., Affum-Baffoe, K., Arroyo, L., Bowman, D., Compaore, H., Davies, K., Diallo, A., Fyllas, N. M., Gilpin, M., Hien, F., Johnson, M., Killeen, T. J., Metcalfe, D., Miranda, H. S., Steininger, M., Thomson, J., Sykora, K., Mougin, E., Hiernaux, P., Bird, M. I., Grace, J., Lewis, S. L., Phillips, O. L., and Lloyd, J.: On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions, Plant Ecology & Diversity, 6, 101–137, 2013.
Townsend, A. R., Cleveland, C. C., Asner, G. P., and Bustamante, M. M. C.: Controls over foliar N : P ratios in tropical rain forests, Ecology, 88, 107–118, 2007.
Turner, I. M.: The ecology of trees in the tropical rain forest, Cambridge University Press, Cambridge, 2001.
Veenendaal, E. M., Swaine, M. D., Lecha, R. T., Walsh, M. F., Abebrese, I. K., and OwusuAfriyie, K.: Responses of West African forest tree seedlings to irradiance and soil fertility, Funct. Ecol., 10, 501–511, 1996.
Veenendaal, E. M., Torello-Raventos, M., Feldpausch, T. R., Domingues, T. F., Gerard, F., Schrodt, F., Saiz, G., Quesada, C. A., Djagbletey, G., Ford, A., Kemp, J., Marimon, B. S., Marimon-Junior, B. H., Lenza, E., Ratter, J. A., Maracahipes, L., Sasaki, D., Sonké, B., Zapfack, L., Villarroel, D., Schwarz, M., Yoko Ishida, F., Gilpin, M., Nardoto, G. B., Affum-Baffoe, K., Arroyo, L., Bloomfield, K., Ceca, G., Compaore, H., Davies, K., Diallo, A., Fyllas, N. M., Gignoux, J., Hien, F., Johnson, M., Mougin, E., Hiernaux, P., Killeen, T., Metcalfe, D., Miranda, H. S., Steininger, M., Sykora, K., Bird, M. I., Grace, J., Lewis, S., Phillips, O. L., and Lloyd, J.: Structural, physiognomic and aboveground biomass variation in savanna-forest transition zones on three continents. How different are co-occurring savanna and forest formations?, Biogeosciences Discuss., 11, 4591–4636, https://doi.org/10.5194/bgd-11-4591-2014, 2014.
Vitousek, P. M.: Litterfall, nutrient cycling and nutrient limitation in tropical forests, Ecology, 65, 285–298, 1984.
Warren, C. R.: Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer, J. Experim. Botany, 59, 1475–1487, 2008.
Warton, D. I., Wright, I. J., Falster, D. S., and Westoby, M.: Bivariate line-fitting methods for allometry, Biol. Rev., 81, 259–291, 2006.
Webb, L. J.: Environmental relationships of the structural types of Australian rain forest vegetation, Ecology, 49, 296–311, 1968.
Westoby, M. and Wright, I. J.: Land-plant ecology on the basis of functional traits, Trends in Ecology & Evolution, 21, 261–268, 2006.
Whitehead, P. W., Stephenson, P. J., McDougall, I., Hopkins, M. S., Grahams, A. W., Collerson, K. D., and Johnson, D. P.: Temporal development of the Atherton Basalt Province, north Queensland, Austr. J. Earth Sci., 54, 691–709, 2007.
Wright, I. J., Reich, P. B., and Westoby, M.: Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats, Funct. Ecol., 15, 423–434, 2001.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R.: The worldwide leaf economics spectrum, Nature, 428, 821–827, 2004.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M.: Mixed effects models and extensions in ecology with R, Springer Science, New York, USA, 2009.
Altmetrics
Final-revised paper
Preprint