Articles | Volume 12, issue 5
https://doi.org/10.5194/bg-12-1339-2015
https://doi.org/10.5194/bg-12-1339-2015
Research article
 | Highlight paper
 | 
04 Mar 2015
Research article | Highlight paper |  | 04 Mar 2015

Evaluation of coral reef carbonate production models at a global scale

N. S. Jones, A. Ridgwell, and E. J. Hendy

Related authors

Characterizing the marine iodine cycle and its relationship to ocean deoxygenation in an Earth system model
Keyi Cheng, Andy Ridgwell, and Dalton S. Hardisty
Biogeosciences, 21, 4927–4949, https://doi.org/10.5194/bg-21-4927-2024,https://doi.org/10.5194/bg-21-4927-2024, 2024
Short summary
A diatom extension to the cGEnIE Earth system model – EcoGEnIE 1.1
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024,https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023,https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021,https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
A model for marine sedimentary carbonate diagenesis and paleoclimate proxy signal tracking: IMP v1.0
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021,https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary

Related subject area

Biogeochemistry: Biomineralization
The calcitic test growth rate of Spirillina vivipara (Foraminifera)
Yukiko Nagai, Katsuyuki Uematsu, Briony Mamo, and Takashi Toyofuku
Biogeosciences, 21, 1675–1684, https://doi.org/10.5194/bg-21-1675-2024,https://doi.org/10.5194/bg-21-1675-2024, 2024
Short summary
Impact of seawater sulfate concentration on sulfur concentration and isotopic composition in calcite of two cultured benthic foraminifera
Caroline Thaler, Guillaume Paris, Marc Dellinger, Delphine Dissard, Sophie Berland, Arul Marie, Amandine Labat, and Annachiara Bartolini
Biogeosciences, 20, 5177–5198, https://doi.org/10.5194/bg-20-5177-2023,https://doi.org/10.5194/bg-20-5177-2023, 2023
Short summary
Marked recent declines in boron in Baltic Sea cod otoliths – a bellwether of incipient acidification in a vast hypoxic system?
Karin E. Limburg, Yvette Heimbrand, and Karol Kuliński
Biogeosciences, 20, 4751–4760, https://doi.org/10.5194/bg-20-4751-2023,https://doi.org/10.5194/bg-20-4751-2023, 2023
Short summary
Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools
Narimane Dorey, Sophie Martin, and Lester Kwiatkowski
Biogeosciences, 20, 4289–4306, https://doi.org/10.5194/bg-20-4289-2023,https://doi.org/10.5194/bg-20-4289-2023, 2023
Short summary
Biomineralization of amorphous Fe-, Mn- and Si-rich mineral phases by cyanobacteria under oxic and alkaline conditions
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023,https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary

Cited articles

Australian Institute of Marine Science (AIMS): Coral calcification in massive Porites of the Great Barrier Reef, over a 400 year period, available at: http://data.aims.gov.au/metadataviewer/uuid/ff433c10-ea4d-11dc-823c-00008a07204e (last access: 30 January 2014), 2014a.
Australian Institute of Marine Science (AIMS): Growth of Western Australian corals in the Anthropocene, available at: http://data.aims.gov.au/metadataviewer/uuid/4f39c641-8450-4ea0-b2b6-4f3d582645f8 (last access: 14 Febuary 2014), 2014b.
Albright, R., Langdon, C., and Anthony, K. R. N.: Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef, Biogeosciences, 10, 6747–6758, https://doi.org/10.5194/bg-10-6747-2013, 2013.
Allemand, D., Tambutté, É., Zoccola, D., and Tambutte, S.: Coral calcification, cells to reefs, in: Coral reefs: an ecosystem in transition, edited by: Dubinsky, Z. and Stambler, N., Springer, Dordrecht, Netherlands, 119–150, 2011.
Almany, G. R., Connolly, S. R., Heath, D. D., Hogan, J. D., Jones, G. P., McCook, L. J., Mills, M., Pressey, R. L., and Williamson, D. H.: Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs, Coral Reefs, 28, 339–351, 2009.
Download
Short summary
Production of calcium carbonate by coral reefs is important in the global carbon cycle. Using a global framework we evaluate four models of reef calcification against observed values. The temperature-only model showed significant skill in reproducing coral calcification rates. The absence of any predictive power for whole reef systems highlights the importance of coral cover and the need for an ecosystem modelling approach accounting for population dynamics in terms of mortality and recruitment.
Altmetrics
Final-revised paper
Preprint