Articles | Volume 12, issue 5
Biogeosciences, 12, 1387–1401, 2015
https://doi.org/10.5194/bg-12-1387-2015
Biogeosciences, 12, 1387–1401, 2015
https://doi.org/10.5194/bg-12-1387-2015
Research article
05 Mar 2015
Research article | 05 Mar 2015

Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean

L. A. Salt et al.

Related authors

Dynamics of air–sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations
P. Marrec, T. Cariou, E. Macé, P. Morin, L. A. Salt, M. Vernet, B. Taylor, K. Paxman, and Y. Bozec
Biogeosciences, 12, 5371–5391, https://doi.org/10.5194/bg-12-5371-2015,https://doi.org/10.5194/bg-12-5371-2015, 2015

Related subject area

Biogeochemistry: Open Ocean
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022,https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Observation-constrained estimates of the global ocean carbon sink from Earth System Models
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-134,https://doi.org/10.5194/bg-2022-134, 2022
Revised manuscript accepted for BG
Short summary
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022,https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022,https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Global nutrient cycling by commercially targeted marine fish
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022,https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary

Cited articles

Álvarez, M., Lo Monaco, C., Tanhua, T., Yool, A., Oschlies, A., Bullister, J. L., Goyet, C., Metzl, N., Touratier, F., McDonagh, E., and Bryden, H. L.: Estimating the storage of anthropogenic carbon in the subtropical Indian Ocean: a comparison of five different approaches, Biogeosciences, 6, 681–703, https://doi.org/10.5194/bg-6-681-2009, 2009.
Álvarez, M., Tanhua, T., Brix, H., Lo Monaco, C., Metzl, N., McDonagh, E. L., and Bryden H. L.: Decadal biogeochemical changes in the subtropical Indian Ocean associated with Subantarctic Mode Water, J. Geophys. Res., 116, C09016, https://doi.org/10.1029/2010JC006475, 2011.
Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L., Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The CO2 system in the Mediterranean Sea: a basin wide perspective, Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, 2014.
Bednarsek, N., Tarling, G. A., Bakker, D. C. E., Fielding, S., Jones, E. M., Venables, H. J., Ward, P., Kuzirian, A., Lézé, B., Feely, R. A., and Murphy, E. J.: Extensive dissolution of live pteropods in the Southern Ocean, Nat. Geosci., 5, 881–885, https://doi.org/10.1038/NGEO1635, 2012.
Bindoff, N. L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, C. K., Talley, L. D., and Unnikrishnan, A.: Observations: Oceanic Climate Change and Sea Level, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 385–432, 2007.
Download
Short summary
The increase in anthropogenic atmospheric carbon dioxide is mitigated by uptake by the world ocean, which alters the pH of the water. In the South Atlantic we find the highest rates of acidification relative to increase in anthropogenic carbon (Cant) found in Subantarctic Mode Water and Antarctic Intermediate Water. The moderate rates of increase in Cant combined with low buffering capacities, due to low salinity and alkalinity values, have caused rapid acidification in the Subantarctic Zone.
Altmetrics
Final-revised paper
Preprint