Articles | Volume 13, issue 5
https://doi.org/10.5194/bg-13-1571-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1571-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries
Pierre Ploton
CORRESPONDING AUTHOR
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Institut des sciences et industries du vivant et de l'environnement,
Montpellier, France
Nicolas Barbier
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Stéphane Takoudjou Momo
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Maxime Réjou-Méchain
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Centre de coopération internationale en recherche agronomique pour
le développement, Montpellier, France
Geomatics and Applied Informatics Laboratory (LIAG), French Institute of
Pondicherry, Puducherry, India
Faustin Boyemba Bosela
Faculté des Sciences, Université de Kisangani, Kisangani,
Democratic Republic of Congo
Georges Chuyong
Department of Botany and Plant Physiology, University of Buea, Buea,
Cameroon
Gilles Dauby
Institut de Recherche pour le Développement, UMR-DIADE, Montpellier,
France
Evolutionary Biology and Ecology, Faculté des Sciences,
Université Libre de Bruxelles, Brussels, Belgium
Vincent Droissart
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Herbarium et Bibliothèque de Botanique africaine, Université
Libre de Bruxelles, Brussels, Belgium
Adeline Fayolle
Research axis on Forest Resource Management of the Biosystem
engineering (BIOSE), Gembloux Agro-Bio Tech, Université de Liège,
Gembloux, Belgium
Rosa Calisto Goodman
Yale School of Forestry and Environmental Studies, New Haven, USA
Matieu Henry
Food and Agriculture Organization of the United Nations, Rome, Italy
Narcisse Guy Kamdem
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
John Katembo Mukirania
Faculté des Sciences, Université de Kisangani, Kisangani,
Democratic Republic of Congo
David Kenfack
Center for Tropical Forest Science, Harvard University, Cambridge, USA
Moses Libalah
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Alfred Ngomanda
Institut de Recherche en Ecologie Tropicale, Libreville, Gabon
Vivien Rossi
Centre de coopération internationale en recherche agronomique pour
le développement, Montpellier, France
Département d'Informatique, Université de Yaoundé I, UMMISCO, Yaoundé, Cameroon
Bonaventure Sonké
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Nicolas Texier
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Duncan Thomas
Department of Botany and Plant Pathology, Oregon State University,
Corvallis, USA
Donatien Zebaze
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Pierre Couteron
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Uta Berger
Technische Universität Dresden, Faculty of Environmental Sciences,
Institute of Forest Growth and Forest Computer Sciences, Tharandt, Germany
Raphaël Pélissier
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Related authors
No articles found.
Sylvain Schmitt, Fabian Fischer, James Ball, Nicolas Barbier, Marion Boisseaux, Damien Bonal, Benoit Burban, Xiuzhi Chen, Géraldine Derroire, Jeremy Lichstein, Daniela Nemetschek, Natalia Restrepo-Coupe, Scott Saleska, Giacomo Sellan, Philippe Verley, Grégoire Vincent, Camille Ziegler, Jérôme Chave, and Isabelle Maréchaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3106, https://doi.org/10.5194/egusphere-2024-3106, 2024
Short summary
Short summary
We evaluate the capability of TROLL 4.0, a simulator of forest dynamics, to represent tropical forest structure, diversity and functioning in two Amazonian forests. Evaluation data include forest inventories, carbon and water fluxes between the forest and the atmosphere, and leaf area and canopy height from remote-sensing products. The model realistically predicts the structure and composition, and the seasonality of carbon and water fluxes at both sites.
Nicolas Picard, Noël Fonton, Faustin Boyemba Bosela, Adeline Fayolle, Joël Loumeto, Gabriel Ngua Ayecaba, Bonaventure Sonké, Olga Diane Yongo Bombo, Hervé Martial Maïdou, and Alfred Ngomanda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2302, https://doi.org/10.5194/egusphere-2024-2302, 2024
Short summary
Short summary
Allometric equations predict tree biomass and are crucial for estimating forest carbon storage, thus assessing forests' role in climate change mitigation. Usually, these equations are selected based on tree-level predictive performance. However, we evaluated the model performance at plot and forest levels, finding it varies with plot size. This has significant implications for reducing uncertainty in biomass estimates at these levels.
Nidhi Jha, Nitin Kumar Tripathi, Wirong Chanthorn, Warren Brockelman, Anuttara Nathalang, Raphaël Pélissier, Siriruk Pimmasarn, Pierre Ploton, Nophea Sasaki, Salvatore G. P. Virdis, and Maxime Réjou-Méchain
Biogeosciences, 17, 121–134, https://doi.org/10.5194/bg-17-121-2020, https://doi.org/10.5194/bg-17-121-2020, 2020
Short summary
Short summary
Carbon stocks and dynamics are both uncertain in tropical forests, especially in Asia. We here quantify the carbon stock and recovery rate of a Thai landscape using airborne lidar and four decades of Landsat data. We show that the landscape has a high carbon stock despite its disturbance history and that secondary forests are accumulating carbon at high rate. Our study shows the potential synergy of remote sensing and field data to characterize the carbon dynamics of tropical forests.
Fabien H. Wagner, Bruno Hérault, Damien Bonal, Clément Stahl, Liana O. Anderson, Timothy R. Baker, Gabriel Sebastian Becker, Hans Beeckman, Danilo Boanerges Souza, Paulo Cesar Botosso, David M. J. S. Bowman, Achim Bräuning, Benjamin Brede, Foster Irving Brown, Jesus Julio Camarero, Plínio Barbosa Camargo, Fernanda C. G. Cardoso, Fabrício Alvim Carvalho, Wendeson Castro, Rubens Koloski Chagas, Jérome Chave, Emmanuel N. Chidumayo, Deborah A. Clark, Flavia Regina Capellotto Costa, Camille Couralet, Paulo Henrique da Silva Mauricio, Helmut Dalitz, Vinicius Resende de Castro, Jaçanan Eloisa de Freitas Milani, Edilson Consuelo de Oliveira, Luciano de Souza Arruda, Jean-Louis Devineau, David M. Drew, Oliver Dünisch, Giselda Durigan, Elisha Elifuraha, Marcio Fedele, Ligia Ferreira Fedele, Afonso Figueiredo Filho, César Augusto Guimarães Finger, Augusto César Franco, João Lima Freitas Júnior, Franklin Galvão, Aster Gebrekirstos, Robert Gliniars, Paulo Maurício Lima de Alencastro Graça, Anthony D. Griffiths, James Grogan, Kaiyu Guan, Jürgen Homeier, Maria Raquel Kanieski, Lip Khoon Kho, Jennifer Koenig, Sintia Valerio Kohler, Julia Krepkowski, José Pires Lemos-Filho, Diana Lieberman, Milton Eugene Lieberman, Claudio Sergio Lisi, Tomaz Longhi Santos, José Luis López Ayala, Eduardo Eijji Maeda, Yadvinder Malhi, Vivian R. B. Maria, Marcia C. M. Marques, Renato Marques, Hector Maza Chamba, Lawrence Mbwambo, Karina Liana Lisboa Melgaço, Hooz Angela Mendivelso, Brett P. Murphy, Joseph J. O'Brien, Steven F. Oberbauer, Naoki Okada, Raphaël Pélissier, Lynda D. Prior, Fidel Alejandro Roig, Michael Ross, Davi Rodrigo Rossatto, Vivien Rossi, Lucy Rowland, Ervan Rutishauser, Hellen Santana, Mark Schulze, Diogo Selhorst, Williamar Rodrigues Silva, Marcos Silveira, Susanne Spannl, Michael D. Swaine, José Julio Toledo, Marcos Miranda Toledo, Marisol Toledo, Takeshi Toma, Mario Tomazello Filho, Juan Ignacio Valdez Hernández, Jan Verbesselt, Simone Aparecida Vieira, Grégoire Vincent, Carolina Volkmer de Castilho, Franziska Volland, Martin Worbes, Magda Lea Bolzan Zanon, and Luiz E. O. C. Aragão
Biogeosciences, 13, 2537–2562, https://doi.org/10.5194/bg-13-2537-2016, https://doi.org/10.5194/bg-13-2537-2016, 2016
E. M. Veenendaal, M. Torello-Raventos, T. R. Feldpausch, T. F. Domingues, F. Gerard, F. Schrodt, G. Saiz, C. A. Quesada, G. Djagbletey, A. Ford, J. Kemp, B. S. Marimon, B. H. Marimon-Junior, E. Lenza, J. A. Ratter, L. Maracahipes, D. Sasaki, B. Sonké, L. Zapfack, D. Villarroel, M. Schwarz, F. Yoko Ishida, M. Gilpin, G. B. Nardoto, K. Affum-Baffoe, L. Arroyo, K. Bloomfield, G. Ceca, H. Compaore, K. Davies, A. Diallo, N. M. Fyllas, J. Gignoux, F. Hien, M. Johnson, E. Mougin, P. Hiernaux, T. Killeen, D. Metcalfe, H. S. Miranda, M. Steininger, K. Sykora, M. I. Bird, J. Grace, S. Lewis, O. L. Phillips, and J. Lloyd
Biogeosciences, 12, 2927–2951, https://doi.org/10.5194/bg-12-2927-2015, https://doi.org/10.5194/bg-12-2927-2015, 2015
Short summary
Short summary
When nearby forest and savanna stands are compared, they are not as structurally different as first seems. Moreover, savanna-forest transition zones typically occur at higher rainfall for South America than for Africa but with coexistence confined to a well-defined edaphic-climate envelope. With interacting soil cation-soil water storage–precipitations effects on canopy cover also observed we argue that both soils and climate influence the location of the two major tropical vegetation types.
M. Réjou-Méchain, H. C. Muller-Landau, M. Detto, S. C. Thomas, T. Le Toan, S. S. Saatchi, J. S. Barreto-Silva, N. A. Bourg, S. Bunyavejchewin, N. Butt, W. Y. Brockelman, M. Cao, D. Cárdenas, J.-M. Chiang, G. B. Chuyong, K. Clay, R. Condit, H. S. Dattaraja, S. J. Davies, A. Duque, S. Esufali, C. Ewango, R. H. S. Fernando, C. D. Fletcher, I. A. U. N. Gunatilleke, Z. Hao, K. E. Harms, T. B. Hart, B. Hérault, R. W. Howe, S. P. Hubbell, D. J. Johnson, D. Kenfack, A. J. Larson, L. Lin, Y. Lin, J. A. Lutz, J.-R. Makana, Y. Malhi, T. R. Marthews, R. W. McEwan, S. M. McMahon, W. J. McShea, R. Muscarella, A. Nathalang, N. S. M. Noor, C. J. Nytch, A. A. Oliveira, R. P. Phillips, N. Pongpattananurak, R. Punchi-Manage, R. Salim, J. Schurman, R. Sukumar, H. S. Suresh, U. Suwanvecho, D. W. Thomas, J. Thompson, M. Uríarte, R. Valencia, A. Vicentini, A. T. Wolf, S. Yap, Z. Yuan, C. E. Zartman, J. K. Zimmerman, and J. Chave
Biogeosciences, 11, 6827–6840, https://doi.org/10.5194/bg-11-6827-2014, https://doi.org/10.5194/bg-11-6827-2014, 2014
Short summary
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
J. O. Bosire, J. J. Kaino, A. O. Olagoke, L. M. Mwihaki, G. M. Ogendi, J. G. Kairo, U. Berger, and D. Macharia
Biogeosciences, 11, 2623–2634, https://doi.org/10.5194/bg-11-2623-2014, https://doi.org/10.5194/bg-11-2623-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
G. Viennois, N. Barbier, I. Fabre, and P. Couteron
Biogeosciences, 10, 6957–6967, https://doi.org/10.5194/bg-10-6957-2013, https://doi.org/10.5194/bg-10-6957-2013, 2013
M. N. I. Khan, S. Sharma, U. Berger, N. Koedam, F. Dahdouh-Guebas, and A. Hagihara
Biogeosciences, 10, 2803–2814, https://doi.org/10.5194/bg-10-2803-2013, https://doi.org/10.5194/bg-10-2803-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Crowd-sourced trait data can be used to delimit global biomes
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Microclimate mapping using novel radiative transfer modelling
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Water uptake patterns of pea and barley responded to drought but not to cropping systems
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024, https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass as potential income for farmers. The forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type buffer showed better sustainability than the forage buffer and a continuous yield supply potential.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
EGUsphere, https://doi.org/10.5194/egusphere-2024-1800, https://doi.org/10.5194/egusphere-2024-1800, 2024
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem growth. Traditional large-scale data lack the precision needed for complex terrains, e.g. mountainous regions. This study introduces a new model to enhance radiation data resolution using elevation maps, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features. Tested on Mont Ventoux, this method significantly improves radiation estimates, benefiting forest growth and climate risk models.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
Cited articles
Avitabile, V., Herold, M., Henry, M., and Schmullius, C.: Mapping biomass
with remote sensing: a comparison of methods for the case study of Uganda,
Carbon Balance and Management, 6, 1–14, 2011.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M.,
Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., and Friedl, M.
A.: Estimated carbon dioxide emissions from tropical deforestation improved
by carbon-density maps, Nature Climate Change, 2, 182–185, 2012.
Barthélémy, D. and Caraglio, Y.: Plant Architecture: A Dynamic,
Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny,
Ann. Bot., 99, 375–407, https://doi.org/10.1093/aob/mcl260, 2007.
Baskerville, G. L.: Use of Logarithmic Regression in the Estimation of Plant
Biomass, Can. J. Forest Res., 2, 49–53, https://doi.org/10.1139/x72-009, 1972.
Bastin, J.-F., Barbier, N., Réjou-Méchain, M., Fayolle, A.,
Gourlet-Fleury, S., Maniatis, D., de Haulleville, T., Baya, F., Beeckman, H.,
and Beina, D.: Seeing Central African forests through their largest trees,
Scientific Reports, 5, 13156, https://doi.org/10.1038/srep13156, 2015.
Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., and Li, S.:
FNN: fast nearest neighbor search algorithms and applications, R package
version 1.1., 2013.
Brown, S., Gillespie, A. J., and Lugo, A. E.: Biomass estimation methods for
tropical forests with applications to forest inventory data, For. Sci.,
35, 881–902, 1989.
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M.,
Culvenor, D., Avitabile, V., Disney, M., Armston, J., and Kaasalainen, M.:
Nondestructive estimates of above-ground biomass using terrestrial laser
scanning, edited by: McMahon, S., Methods in Ecology and Evolution, 6, 198–208,
https://doi.org/10.1111/2041-210X.12301, 2015.
Cannell, M. G. R.: Woody biomass of forest stands, Forest Ecol. Manag.,
8, 299–312, https://doi.org/10.1016/0378-1127(84)90062-8, 1984.
Chambers, J. Q., dos Santos, J., Ribeiro, R. J., and Higuchi, N.: Tree
damage, allometric relationships, and above-ground net primary production in
central Amazon forest, Forest Ecol. Manag., 152, 73–84, 2001.
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D.,
Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson,
B. W., Ogawa, H., Puig, H., Riéra, B., and Yamakura, T.: Tree allometry
and improved estimation of carbon stocks and balance in tropical forests,
Oecologia, 145, 87–99, https://doi.org/10.1007/s00442-005-0100-x, 2005.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne,
A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12,
351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x, 2009.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E.,
Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M.,
Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A.,
Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira,
E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M.,
Saldarriaga, J. G., and Vieilledent, G.: Improved allometric models to
estimate the aboveground biomass of tropical trees, Glob. Change Biol.,
20, 3177–3190, https://doi.org/10.1111/gcb.12629, 2014.
Chen, Q., Vaglio Laurin, G., and Valentini, R.: Uncertainty of remotely
sensed aboveground biomass over an African tropical forest: Propagating
errors from trees to plots to pixels, Remote Sens. Environ., 160, 134–143,
https://doi.org/10.1016/j.rse.2015.01.009, 2015.
Chuyong, G. B., Condit, R., Kenfack, D., Losos, E., Sainge, M., Songwe, N. C., and Thomas, D. W.:
Korup forest dynamics plot, Cameroon, in: Forest
diversity and dynamism: findings from a large-scale plot network, edited by: Losos, E. C. and Leigh Jr., E. G., University
of Chicago Press, Chicago, 506–516, 2004.
Clark, D. B. and Clark, D. A.: Abundance, growth and mortality of very large
trees in neotropical lowland rain forest, Forest Ecol. Manag., 80,
235–244, https://doi.org/10.1016/0378-1127(95)03607-5, 1996.
Clark, D. B. and Kellner, J. R.: Tropical forest biomass estimation and the
fallacy of misplaced concreteness, J. Veg. Sci., 23, 1191–1196,
https://doi.org/10.1111/j.1654-1103.2012.01471.x, 2012.
Cleveland, W. S., Grosse, E., and Shyu, W. M.: Local regression models, Stat. Model., 8, 309–376, 1992.
Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K.: IPCC
guidelines for national greenhouse gas inventories, Inst. Glob. Environ.
Strateg. Hayama Jpn., 2006.
Eloy, C.: Leonardo's rule, self-similarity and wind-induced stresses in
trees, Phys. Rev. Lett., 107, 258101,
https://doi.org/10.1103/PhysRevLett.107.258101, 2011.
Enquist, B. J.: Universal scaling in tree and vascular plant allometry:
toward a general quantitative theory linking plant form and function from
cells to ecosystems, Tree Physiol., 22, 1045–1064,
https://doi.org/10.1093/treephys/22.15-16.1045, 2002.
Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N., and Lejeune, P.:
Tree allometry in Central Africa: Testing the validity of pantropical
multi-species allometric equations for estimating biomass and carbon stocks,
Forest Ecol. Manag., 305, 29–37, https://doi.org/10.1016/j.foreco.2013.05.036, 2013.
Freedman, B., Duinker, P. N., Barclay, H., Morash, R., and Prager, U.: Forest
biomass and nutrient studies in central Nova Scotia, Inf. Rep. Marit. For.
Res. Cent. Can., (M-X-134), 126 pp., 1982.
Goodman, R. C., Phillips, O. L., and Baker, T. R.: Data from: The importance
of crown dimensions to improve tropical tree biomass estimates,
available at: http://dx.doi.org/10.5061/dryad.p281g (last access: 17 May
2015), 2013.
Goodman, R. C., Phillips, O. L., and Baker, T. R.: The importance of crown
dimensions to improve tropical tree biomass estimates, Ecol. Appl., 24,
680–698, 2014.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., and Loveland, T. R.:
High-resolution global maps of 21st-century forest cover change, Science,
342, 850–853, 2013.
Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas,
W., Hansen, M. C., Potapov, P. V., and Lotsch, A.: Baseline map of carbon
emissions from deforestation in tropical regions, Science, 336,
1573–1576, 2012.
Hasenauer, H. and Monserud, R. A.: A crown ratio model for Austrian forests,
Forest Ecol. Manag., 84, 49–60, https://doi.org/10.1016/0378-1127(96)03768-1, 1996.
Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-Bredu, S., Valentini,
R., Bernoux, M., and Saint-André, L.: Wood density, phytomass variations
within and among trees, and allometric equations in a tropical rainforest of
Africa, Forest Ecol. Manag., 260, 1375–1388,
https://doi.org/10.1016/j.foreco.2010.07.040, 2010.
Holdaway, M. R.: Modeling Tree Crown Ratio, Forest Chron., 62, 451–455,
https://doi.org/10.5558/tfc62451-5, 1986.
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., and Birdsey, R. A.:
National-Scale Biomass Estimators for United States Tree Species, For. Sci.,
49, 12–35, 2003.
King, D. and Loucks, O. L.: The theory of tree bole and branch form, Radiat. Environ. Bioph., 15, 141–165, https://doi.org/10.1007/BF01323263, 1978.
Legendre, P.: lmodel2: Model II Regression. R package version 1.7-0, See
Httpcran R-Proj, Orgwebpackageslmodel2, 2011.
Lewis, S. L., Sonke, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G.,
van der Heijden, G. M. F., Phillips, O. L., Affum-Baffoe, K., Baker, T. R.,
Banin, L., Bastin, J.-F., Beeckman, H., Boeckx, P., Bogaert, J., De
Canniere, C., Chezeaux, E., Clark, C. J., Collins, M., Djagbletey, G.,
Djuikouo, M. N. K., Droissart, V., Doucet, J.-L., Ewango, C. E. N., Fauset,
S., Feldpausch, T. R., Foli, E. G., Gillet, J.-F., Hamilton, A. C., Harris,
D. J., Hart, T. B., de Haulleville, T., Hladik, A., Hufkens, K., Huygens,
D., Jeanmart, P., Jeffery, K. J., Kearsley, E., Leal, M. E., Lloyd, J.,
Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Ojo, L., Peh, K.
S.-H., Pickavance, G., Poulsen, J. R., Reitsma, J. M., Sheil, D., Simo, M.,
Steppe, K., Taedoumg, H. E., Talbot, J., Taplin, J. R. D., Taylor, D.,
Thomas, S. C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L. J. T.,
Willcock, S., Woell, H., and Zemagho, L.: Above-ground biomass and structure
of 260 African tropical forests, Philos. T. R. Soc. B,
368, 20120295–20120295, https://doi.org/10.1098/rstb.2012.0295, 2013.
Magnabosco Marra, D., Higuchi, N., Trumbore, S. E., Ribeiro, G. H. P. M., dos Santos, J.,
Carneiro, V. M. C., Lima, A. J. N., Chambers, J. Q., Negrón-Juárez, R. I., Holzwarth, F., Reu, B.,
and Wirth, C.: Predicting biomass of hyperdiverse and structurally complex Central Amazon forests – a virtual approach
using extensive field data, Biogeosciences Discuss., accepted, 12, 15537–15581, https://doi.org/10.5194/bgd-12-15537-2015, 2015.
Mäkelä, A. and Valentine, H. T.: Crown ratio influences allometric scaling
of trees, Ecology, 87, 2967–2972,
https://doi.org/10.1890/0012-9658(2006)87[2967:CRIASI]2.0.CO;2, 2006.
Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane,
T., Meir, P., Chave, J., Almeida, S., and Arroyo, L.: The regional variation
of aboveground live biomass in old-growth Amazonian forests, Glob. Change
Biol., 12, 1107–1138, 2006.
Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A., and Schnitzer, S. A.:
Minimizing Bias in Biomass Allometry: Model Selection and Log-Transformation
of Data, Biotropica, 43, 649–653, https://doi.org/10.1111/j.1744-7429.2011.00798.x,
2011.
McMahon, T. A. and Kronauer, R. E.: Tree structures: deducing the principle
of mechanical design, J. Theor. Biol., 59, 443–466, 1976.
Mitchard, E. T., Saatchi, S. S., Baccini, A., Asner, G. P., Goetz, S. J.,
Harris, N. L., and Brown, S.: Uncertainty in the spatial distribution of
tropical forest biomass: a comparison of pan-tropical maps, Carbon Balance
Manag., 8, 10, https://doi.org/10.1186/1750-0680-8-10, 2013.
Moorby, J. and Wareing, P. F.: Ageing in Woody Plants, Ann. Bot., 27,
291–308, 1963.
Moundounga Mavouroulou, Q., Ngomanda, A., Engone Obiang, N. L., Lebamba, J.,
Gomat, H., Mankou, G. S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga,
F., Zinga Koumba, R., Botsika Bobé, K. H., Lépengué, N.,
Mbatchi, B., and Picard, N.: How to improve allometric equations to estimate
forest biomass stocks? Some hints from a central African forest, Can. J. Forest Res., 44, 685–691, https://doi.org/10.1139/cjfr-2013-0520, 2014.
Muggeo, V. M. R.: Estimating regression models with unknown break-points,
Stat. Med., 22, 3055–3071, https://doi.org/10.1002/sim.1545, 2003.
Ngomanda, A., Engone Obiang, N. L., Lebamba, J., Moundounga Mavouroulou, Q.,
Gomat, H., Mankou, G. S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga,
F., Zinga Koumba, R., Botsika Bobé, K. H., Mikala Okouyi, C.,
Nyangadouma, R., Lépengué, N., Mbatchi, B., and Picard, N.:
Site-specific vs. pantropical allometric equations: Which option to
estimate the biomass of a moist central African forest?, Forest Ecol. Manag.,
312, 1–9, https://doi.org/10.1016/j.foreco.2013.10.029, 2014.
Niklas, K. J.: Size-dependent Allometry of Tree Height, Diameter and
Trunk-taper, Ann. Bot., 75, 217–227, https://doi.org/10.1006/anbo.1995.1015, 1995.
Nogueira, E. M., Fearnside, P. M., Nelson, B. W., Barbosa, R. I., and Keizer,
E. W. H.: Estimates of forest biomass in the Brazilian Amazon: New
allometric equations and adjustments to biomass from wood-volume
inventories, Forest Ecol. Manag., 256, 1853–1867, 2008.
O'Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R., and Foster, R. B.:
Diameter, Height, Crown, and Age Relationship in Eight Neotropical Tree
Species, Ecology, 76, 1926–1939, https://doi.org/10.2307/1940724, 1995.
Pelletier, J., Ramankutty, N., and Potvin, C.: Diagnosing the uncertainty and
detectability of emission reductions for REDD + under current
capabilities: an example for Panama, Environ. Res. Lett., 6, 024005,
https://doi.org/10.1088/1748-9326/6/2/024005, 2011.
Perry, D. A.: The competition process in forest stands, Attrib. Trees Crop
Plants, 481–506, 1985.
Picard, N., Bosela, F. B., and Rossi, V.: Reducing the error in biomass
estimates strongly depends on model selection, Ann. For. Sci., 72,
811–923, https://doi.org/10.1007/s13595-014-0434-9, 2014.
Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A., and Henry, M.: Should
tree biomass allometry be restricted to power models?, Forest Ecol. Manag.,
353, 156–163, https://doi.org/10.1016/j.foreco.2015.05.035, 2015.
Poorter, L., Bongers, F., Sterck, F. J., and Wöll, H.: Architecture of 53
rain forest tree species differing in adult stature and shade tolerance,
Ecology, 84, 602–608,
https://doi.org/10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2, 2003.
Poorter, L., Bongers, L., and Bongers, F.: Architecture of 54 moist-forest
tree species: traits, trade-offs, and functional groups, Ecology, 87,
1289–1301, https://doi.org/10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2, 2006.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
http://www.R-project.org/ (last access: January 2013), 2012.
Réjou-Méchain, M., Muller-Landau, H. C., Detto, M., Thomas, S. C., Le Toan, T.,
Saatchi, S. S., Barreto-Silva, J. S., Bourg, N. A., Bunyavejchewin, S., Butt, N., Brockelman, W. Y.,
Cao, M., Cárdenas, D., Chiang, J.-M., Chuyong, G. B., Clay, K., Condit, R., Dattaraja, H. S.,
Davies, S. J., Duque, A., Esufali, S., Ewango, C., Fernando, R. H. S., Fletcher, C. D.,
Gunatilleke, I. A. U. N., Hao, Z., Harms, K. E., Hart, T. B., Hérault, B., Howe, R. W., Hubbell, S. P.,
Johnson, D. J., Kenfack, D., Larson, A. J., Lin, L., Lin, Y., Lutz, J. A., Makana, J.-R., Malhi, Y.,
Marthews, T. R., McEwan, R. W., McMahon, S. M., McShea, W. J., Muscarella, R., Nathalang, A.,
Noor, N. S. M., Nytch, C. J., Oliveira, A. A., Phillips, R. P., Pongpattananurak, N., Punchi-Manage, R.,
Salim, R., Schurman, J., Sukumar, R., Suresh, H. S., Suwanvecho, U., Thomas, D. W., Thompson, J., Uríarte, M.,
Valencia, R., Vicentini, A., Wolf, A. T., Yap, S., Yuan, Z., Zartman, C. E., Zimmerman, J. K.,
and Chave, J.: Local spatial structure of forest biomass and its consequences for remote sensing of
carbon stocks, Biogeosciences, 11, 6827–6840, https://doi.org/10.5194/bg-11-6827-2014, 2014.
Réjou-Méchain, M., Tymen, B., Blanc, L., Fauset, S., Feldpausch, T.
R., Monteagudo, A., Phillips, O. L., Richard, H., and Chave, J.: Using
repeated small-footprint LiDAR acquisitions to infer spatial and temporal
variations of a high-biomass Neotropical forest, Remote Sens. Environ., 169,
93–101, 2015.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., and Hagen, S.: Benchmark
map of forest carbon stocks in tropical regions across three continents,
P. Natl. Acad. Sci. USA, 108, 9899–9904, 2011.
Scrucca, L.: Model-based SIR for dimension reduction, Comput. Stat. Data An., 55, 3010–3026, 2011.
Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.: A quantitative analysis of
plant form-the pipe model theory: I. Basic analyses, 14,
97–105, 1964.
Sileshi, G. W.: A critical review of forest biomass estimation models,
common mistakes and corrective measures, Forest Ecol. Manag., 329, 237–254,
https://doi.org/10.1016/j.foreco.2014.06.026, 2014.
Sillett, S. C., Van Pelt, R., Koch, G. W., Ambrose, A. R., Carroll, A. L.,
Antoine, M. E., and Mifsud, B. M.: Increasing wood production through old age
in tall trees, Forest Ecol. Manag., 259, 976–994,
https://doi.org/10.1016/j.foreco.2009.12.003, 2010.
Sist, P., Mazzei, L., Blanc, L., and Rutishauser, E.: Large trees as key
elements of carbon storage and dynamics after selective logging in the
Eastern Amazon, Forest Ecol. Manag., 318, 103–109,
https://doi.org/10.1016/j.foreco.2014.01.005, 2014.
Slik, J. W., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M.,
Blanc, L., Bongers, F., Boundja, P., and Clark, C.: Large trees drive forest
aboveground biomass variation in moist lowland forests across the tropics,
Global Ecol. Biogeogr., 22, 1261–1271, 2013.
Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J.,
Beckman, N. G., Coomes, D. A., Lines, E. R., Morris, W. K., Rüger, N.,
Álvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S. J.,
Duque, Á., Ewango, C. N., Flores, O., Franklin, J. F., Grau, H. R., Hao,
Z., Harmon, M. E., Hubbell, S. P., Kenfack, D., Lin, Y., Makana, J.-R.,
Malizia, A., Malizia, L. R., Pabst, R. J., Pongpattananurak, N., Su, S.-H.,
Sun, I.-F., Tan, S., Thomas, D., van Mantgem, P. J., Wang, X., Wiser, S. K.,
and Zavala, M. A.: Rate of tree carbon accumulation increases continuously
with tree size, Nature, 507, 90–93, https://doi.org/10.1038/nature12914,
2014.
Van Gelder, H. A., Poorter, L., and Sterck, F. J.: Wood mechanics, allometry,
and life-history variation in a tropical rain forest tree community, New
Phytol., 171, 367–378, https://doi.org/10.1111/j.1469-8137.2006.01757.x, 2006.
Vieilledent, G., Vaudry, R., Andriamanohisoa, S. F. D., Rakotonarivo, O. S.,
Randrianasolo, H. Z., Razafindrabe, H. N., Rakotoarivony, C. B., Ebeling, J.,
and Rasamoelina, M.: A universal approach to estimate biomass and carbon
stock in tropical forests using generic allometric models, Ecol. Appl.,
22, 572–583, https://doi.org/10.1890/11-0039.1, 2011.
West, G. B., Brown, J. H., and Enquist, B. J.: A general model for the
structure and allometry of plant vascular systems, Nature, 400,
664–667, https://doi.org/10.1038/23251, 1999.
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S.,
Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., and Chave, J.:
Data from: towards a worldwide wood economics spectrum, Dryad Digital
Reposit, 2009.
Short summary
Monitoring forest carbon stocks requires understanding how resources allocation within trees varies across tree size, species and environmental conditions. Using data on tree dimensions and mass, we show that the average tree shape varies along ontogeny, with large canopy trees having a greater proportion of carbon in their crowns (up to 50 %). This variation pattern generates important bias in carbon predictions at both tree and stand levels, which can be corrected using simple crown metrics.
Monitoring forest carbon stocks requires understanding how resources allocation within trees...
Altmetrics
Final-revised paper
Preprint