Articles | Volume 13, issue 5
https://doi.org/10.5194/bg-13-1571-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1571-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries
Pierre Ploton
CORRESPONDING AUTHOR
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Institut des sciences et industries du vivant et de l'environnement,
Montpellier, France
Nicolas Barbier
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Stéphane Takoudjou Momo
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Maxime Réjou-Méchain
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Centre de coopération internationale en recherche agronomique pour
le développement, Montpellier, France
Geomatics and Applied Informatics Laboratory (LIAG), French Institute of
Pondicherry, Puducherry, India
Faustin Boyemba Bosela
Faculté des Sciences, Université de Kisangani, Kisangani,
Democratic Republic of Congo
Georges Chuyong
Department of Botany and Plant Physiology, University of Buea, Buea,
Cameroon
Gilles Dauby
Institut de Recherche pour le Développement, UMR-DIADE, Montpellier,
France
Evolutionary Biology and Ecology, Faculté des Sciences,
Université Libre de Bruxelles, Brussels, Belgium
Vincent Droissart
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Herbarium et Bibliothèque de Botanique africaine, Université
Libre de Bruxelles, Brussels, Belgium
Adeline Fayolle
Research axis on Forest Resource Management of the Biosystem
engineering (BIOSE), Gembloux Agro-Bio Tech, Université de Liège,
Gembloux, Belgium
Rosa Calisto Goodman
Yale School of Forestry and Environmental Studies, New Haven, USA
Matieu Henry
Food and Agriculture Organization of the United Nations, Rome, Italy
Narcisse Guy Kamdem
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
John Katembo Mukirania
Faculté des Sciences, Université de Kisangani, Kisangani,
Democratic Republic of Congo
David Kenfack
Center for Tropical Forest Science, Harvard University, Cambridge, USA
Moses Libalah
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Alfred Ngomanda
Institut de Recherche en Ecologie Tropicale, Libreville, Gabon
Vivien Rossi
Centre de coopération internationale en recherche agronomique pour
le développement, Montpellier, France
Département d'Informatique, Université de Yaoundé I, UMMISCO, Yaoundé, Cameroon
Bonaventure Sonké
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Nicolas Texier
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Duncan Thomas
Department of Botany and Plant Pathology, Oregon State University,
Corvallis, USA
Donatien Zebaze
Laboratoire de Botanique systématique et d'Ecologie, Département
des Sciences Biologiques, Ecole Normale Supérieure, Université de
Yaoundé I, Yaoundé, Cameroon
Pierre Couteron
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Uta Berger
Technische Universität Dresden, Faculty of Environmental Sciences,
Institute of Forest Growth and Forest Computer Sciences, Tharandt, Germany
Raphaël Pélissier
Institut de Recherche pour le Développement, UMR-AMAP, Montpellier,
France
Related authors
No articles found.
Julien Lamour, Shawn P. Serbin, Alistair Rogers, Kelvin T. Acebron, Elizabeth Ainsworth, Loren P. Albert, Michael Alonzo, Jeremiah Anderson, Owen K. Atkin, Nicolas Barbier, Mallory L. Barnes, Carl J. Bernacchi, Ninon Besson, Angela C. Burnett, Joshua S. Caplan, Jérôme Chave, Alexander W. Cheesman, Ilona Clocher, Onoriode Coast, Sabrina Coste, Holly Croft, Boya Cui, Clément Dauvissat, Kenneth J. Davidson, Christopher Doughty, Kim S. Ely, John R. Evans, Jean-Baptiste Féret, Iolanda Filella, Claire Fortunel, Peng Fu, Robert T. Furbank, Maquelle Garcia, Bruno O. Gimenez, Kaiyu Guan, Zhengfei Guo, David Heckmann, Patrick Heuret, Marney Isaac, Shan Kothari, Etsushi Kumagai, Thu Ya Kyaw, Liangyun Liu, Lingli Liu, Shuwen Liu, Joan Llusià, Troy Magney, Isabelle Maréchaux, Adam R. Martin, Katherine Meacham-Hensold, Christopher M. Montes, Romà Ogaya, Joy Ojo, Regison Oliveira, Alain Paquette, Josep Peñuelas, Antonia Debora Placido, Juan M. Posada, Xiaojin Qian, Heidi J. Renninger, Milagros Rodriguez-Caton, Andrés Rojas-González, Urte Schlüter, Giacomo Sellan, Courtney M. Siegert, Viridiana Silva-Perez, Guangqin Song, Charles D. Southwick, Daisy C. Souza, Clément Stahl, Yanjun Su, Leeladarshini Sujeeun, To-Chia Ting, Vicente Vasquez, Amrutha Vijayakumar, Marcelo Vilas-Boas, Diane R. Wang, Sheng Wang, Han Wang, Jing Wang, Xin Wang, Andreas P. M. Weber, Christopher Y. S. Wong, Jin Wu, Fengqi Wu, Shengbiao Wu, Zhengbing Yan, Dedi Yang, and Yingyi Zhao
Earth Syst. Sci. Data, 18, 245–265, https://doi.org/10.5194/essd-18-245-2026, https://doi.org/10.5194/essd-18-245-2026, 2026
Short summary
Short summary
We present the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. This repository provides a unique source of information for creating hyperspectral models for predicting photosynthetic traits and associated leaf traits in terrestrial plants.
Cecilia Chavana-Bryant, Phil Wilkes, Wanxin Yang, Andrew Burt, Peter Vines, Amy C. Bennett, Georgia C. Pickavance, Declan L. M. Cooper, Simon L. Lewis, Oliver L. Phillips, Benjamin Brede, Alvaro Lau, Martin Herold, Iain McNicol, Edward T. A. Mitchard, David A. Coomes, Toby Jackson, Loic Makaga, Heddy O. Milamizokou Napo, Alfred Ngomanda, Stephan Ntie, Vincent Medjibe, Pacome Dimbonda, Luna Soenens, Virginie Daelemans, Laetitia Proux, Reuben Nilus, Nicolas Labriere, Kathryn Jeffery, David F. R. P. Burslem, Daniel Clewley, David Moffat, Lan Qie, Harm Bartholomeus, Vincent Gregoire, Nicolas Barbier, Geraldine Derroire, Katharine Abernethy, Klaus Scipal, and Mat Disney
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-67, https://doi.org/10.5194/essd-2025-67, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The ForestScan project provides a comprehensive set of datasets of tropical forest 3D structural measurements using terrestrial, unpiloted aerial vehicle and aerial laser scanning, plus tree census data. Collected at three sites in French Guiana, Gabon, and Malaysia, these datasets are crucial for calibrating and validating earth observation-derived forest biomass estimates, therefore, expanding and enhancing their use, and aiding global conservation efforts.
Sylvain Schmitt, Fabian J. Fischer, James G. C. Ball, Nicolas Barbier, Marion Boisseaux, Damien Bonal, Benoit Burban, Xiuzhi Chen, Géraldine Derroire, Jeremy W. Lichstein, Daniela Nemetschek, Natalia Restrepo-Coupe, Scott Saleska, Giacomo Sellan, Philippe Verley, Grégoire Vincent, Camille Ziegler, Jérôme Chave, and Isabelle Maréchaux
Geosci. Model Dev., 18, 5205–5243, https://doi.org/10.5194/gmd-18-5205-2025, https://doi.org/10.5194/gmd-18-5205-2025, 2025
Short summary
Short summary
We evaluate the capability of TROLL 4.0, a simulator of forest dynamics, to represent tropical forest structure, diversity, dynamics, and functioning in two Amazonian forests. Evaluation data include forest inventories, carbon and water fluxes between the forest and the atmosphere, and leaf area and canopy height from remote sensing products. The model realistically predicts the structure and composition as well as the seasonality of carbon and water fluxes at both sites.
Nicolas Picard, Noël Fonton, Faustin Boyemba Bosela, Adeline Fayolle, Joël Loumeto, Gabriel Ngua Ayecaba, Bonaventure Sonké, Olga Diane Yongo Bombo, Hervé Martial Maïdou, and Alfred Ngomanda
Biogeosciences, 22, 1413–1426, https://doi.org/10.5194/bg-22-1413-2025, https://doi.org/10.5194/bg-22-1413-2025, 2025
Short summary
Short summary
Allometric equations predict tree biomass and are crucial for estimating forest carbon storage, thus assessing the role of forests in climate change mitigation. Usually, these equations are selected based on tree-level predictive performance. However, we evaluated the model performance at plot and forest levels, finding it varies with plot size. This has significant implications for reducing uncertainty in biomass estimates at these levels.
Cited articles
Avitabile, V., Herold, M., Henry, M., and Schmullius, C.: Mapping biomass
with remote sensing: a comparison of methods for the case study of Uganda,
Carbon Balance and Management, 6, 1–14, 2011.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M.,
Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., and Friedl, M.
A.: Estimated carbon dioxide emissions from tropical deforestation improved
by carbon-density maps, Nature Climate Change, 2, 182–185, 2012.
Barthélémy, D. and Caraglio, Y.: Plant Architecture: A Dynamic,
Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny,
Ann. Bot., 99, 375–407, https://doi.org/10.1093/aob/mcl260, 2007.
Baskerville, G. L.: Use of Logarithmic Regression in the Estimation of Plant
Biomass, Can. J. Forest Res., 2, 49–53, https://doi.org/10.1139/x72-009, 1972.
Bastin, J.-F., Barbier, N., Réjou-Méchain, M., Fayolle, A.,
Gourlet-Fleury, S., Maniatis, D., de Haulleville, T., Baya, F., Beeckman, H.,
and Beina, D.: Seeing Central African forests through their largest trees,
Scientific Reports, 5, 13156, https://doi.org/10.1038/srep13156, 2015.
Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., and Li, S.:
FNN: fast nearest neighbor search algorithms and applications, R package
version 1.1., 2013.
Brown, S., Gillespie, A. J., and Lugo, A. E.: Biomass estimation methods for
tropical forests with applications to forest inventory data, For. Sci.,
35, 881–902, 1989.
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M.,
Culvenor, D., Avitabile, V., Disney, M., Armston, J., and Kaasalainen, M.:
Nondestructive estimates of above-ground biomass using terrestrial laser
scanning, edited by: McMahon, S., Methods in Ecology and Evolution, 6, 198–208,
https://doi.org/10.1111/2041-210X.12301, 2015.
Cannell, M. G. R.: Woody biomass of forest stands, Forest Ecol. Manag.,
8, 299–312, https://doi.org/10.1016/0378-1127(84)90062-8, 1984.
Chambers, J. Q., dos Santos, J., Ribeiro, R. J., and Higuchi, N.: Tree
damage, allometric relationships, and above-ground net primary production in
central Amazon forest, Forest Ecol. Manag., 152, 73–84, 2001.
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D.,
Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson,
B. W., Ogawa, H., Puig, H., Riéra, B., and Yamakura, T.: Tree allometry
and improved estimation of carbon stocks and balance in tropical forests,
Oecologia, 145, 87–99, https://doi.org/10.1007/s00442-005-0100-x, 2005.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne,
A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12,
351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x, 2009.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E.,
Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M.,
Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A.,
Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira,
E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M.,
Saldarriaga, J. G., and Vieilledent, G.: Improved allometric models to
estimate the aboveground biomass of tropical trees, Glob. Change Biol.,
20, 3177–3190, https://doi.org/10.1111/gcb.12629, 2014.
Chen, Q., Vaglio Laurin, G., and Valentini, R.: Uncertainty of remotely
sensed aboveground biomass over an African tropical forest: Propagating
errors from trees to plots to pixels, Remote Sens. Environ., 160, 134–143,
https://doi.org/10.1016/j.rse.2015.01.009, 2015.
Chuyong, G. B., Condit, R., Kenfack, D., Losos, E., Sainge, M., Songwe, N. C., and Thomas, D. W.:
Korup forest dynamics plot, Cameroon, in: Forest
diversity and dynamism: findings from a large-scale plot network, edited by: Losos, E. C. and Leigh Jr., E. G., University
of Chicago Press, Chicago, 506–516, 2004.
Clark, D. B. and Clark, D. A.: Abundance, growth and mortality of very large
trees in neotropical lowland rain forest, Forest Ecol. Manag., 80,
235–244, https://doi.org/10.1016/0378-1127(95)03607-5, 1996.
Clark, D. B. and Kellner, J. R.: Tropical forest biomass estimation and the
fallacy of misplaced concreteness, J. Veg. Sci., 23, 1191–1196,
https://doi.org/10.1111/j.1654-1103.2012.01471.x, 2012.
Cleveland, W. S., Grosse, E., and Shyu, W. M.: Local regression models, Stat. Model., 8, 309–376, 1992.
Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K.: IPCC
guidelines for national greenhouse gas inventories, Inst. Glob. Environ.
Strateg. Hayama Jpn., 2006.
Eloy, C.: Leonardo's rule, self-similarity and wind-induced stresses in
trees, Phys. Rev. Lett., 107, 258101,
https://doi.org/10.1103/PhysRevLett.107.258101, 2011.
Enquist, B. J.: Universal scaling in tree and vascular plant allometry:
toward a general quantitative theory linking plant form and function from
cells to ecosystems, Tree Physiol., 22, 1045–1064,
https://doi.org/10.1093/treephys/22.15-16.1045, 2002.
Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N., and Lejeune, P.:
Tree allometry in Central Africa: Testing the validity of pantropical
multi-species allometric equations for estimating biomass and carbon stocks,
Forest Ecol. Manag., 305, 29–37, https://doi.org/10.1016/j.foreco.2013.05.036, 2013.
Freedman, B., Duinker, P. N., Barclay, H., Morash, R., and Prager, U.: Forest
biomass and nutrient studies in central Nova Scotia, Inf. Rep. Marit. For.
Res. Cent. Can., (M-X-134), 126 pp., 1982.
Goodman, R. C., Phillips, O. L., and Baker, T. R.: Data from: The importance
of crown dimensions to improve tropical tree biomass estimates,
available at: http://dx.doi.org/10.5061/dryad.p281g (last access: 17 May
2015), 2013.
Goodman, R. C., Phillips, O. L., and Baker, T. R.: The importance of crown
dimensions to improve tropical tree biomass estimates, Ecol. Appl., 24,
680–698, 2014.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., and Loveland, T. R.:
High-resolution global maps of 21st-century forest cover change, Science,
342, 850–853, 2013.
Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas,
W., Hansen, M. C., Potapov, P. V., and Lotsch, A.: Baseline map of carbon
emissions from deforestation in tropical regions, Science, 336,
1573–1576, 2012.
Hasenauer, H. and Monserud, R. A.: A crown ratio model for Austrian forests,
Forest Ecol. Manag., 84, 49–60, https://doi.org/10.1016/0378-1127(96)03768-1, 1996.
Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-Bredu, S., Valentini,
R., Bernoux, M., and Saint-André, L.: Wood density, phytomass variations
within and among trees, and allometric equations in a tropical rainforest of
Africa, Forest Ecol. Manag., 260, 1375–1388,
https://doi.org/10.1016/j.foreco.2010.07.040, 2010.
Holdaway, M. R.: Modeling Tree Crown Ratio, Forest Chron., 62, 451–455,
https://doi.org/10.5558/tfc62451-5, 1986.
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., and Birdsey, R. A.:
National-Scale Biomass Estimators for United States Tree Species, For. Sci.,
49, 12–35, 2003.
King, D. and Loucks, O. L.: The theory of tree bole and branch form, Radiat. Environ. Bioph., 15, 141–165, https://doi.org/10.1007/BF01323263, 1978.
Legendre, P.: lmodel2: Model II Regression. R package version 1.7-0, See
Httpcran R-Proj, Orgwebpackageslmodel2, 2011.
Lewis, S. L., Sonke, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G.,
van der Heijden, G. M. F., Phillips, O. L., Affum-Baffoe, K., Baker, T. R.,
Banin, L., Bastin, J.-F., Beeckman, H., Boeckx, P., Bogaert, J., De
Canniere, C., Chezeaux, E., Clark, C. J., Collins, M., Djagbletey, G.,
Djuikouo, M. N. K., Droissart, V., Doucet, J.-L., Ewango, C. E. N., Fauset,
S., Feldpausch, T. R., Foli, E. G., Gillet, J.-F., Hamilton, A. C., Harris,
D. J., Hart, T. B., de Haulleville, T., Hladik, A., Hufkens, K., Huygens,
D., Jeanmart, P., Jeffery, K. J., Kearsley, E., Leal, M. E., Lloyd, J.,
Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Ojo, L., Peh, K.
S.-H., Pickavance, G., Poulsen, J. R., Reitsma, J. M., Sheil, D., Simo, M.,
Steppe, K., Taedoumg, H. E., Talbot, J., Taplin, J. R. D., Taylor, D.,
Thomas, S. C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L. J. T.,
Willcock, S., Woell, H., and Zemagho, L.: Above-ground biomass and structure
of 260 African tropical forests, Philos. T. R. Soc. B,
368, 20120295–20120295, https://doi.org/10.1098/rstb.2012.0295, 2013.
Magnabosco Marra, D., Higuchi, N., Trumbore, S. E., Ribeiro, G. H. P. M., dos Santos, J.,
Carneiro, V. M. C., Lima, A. J. N., Chambers, J. Q., Negrón-Juárez, R. I., Holzwarth, F., Reu, B.,
and Wirth, C.: Predicting biomass of hyperdiverse and structurally complex Central Amazon forests – a virtual approach
using extensive field data, Biogeosciences Discuss., accepted, 12, 15537–15581, https://doi.org/10.5194/bgd-12-15537-2015, 2015.
Mäkelä, A. and Valentine, H. T.: Crown ratio influences allometric scaling
of trees, Ecology, 87, 2967–2972,
https://doi.org/10.1890/0012-9658(2006)87[2967:CRIASI]2.0.CO;2, 2006.
Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane,
T., Meir, P., Chave, J., Almeida, S., and Arroyo, L.: The regional variation
of aboveground live biomass in old-growth Amazonian forests, Glob. Change
Biol., 12, 1107–1138, 2006.
Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A., and Schnitzer, S. A.:
Minimizing Bias in Biomass Allometry: Model Selection and Log-Transformation
of Data, Biotropica, 43, 649–653, https://doi.org/10.1111/j.1744-7429.2011.00798.x,
2011.
McMahon, T. A. and Kronauer, R. E.: Tree structures: deducing the principle
of mechanical design, J. Theor. Biol., 59, 443–466, 1976.
Mitchard, E. T., Saatchi, S. S., Baccini, A., Asner, G. P., Goetz, S. J.,
Harris, N. L., and Brown, S.: Uncertainty in the spatial distribution of
tropical forest biomass: a comparison of pan-tropical maps, Carbon Balance
Manag., 8, 10, https://doi.org/10.1186/1750-0680-8-10, 2013.
Moorby, J. and Wareing, P. F.: Ageing in Woody Plants, Ann. Bot., 27,
291–308, 1963.
Moundounga Mavouroulou, Q., Ngomanda, A., Engone Obiang, N. L., Lebamba, J.,
Gomat, H., Mankou, G. S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga,
F., Zinga Koumba, R., Botsika Bobé, K. H., Lépengué, N.,
Mbatchi, B., and Picard, N.: How to improve allometric equations to estimate
forest biomass stocks? Some hints from a central African forest, Can. J. Forest Res., 44, 685–691, https://doi.org/10.1139/cjfr-2013-0520, 2014.
Muggeo, V. M. R.: Estimating regression models with unknown break-points,
Stat. Med., 22, 3055–3071, https://doi.org/10.1002/sim.1545, 2003.
Ngomanda, A., Engone Obiang, N. L., Lebamba, J., Moundounga Mavouroulou, Q.,
Gomat, H., Mankou, G. S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga,
F., Zinga Koumba, R., Botsika Bobé, K. H., Mikala Okouyi, C.,
Nyangadouma, R., Lépengué, N., Mbatchi, B., and Picard, N.:
Site-specific vs. pantropical allometric equations: Which option to
estimate the biomass of a moist central African forest?, Forest Ecol. Manag.,
312, 1–9, https://doi.org/10.1016/j.foreco.2013.10.029, 2014.
Niklas, K. J.: Size-dependent Allometry of Tree Height, Diameter and
Trunk-taper, Ann. Bot., 75, 217–227, https://doi.org/10.1006/anbo.1995.1015, 1995.
Nogueira, E. M., Fearnside, P. M., Nelson, B. W., Barbosa, R. I., and Keizer,
E. W. H.: Estimates of forest biomass in the Brazilian Amazon: New
allometric equations and adjustments to biomass from wood-volume
inventories, Forest Ecol. Manag., 256, 1853–1867, 2008.
O'Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R., and Foster, R. B.:
Diameter, Height, Crown, and Age Relationship in Eight Neotropical Tree
Species, Ecology, 76, 1926–1939, https://doi.org/10.2307/1940724, 1995.
Pelletier, J., Ramankutty, N., and Potvin, C.: Diagnosing the uncertainty and
detectability of emission reductions for REDD + under current
capabilities: an example for Panama, Environ. Res. Lett., 6, 024005,
https://doi.org/10.1088/1748-9326/6/2/024005, 2011.
Perry, D. A.: The competition process in forest stands, Attrib. Trees Crop
Plants, 481–506, 1985.
Picard, N., Bosela, F. B., and Rossi, V.: Reducing the error in biomass
estimates strongly depends on model selection, Ann. For. Sci., 72,
811–923, https://doi.org/10.1007/s13595-014-0434-9, 2014.
Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A., and Henry, M.: Should
tree biomass allometry be restricted to power models?, Forest Ecol. Manag.,
353, 156–163, https://doi.org/10.1016/j.foreco.2015.05.035, 2015.
Poorter, L., Bongers, F., Sterck, F. J., and Wöll, H.: Architecture of 53
rain forest tree species differing in adult stature and shade tolerance,
Ecology, 84, 602–608,
https://doi.org/10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2, 2003.
Poorter, L., Bongers, L., and Bongers, F.: Architecture of 54 moist-forest
tree species: traits, trade-offs, and functional groups, Ecology, 87,
1289–1301, https://doi.org/10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2, 2006.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
http://www.R-project.org/ (last access: January 2013), 2012.
Réjou-Méchain, M., Muller-Landau, H. C., Detto, M., Thomas, S. C., Le Toan, T.,
Saatchi, S. S., Barreto-Silva, J. S., Bourg, N. A., Bunyavejchewin, S., Butt, N., Brockelman, W. Y.,
Cao, M., Cárdenas, D., Chiang, J.-M., Chuyong, G. B., Clay, K., Condit, R., Dattaraja, H. S.,
Davies, S. J., Duque, A., Esufali, S., Ewango, C., Fernando, R. H. S., Fletcher, C. D.,
Gunatilleke, I. A. U. N., Hao, Z., Harms, K. E., Hart, T. B., Hérault, B., Howe, R. W., Hubbell, S. P.,
Johnson, D. J., Kenfack, D., Larson, A. J., Lin, L., Lin, Y., Lutz, J. A., Makana, J.-R., Malhi, Y.,
Marthews, T. R., McEwan, R. W., McMahon, S. M., McShea, W. J., Muscarella, R., Nathalang, A.,
Noor, N. S. M., Nytch, C. J., Oliveira, A. A., Phillips, R. P., Pongpattananurak, N., Punchi-Manage, R.,
Salim, R., Schurman, J., Sukumar, R., Suresh, H. S., Suwanvecho, U., Thomas, D. W., Thompson, J., Uríarte, M.,
Valencia, R., Vicentini, A., Wolf, A. T., Yap, S., Yuan, Z., Zartman, C. E., Zimmerman, J. K.,
and Chave, J.: Local spatial structure of forest biomass and its consequences for remote sensing of
carbon stocks, Biogeosciences, 11, 6827–6840, https://doi.org/10.5194/bg-11-6827-2014, 2014.
Réjou-Méchain, M., Tymen, B., Blanc, L., Fauset, S., Feldpausch, T.
R., Monteagudo, A., Phillips, O. L., Richard, H., and Chave, J.: Using
repeated small-footprint LiDAR acquisitions to infer spatial and temporal
variations of a high-biomass Neotropical forest, Remote Sens. Environ., 169,
93–101, 2015.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., and Hagen, S.: Benchmark
map of forest carbon stocks in tropical regions across three continents,
P. Natl. Acad. Sci. USA, 108, 9899–9904, 2011.
Scrucca, L.: Model-based SIR for dimension reduction, Comput. Stat. Data An., 55, 3010–3026, 2011.
Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.: A quantitative analysis of
plant form-the pipe model theory: I. Basic analyses, 14,
97–105, 1964.
Sileshi, G. W.: A critical review of forest biomass estimation models,
common mistakes and corrective measures, Forest Ecol. Manag., 329, 237–254,
https://doi.org/10.1016/j.foreco.2014.06.026, 2014.
Sillett, S. C., Van Pelt, R., Koch, G. W., Ambrose, A. R., Carroll, A. L.,
Antoine, M. E., and Mifsud, B. M.: Increasing wood production through old age
in tall trees, Forest Ecol. Manag., 259, 976–994,
https://doi.org/10.1016/j.foreco.2009.12.003, 2010.
Sist, P., Mazzei, L., Blanc, L., and Rutishauser, E.: Large trees as key
elements of carbon storage and dynamics after selective logging in the
Eastern Amazon, Forest Ecol. Manag., 318, 103–109,
https://doi.org/10.1016/j.foreco.2014.01.005, 2014.
Slik, J. W., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M.,
Blanc, L., Bongers, F., Boundja, P., and Clark, C.: Large trees drive forest
aboveground biomass variation in moist lowland forests across the tropics,
Global Ecol. Biogeogr., 22, 1261–1271, 2013.
Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J.,
Beckman, N. G., Coomes, D. A., Lines, E. R., Morris, W. K., Rüger, N.,
Álvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S. J.,
Duque, Á., Ewango, C. N., Flores, O., Franklin, J. F., Grau, H. R., Hao,
Z., Harmon, M. E., Hubbell, S. P., Kenfack, D., Lin, Y., Makana, J.-R.,
Malizia, A., Malizia, L. R., Pabst, R. J., Pongpattananurak, N., Su, S.-H.,
Sun, I.-F., Tan, S., Thomas, D., van Mantgem, P. J., Wang, X., Wiser, S. K.,
and Zavala, M. A.: Rate of tree carbon accumulation increases continuously
with tree size, Nature, 507, 90–93, https://doi.org/10.1038/nature12914,
2014.
Van Gelder, H. A., Poorter, L., and Sterck, F. J.: Wood mechanics, allometry,
and life-history variation in a tropical rain forest tree community, New
Phytol., 171, 367–378, https://doi.org/10.1111/j.1469-8137.2006.01757.x, 2006.
Vieilledent, G., Vaudry, R., Andriamanohisoa, S. F. D., Rakotonarivo, O. S.,
Randrianasolo, H. Z., Razafindrabe, H. N., Rakotoarivony, C. B., Ebeling, J.,
and Rasamoelina, M.: A universal approach to estimate biomass and carbon
stock in tropical forests using generic allometric models, Ecol. Appl.,
22, 572–583, https://doi.org/10.1890/11-0039.1, 2011.
West, G. B., Brown, J. H., and Enquist, B. J.: A general model for the
structure and allometry of plant vascular systems, Nature, 400,
664–667, https://doi.org/10.1038/23251, 1999.
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S.,
Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., and Chave, J.:
Data from: towards a worldwide wood economics spectrum, Dryad Digital
Reposit, 2009.
Short summary
Monitoring forest carbon stocks requires understanding how resources allocation within trees varies across tree size, species and environmental conditions. Using data on tree dimensions and mass, we show that the average tree shape varies along ontogeny, with large canopy trees having a greater proportion of carbon in their crowns (up to 50 %). This variation pattern generates important bias in carbon predictions at both tree and stand levels, which can be corrected using simple crown metrics.
Monitoring forest carbon stocks requires understanding how resources allocation within trees...
Altmetrics
Final-revised paper
Preprint