Articles | Volume 13, issue 6
https://doi.org/10.5194/bg-13-1787-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1787-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan
Jr-Chuan Huang
Department of Geography, National Taiwan University, Taipei,
Taiwan
Tsung-Yu Lee
Department of Geography, National Taiwan Normal University,
Taipei, Taiwan
Department of Life Science, National Taiwan Normal
University, Taipei, Taiwan
Thomas Hein
Institute of Hydrobiology and Aquatic
Ecosystem Management, University of Natural Resources and Life
Sciences, Vienna, Austria
WasserCluster Lunz, Dr. Kupelwieser-Prom. 5, 3293
Lunz am See, Austria
Li-Chin Lee
Department of Geography, National Taiwan University, Taipei,
Taiwan
Yu-Ting Shih
Department of Geography, National Taiwan University, Taipei,
Taiwan
Shuh-Ji Kao
State Key Laboratory of Marine
Environmental Science, Xiamen University, Xiamen, China
Fuh-Kwo Shiah
Research
Centre of Environmental Changes, Academia Sinica, Taipei, Taiwan
Neng-Huei Lin
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Related authors
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023, https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Short summary
Streamflow recession, shaped by landscape and rainfall, is not well understood. This study examines their combined impact using data from 19 mountainous rivers. Longer, gentler hillslopes promote flow and reduce nonlinearity, while larger catchments with more rainfall show increased landscape heterogeneity. In small catchments, the exponent decreases with rainfall, indicating less landscape and runoff variation. Further research is needed to validate these findings across diverse regions.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Jun-Yi Lee, Yu-Ting Shih, Chiao-Ying Lan, Tsung-Yu Lee, Tsung-Ren Peng, Cheing-Tung Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-276, https://doi.org/10.5194/hess-2019-276, 2019
Revised manuscript not accepted
Short summary
Short summary
Scientists concern the travel time and the fraction of new water from the sky to the stream to figure out the sources of freshwater and the distribution of contaminants. This study tells a story of water by analyzing the oxygen isotope of rain and stream water. In our sites, a raindrop only needs 2–11 hour to travel to the stream and large storm could exert more and younger new water. The rapid response is likely because of the steep landscape which helps transferring new water to the stream.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Tsung-Yu Lee, Li-Chin Lee, Jr-Chuan Huang, Shih-Hao Jien, Thomas Hein, Franz Zehetner, Shuh-Ji Kao, and Fuh-Kwo Shiah
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-105, https://doi.org/10.5194/bg-2017-105, 2017
Revised manuscript not accepted
Chuan-Yao Lin, Chiung-Jui Su, Hiroyuki Kusaka, Yuko Akimoto, Yang-Fan Sheng, Jr-Chuan Huang, and Huang-Hsiung Hsu
Atmos. Chem. Phys., 16, 1809–1822, https://doi.org/10.5194/acp-16-1809-2016, https://doi.org/10.5194/acp-16-1809-2016, 2016
Short summary
Short summary
This study evaluated the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) Model coupled with the Noah land-surface model and a modified urban canopy model (WRF-UCM2D). WRF-UCM2D performed much better than the original UCM coupled with WRF (WRF-UCM) at non-urban stations with a low urban fraction during nighttime. The result of this study has crucial implications for assessing the impacts of urbanization on air quality and regional climate.
T.-C. Lin, P.-J. L. Shaner, L.-J. Wang, Y.-T. Shih, C.-P. Wang, G.-H. Huang, and J.-C. Huang
Hydrol. Earth Syst. Sci., 19, 4493–4504, https://doi.org/10.5194/hess-19-4493-2015, https://doi.org/10.5194/hess-19-4493-2015, 2015
Short summary
Short summary
We summarize our findings as follows: (1) the mountain watersheds are vulnerable to agriculture expansion; (2) proper spatial configuration of agricultural lands in mountain watersheds can mitigate the impact of agriculture on NO3- output by 70%; and (3) the reconstructed element fluxes for the watersheds indicate excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, which likely resulted from excessive fertilizer use.
Y.-T. Shih, T.-Y. Lee, J.-C. Huang, S.-J. Kao, K.-K. Liu, and F.-J. Chang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-449-2015, https://doi.org/10.5194/hessd-12-449-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and per capita loading. Those estimated DIN yield factors can extrapolate all possible combinations of land-use, discharge, and population density, demonstrating the capability for scenario assessment.
T.-Y. Lee, Y.-T. Shih, J.-C. Huang, S.-J. Kao, F.-K. Shiah, and K.-K. Liu
Biogeosciences, 11, 5307–5321, https://doi.org/10.5194/bg-11-5307-2014, https://doi.org/10.5194/bg-11-5307-2014, 2014
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
T.-Y. Lee, J.-C. Huang, S.-J. Kao, and C.-P. Tung
Biogeosciences, 10, 2617–2632, https://doi.org/10.5194/bg-10-2617-2013, https://doi.org/10.5194/bg-10-2617-2013, 2013
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023, https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Short summary
Streamflow recession, shaped by landscape and rainfall, is not well understood. This study examines their combined impact using data from 19 mountainous rivers. Longer, gentler hillslopes promote flow and reduce nonlinearity, while larger catchments with more rainfall show increased landscape heterogeneity. In small catchments, the exponent decreases with rainfall, indicating less landscape and runoff variation. Further research is needed to validate these findings across diverse regions.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Xiaofeng Dai, Mingming Chen, Xianhui Wan, Ehui Tan, Jialing Zeng, Nengwang Chen, Shuh-Ji Kao, and Yao Zhang
Biogeosciences, 19, 3757–3773, https://doi.org/10.5194/bg-19-3757-2022, https://doi.org/10.5194/bg-19-3757-2022, 2022
Short summary
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
Hana Jurikova, Osamu Abe, Fuh-Kwo Shiah, and Mao-Chang Liang
Biogeosciences, 19, 2043–2058, https://doi.org/10.5194/bg-19-2043-2022, https://doi.org/10.5194/bg-19-2043-2022, 2022
Short summary
Short summary
We studied the isotopic composition of oxygen dissolved in seawater in the South China Sea. This tells us about the origin of oxygen in the water column, distinguishing between biological oxygen produced by phytoplankton communities and atmospheric oxygen entering seawater through gas exchange. We found that the East Asian Monsoon plays an important role in determining the amount of oxygen produced vs. consumed by the phytoplankton, as well as in inducing vertical water mass mixing.
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021, https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Nicolás Valiente, Franz Jirsa, Thomas Hein, Wolfgang Wanek, Patricia Bonin, and Juan José Gómez-Alday
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-20, https://doi.org/10.5194/bg-2020-20, 2020
Preprint withdrawn
Short summary
Short summary
Saline lakes are prone to the accumulation of anthropogenic contaminants, making them highly vulnerable environments to nitrate pollution. We used the revised 15N-isotope pairing technique with sediments from a eutrophic hypersaline lake to unravel the nitrate removal pathways carrying on. Our work shows for the first time the coexistence of denitrification, DNRA and anammox in a highly saline/hypersaline lake, with extraordinarily high rates of coupled DNRA-anammox.
Jun-Yi Lee, Yu-Ting Shih, Chiao-Ying Lan, Tsung-Yu Lee, Tsung-Ren Peng, Cheing-Tung Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-276, https://doi.org/10.5194/hess-2019-276, 2019
Revised manuscript not accepted
Short summary
Short summary
Scientists concern the travel time and the fraction of new water from the sky to the stream to figure out the sources of freshwater and the distribution of contaminants. This study tells a story of water by analyzing the oxygen isotope of rain and stream water. In our sites, a raindrop only needs 2–11 hour to travel to the stream and large storm could exert more and younger new water. The rapid response is likely because of the steep landscape which helps transferring new water to the stream.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Lei Hou, Xiabing Xie, Xianhui Wan, Shuh-Ji Kao, Nianzhi Jiao, and Yao Zhang
Biogeosciences, 15, 5169–5187, https://doi.org/10.5194/bg-15-5169-2018, https://doi.org/10.5194/bg-15-5169-2018, 2018
Short summary
Short summary
The niche differentiation of ammonia and nitrite oxidizers is controversial because they display disparate patterns in different environments. Combining molecular and nitrification rate analyses, our study clarified that water mass mixing and the substrate availability primarily regulated the niche differentiation of nitrifier populations along a salinity gradient. The nitrifier populations may have specific adaptations to different substrate conditions through their ecological strategies.
Li Luo, Shuh-Ji Kao, Hongyan Bao, Huayun Xiao, Hongwei Xiao, Xiaohong Yao, Huiwang Gao, Jiawei Li, and Yangyang Lu
Atmos. Chem. Phys., 18, 6207–6222, https://doi.org/10.5194/acp-18-6207-2018, https://doi.org/10.5194/acp-18-6207-2018, 2018
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Yangyang Lu, Zuozhu Wen, Dalin Shi, Mingming Chen, Yao Zhang, Sophie Bonnet, Yuhang Li, Jiwei Tian, and Shuh-Ji Kao
Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, https://doi.org/10.5194/bg-15-1-2018, 2018
Short summary
Short summary
We investigated the light response of field Trichodesmium N2 fixation and net dissolved nitrogen release behavior. Our results suggest that N2 fixation was a function of light intensity, and the light requirement of Trichodesmium nitrogen fixation was high relative to its photosynthetic light demand. Meanwhile, light is a crucial parameter driving the physiological state of Trichodesmium, which subsequently determined the C / N metabolism and net dissolved nitrogen release.
Chia-Jeng Chen and Tsung-Yu Lee
Hydrol. Earth Syst. Sci., 21, 3463–3481, https://doi.org/10.5194/hess-21-3463-2017, https://doi.org/10.5194/hess-21-3463-2017, 2017
Short summary
Short summary
Regional hydro-climatic variables are modulated by large-scale, reoccurring climate oscillations. In this article, the authors provide both statistical and physical evidence of how Taiwan’s summertime streamflow is strongly correlated with specific teleconnection patterns dominating cyclonic activity in the western North Pacific. However, such correlation can be strengthened or weakened by notable climate regime shifts, illustrating the pitfall of empirical seasonal forecasting.
Chung-Chi Chen, Gwo-Ching Gong, Wen-Chen Chou, Chih-Ching Chung, Chih-Hao Hsieh, Fuh-Kwo Shiah, and Kuo-Ping Chiang
Biogeosciences, 14, 2597–2609, https://doi.org/10.5194/bg-14-2597-2017, https://doi.org/10.5194/bg-14-2597-2017, 2017
Short summary
Short summary
To understand the flooding effects on a pelagic ecosystem in the East China Sea (ECS), a variety of variables were measured in 2009 (non-flood) and 2010 (flood). In 2010, the organic carbon consumption was higher than in 2009; this could be attributed to the vigorous plankton activities observed in low-salinity areas. A huge amount of f CO2 was also drawn down in the flood. This flood effect might become more pronounced as extreme rainfall events increase dramatically throughout the world.
Xiang Gong, Wensheng Jiang, Linhui Wang, Huiwang Gao, Emmanuel Boss, Xiaohong Yao, Shuh-Ji Kao, and Jie Shi
Biogeosciences, 14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, https://doi.org/10.5194/bg-14-2371-2017, 2017
Short summary
Short summary
The subsurface chlorophyll maximum layer (SCML) forms near the nitracline. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions of a specified nutrient–phytoplankton model. Nitracline depth is deeper than SCML depth, and a thinner SCML corresponds to a steeper nitracline. A higher light attenuation coefficient leads to a shallower but steeper nitracline. Nitracline steepness is independent of surface light intensity.
Tsung-Yu Lee, Li-Chin Lee, Jr-Chuan Huang, Shih-Hao Jien, Thomas Hein, Franz Zehetner, Shuh-Ji Kao, and Fuh-Kwo Shiah
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-105, https://doi.org/10.5194/bg-2017-105, 2017
Revised manuscript not accepted
Min Nina Xu, Yanhua Wu, Li Wei Zheng, Zhenzhen Zheng, Huade Zhao, Edward A. Laws, and Shuh-Ji Kao
Biogeosciences, 14, 1021–1038, https://doi.org/10.5194/bg-14-1021-2017, https://doi.org/10.5194/bg-14-1021-2017, 2017
Short summary
Short summary
To resolve multiple N transformation rates, we proposed an innovative “isotope matrix method” to simultaneously derive rates for multiple transformations. This method was designed specifically for incubations in the euphotic zone under simulated in situ light conditions and minimized potential biases caused by non-targeted processes. The method facilitates simple post hoc analysis of data and can be used to probe specific effects of environmental factors on the rates of interactive N processes.
Hana Jurikova, Tania Guha, Osamu Abe, Fuh-Kwo Shiah, Chung-Ho Wang, and Mao-Chang Liang
Biogeosciences, 13, 6683–6698, https://doi.org/10.5194/bg-13-6683-2016, https://doi.org/10.5194/bg-13-6683-2016, 2016
Short summary
Short summary
Life on Earth is directly or indirectly linked to primary production (PP), the quantification of which poses a challenge. In our study we use the oxygen isotopes and oxygen–argon ratios technique to estimate PP in situ. To date this method has been used to assess PP in the ocean and we expand on its application to freshwater systems. Providing that the physical structure of the water column is constrained, this method presents a powerful tracer for atmospheric vs. photosynthetic oxygen input.
Chia-Jeng Chen and Tsung-Yu Lee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-216, https://doi.org/10.5194/hess-2016-216, 2016
Revised manuscript not accepted
Short summary
Short summary
Seasonal forecasting of a region's hydro-climatic variables is not a fantasy as long as such variables are modulated by certain large-scale, reoccurring climate oscillations. In this article, the authors provide both statistical and physical evidence of how Taiwan's summertime streamflow is strongly connected with some climate patterns dominating cyclonic activity in the Northwest Pacific. However, such connection can be strengthened or weakened by climate regime shifts, as a forecasting caveat.
Min Zhong, Eri Saikawa, Yang Liu, Vaishali Naik, Larry W. Horowitz, Masayuki Takigawa, Yu Zhao, Neng-Huei Lin, and Elizabeth A. Stone
Geosci. Model Dev., 9, 1201–1218, https://doi.org/10.5194/gmd-9-1201-2016, https://doi.org/10.5194/gmd-9-1201-2016, 2016
Short summary
Short summary
Large discrepancies exist among emission inventories (e.g., REAS and EDGAR) at the provincial level in China. We use WRF-Chem to evaluate the impact of the difference in existing emission inventories and find that emissions inputs significantly affect our air pollutant simulation results. Our study highlights the importance of constraining emissions at the provincial level for regional air quality modeling over East Asia.
Shuh-Ji Kao, Tzu-Ling Chiang, Da-Wei Li, Yi-Chia Hsin, Li-Wei Zheng, Jin-Yu Terence Yang, Shih-Chieh Hsu, Chau-Ron Wu, and Minhan Dai
Clim. Past Discuss., https://doi.org/10.5194/cp-2015-167, https://doi.org/10.5194/cp-2015-167, 2016
Preprint withdrawn
Short summary
Short summary
A 3-D model was run for the South China Sea to explore the effects of sea level drop and monsoon wind intensity on glacial patterns of circulation and ventilation. Winter northeasterly monsoon wind intensity governs the volume transport of Kuroshio intrusion through the Luzon Strait, subsequently, the water exchange rate and the mean residence time of water body of the SCS.
Chuan-Yao Lin, Chiung-Jui Su, Hiroyuki Kusaka, Yuko Akimoto, Yang-Fan Sheng, Jr-Chuan Huang, and Huang-Hsiung Hsu
Atmos. Chem. Phys., 16, 1809–1822, https://doi.org/10.5194/acp-16-1809-2016, https://doi.org/10.5194/acp-16-1809-2016, 2016
Short summary
Short summary
This study evaluated the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) Model coupled with the Noah land-surface model and a modified urban canopy model (WRF-UCM2D). WRF-UCM2D performed much better than the original UCM coupled with WRF (WRF-UCM) at non-urban stations with a low urban fraction during nighttime. The result of this study has crucial implications for assessing the impacts of urbanization on air quality and regional climate.
L. Luo, X. H. Yao, H. W. Gao, S. C. Hsu, J. W. Li, and S. J. Kao
Atmos. Chem. Phys., 16, 325–341, https://doi.org/10.5194/acp-16-325-2016, https://doi.org/10.5194/acp-16-325-2016, 2016
Short summary
Short summary
Concentrations and depositions of various nitrogen species of water-soluble fraction in aerosols were observed during spring over the eastern China seas and northwestern Pacific Ocean. Results revealed nitrogen deposition associated with the sea fog weather was 6 times higher than that of spring supply from the Yangtze River to the ECS shelf. The DON emission had occurred most likely during sea spray. Weather conditions modulate the nitrogen exchange at the ocean-atmosphere boundary.
J.-W. Xu, R. V. Martin, A. van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, L. Huang, Y. Wang, H. Chen, H. Che, P. Lin, and N. Lin
Atmos. Chem. Phys., 15, 13133–13144, https://doi.org/10.5194/acp-15-13133-2015, https://doi.org/10.5194/acp-15-13133-2015, 2015
Short summary
Short summary
1. GOCI (Geostationary Ocean Color Imager) retrieval of AOD is consistent with AERONET AOD (RMSE=0.08-0.1)
2. GOCI-derived PM2.5 is in significant agreement with in situ observations (r2=0.66, rRMSE=18.3%)
3. Population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg/m3, threatening the health of its more than 400 million residents
4. Secondary inorganics (SO42-, NO3-, NH4+) & organic matter are the most significant components of GOCI-derived PM2.5.
T.-C. Lin, P.-J. L. Shaner, L.-J. Wang, Y.-T. Shih, C.-P. Wang, G.-H. Huang, and J.-C. Huang
Hydrol. Earth Syst. Sci., 19, 4493–4504, https://doi.org/10.5194/hess-19-4493-2015, https://doi.org/10.5194/hess-19-4493-2015, 2015
Short summary
Short summary
We summarize our findings as follows: (1) the mountain watersheds are vulnerable to agriculture expansion; (2) proper spatial configuration of agricultural lands in mountain watersheds can mitigate the impact of agriculture on NO3- output by 70%; and (3) the reconstructed element fluxes for the watersheds indicate excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, which likely resulted from excessive fertilizer use.
C.-C. Chen, G.-C. Gong, W.-C. Chou, C.-C. Chung, F.-K. Shiah, and K.-P. Chiang
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-5609-2015, https://doi.org/10.5194/bgd-12-5609-2015, 2015
Revised manuscript not accepted
Y.-T. Shih, T.-Y. Lee, J.-C. Huang, S.-J. Kao, K.-K. Liu, and F.-J. Chang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-449-2015, https://doi.org/10.5194/hessd-12-449-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and per capita loading. Those estimated DIN yield factors can extrapolate all possible combinations of land-use, discharge, and population density, demonstrating the capability for scenario assessment.
T.-Y. Lee, Y.-T. Shih, J.-C. Huang, S.-J. Kao, F.-K. Shiah, and K.-K. Liu
Biogeosciences, 11, 5307–5321, https://doi.org/10.5194/bg-11-5307-2014, https://doi.org/10.5194/bg-11-5307-2014, 2014
S.-C. Hsu, G.-C. Gong, F.-K. Shiah, C.-C. Hung, S.-J. Kao, R. Zhang, W.-N. Chen, C.-C. Chen, C. C.-K. Chou, Y.-C. Lin, F.-J. Lin, and S.-H. Lin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-21433-2014, https://doi.org/10.5194/acpd-14-21433-2014, 2014
Revised manuscript has not been submitted
Y. Zhang, X. Xie, N. Jiao, S. S.-Y. Hsiao, and S.-J. Kao
Biogeosciences, 11, 2131–2145, https://doi.org/10.5194/bg-11-2131-2014, https://doi.org/10.5194/bg-11-2131-2014, 2014
S. S.-Y. Hsiao, T.-C. Hsu, J.-w. Liu, X. Xie, Y. Zhang, J. Lin, H. Wang, J.-Y. T. Yang, S.-C. Hsu, M. Dai, and S.-J. Kao
Biogeosciences, 11, 2083–2098, https://doi.org/10.5194/bg-11-2083-2014, https://doi.org/10.5194/bg-11-2083-2014, 2014
J.-Y. T. Yang, S.-C. Hsu, M. H. Dai, S. S.-Y. Hsiao, and S.-J. Kao
Biogeosciences, 11, 1833–1846, https://doi.org/10.5194/bg-11-1833-2014, https://doi.org/10.5194/bg-11-1833-2014, 2014
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
Y.-F. Tseng, J. Lin, M. Dai, and S.-J. Kao
Biogeosciences, 11, 409–423, https://doi.org/10.5194/bg-11-409-2014, https://doi.org/10.5194/bg-11-409-2014, 2014
C.-C. Lai, Y.-W. Fu, H.-B. Liu, H.-Y. Kuo, K.-W. Wang, C.-H. Lin, J.-H. Tai, G. T. F. Wong, K.-Y. Lee, T.-Y. Chen, Y. Yamamoto, M.-F. Chow, Y. Kobayashi, C.-Y. Ko, and F.-K. Shiah
Biogeosciences, 11, 147–156, https://doi.org/10.5194/bg-11-147-2014, https://doi.org/10.5194/bg-11-147-2014, 2014
T.-C. Hsu and S.-J. Kao
Biogeosciences, 10, 7847–7862, https://doi.org/10.5194/bg-10-7847-2013, https://doi.org/10.5194/bg-10-7847-2013, 2013
C. T. Chang, S. P. Hamburg, J. L. Hwong, N. H. Lin, M. L. Hsueh, M. C. Chen, and T. C. Lin
Hydrol. Earth Syst. Sci., 17, 3815–3826, https://doi.org/10.5194/hess-17-3815-2013, https://doi.org/10.5194/hess-17-3815-2013, 2013
C.-C. Chen, G.-C. Gong, F.-K. Shiah, W.-C. Chou, and C.-C. Hung
Biogeosciences, 10, 2931–2943, https://doi.org/10.5194/bg-10-2931-2013, https://doi.org/10.5194/bg-10-2931-2013, 2013
T.-Y. Lee, J.-C. Huang, S.-J. Kao, and C.-P. Tung
Biogeosciences, 10, 2617–2632, https://doi.org/10.5194/bg-10-2617-2013, https://doi.org/10.5194/bg-10-2617-2013, 2013
N. N. Chang, J. C. Shiao, G. C. Gong, S. J. Kao, and C. H. Hsieh
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-1051-2013, https://doi.org/10.5194/bgd-10-1051-2013, 2013
Revised manuscript not accepted
Related subject area
Biogeochemistry: Rivers & Streams
From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration
The influence of burn severity on dissolved organic carbon concentrations across a stream network differs based on seasonal wetness conditions
Seasonal particulate organic carbon dynamics of the Kolyma River tributaries, Siberia
Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
Physical and stoichiometric controls on stream respiration in a headwater stream
Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration
Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum
Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry
Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Organic matter transformations are disconnected between surface water and the hyporheic zone
CO2 emissions from peat-draining rivers regulated by water pH
Effects of peatland management on aquatic carbon concentrations and fluxes
Resistance and resilience of stream metabolism to high flow disturbances
Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks
Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Diel patterns in stream nitrate concentration produced by in-stream processes
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Behaviour of Dissolved Phosphorus with the associated nutrients in relation to phytoplankton biomass of the Rajang River-South China Sea continuum
Synchrony in catchment stream colour levels is driven by both local and regional climate
The post-monsoon carbon biogeochemistry of the Hooghly–Sundarbans estuarine system under different levels of anthropogenic impacts
Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect
Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Use of argon to measure gas exchange in turbulent mountain streams
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)
Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest
Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments
Carbon and nutrient export regimes from headwater catchments to downstream reaches
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Katie A. Wampler, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 21, 3093–3120, https://doi.org/10.5194/bg-21-3093-2024, https://doi.org/10.5194/bg-21-3093-2024, 2024
Short summary
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Shuai Chen, Jun Zhong, Lishan Ran, Yuanbi Yi, Wanfa Wang, Zelong Yan, Si-liang Li, and Khan M. G. Mostofa
Biogeosciences, 20, 4949–4967, https://doi.org/10.5194/bg-20-4949-2023, https://doi.org/10.5194/bg-20-4949-2023, 2023
Short summary
Short summary
This study found the source of dissolved organic carbon and its optical properties (e.g., aromaticity, humification) are related to human land use and catchment slope in anthropogenically impacted subtropical mountainous rivers. The study highlights that the combination of dual carbon isotopes and optical properties represents a useful tool in tracing the origin of dissolved organic carbon and its in-stream processes.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón
Biogeosciences, 20, 3353–3366, https://doi.org/10.5194/bg-20-3353-2023, https://doi.org/10.5194/bg-20-3353-2023, 2023
Short summary
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271, https://doi.org/10.5194/bg-20-3261-2023, https://doi.org/10.5194/bg-20-3261-2023, 2023
Short summary
Short summary
Small cascades greatly enhance mountain stream gas emissions through the turbulent energy dissipation rate and air bubbles entrained into the water. We numerically studied the local contribution of these mechanisms driving gas transfer velocity used to quantify the outgassing. The gas evasion is primarily due to bubbles concentrated in irregular spots of limited area. Consequently, the gas exchange velocity is scale-dependent and unpredictable, posing concerns about its use in similar scenarios.
Philipp Maurischat, Michael Seidel, Thorsten Dittmar, and Georg Guggenberger
Biogeosciences, 20, 3011–3026, https://doi.org/10.5194/bg-20-3011-2023, https://doi.org/10.5194/bg-20-3011-2023, 2023
Short summary
Short summary
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this sensitive ecosystem. We investigated the chemical composition of dissolved organic matter and the most mobile fraction of OM in glaciers, wetlands, and groundwater as well as in the rivers and a large terminal lake. Our data show that the sources differ in the molecular composition of OM, that the stream is influenced by agriculture, and that the lake strongly changes the inflowing organic matter.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Andrew L. Robison, Nicola Deluigi, Camille Rolland, Nicolas Manetti, and Tom Battin
Biogeosciences, 20, 2301–2316, https://doi.org/10.5194/bg-20-2301-2023, https://doi.org/10.5194/bg-20-2301-2023, 2023
Short summary
Short summary
Climate change is affecting mountain ecosystems intensely, including the loss of glaciers and the uphill migration of plants. How these changes will affect the streams draining these landscapes is unclear. We sampled streams across a gradient of glacier and vegetation cover in Switzerland and found glacier loss reduced the carbon dioxide sink from weathering, while vegetation cover increased dissolved organic carbon in the stream. These changes are important to consider for mountains globally.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Short summary
By monitoring the concentration and Δ17O of stream nitrate in three forested streams, the new nitrogen saturation index of forested catchments (Matm/Datm ratio) was estimated. We found that (1) the unprocessed atmospheric nitrate in our studied forested stream (FK1 catchment) was the highest ever reported in forested streams; (2) the Matm/Datm ratio can be used as a robust index for evaluating nitrogen saturation in forested catchments as the Matm/Datm ratio is independent of the precipitation.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Brynn O'Donnell and Erin R. Hotchkiss
Biogeosciences, 19, 1111–1134, https://doi.org/10.5194/bg-19-1111-2022, https://doi.org/10.5194/bg-19-1111-2022, 2022
Short summary
Short summary
A stream is defined by flowing water, but higher flow from storms is also a frequent disturbance. This paper tests how higher flow changes stream metabolism (respiration and photosynthesis, R and P). P was less resistant to changes in flow compared to R, and P took longer to recover from storms than R (2.2 versus 0.6 d). Further work on metabolic responses to flow disturbance is critical given projected increases in storms and the influence of higher flows on ecosystem health and functioning.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021, https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021, https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Short summary
We show a comprehensive monitoring dataset on the discharge and carbon transport in a small alpine river on the Qinghai–Tibetan Plateau, where riverine carbon increased downstream in the pre-monsoon season due to an increasing contribution of organic matter derived from seasonal permafrost thaw while it fluctuated in the monsoon season induced by sporadic precipitation. These results indicate a high sensitivity of riverine carbon in alpine headwater catchments to local hydrological events.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020, https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
Short summary
About half of the global CO2 sequestration due to chemical weathering occurs in warm and high-runoff regions. To evaluate the temporary and net sinks of atmospheric CO2 due to chemical weathering, we selected a typical subtropical catchment as our study area and did fieldwork to sample surface water along the main channel and major tributaries in 1 hydrological year. The result of mass balance calculation showed that human activities dramatically decreased the CO2 net sink.
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020, https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Short summary
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TMs) to surface waters, and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. This work aims to address the fate of organic carbon and its role as a trace metal carrier in drained peatlands of Indonesia.
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020, https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Edwin Sien Aun Sia, Jing Zhang, Shan Jiang, Zhuoyi Zhu, Gonzalo Carrasco, Faddrine Holt Jang, Aazani Mujahid, and Moritz Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-219, https://doi.org/10.5194/bg-2019-219, 2019
Revised manuscript not accepted
Short summary
Short summary
Nutrient loads carried by large rivers and discharged into the continental shelf and coastal waters are vital to support primary production. Our knowledge of tropical river systems is fragmented with very few seasonal studies available for Southeast Asia (SEA). We present data from three sampling campaigns on the longest river in Malaysia, the Rajang river. Our results show the generalization of SEA as a nutrient hotspot might not hold true for all regions and requires further investigation.
Brian C. Doyle, Elvira de Eyto, Mary Dillane, Russell Poole, Valerie McCarthy, Elizabeth Ryder, and Eleanor Jennings
Biogeosciences, 16, 1053–1071, https://doi.org/10.5194/bg-16-1053-2019, https://doi.org/10.5194/bg-16-1053-2019, 2019
Short summary
Short summary
This study explores the drivers of variation in the water colour of rivers, and hence organic carbon export, in a blanket peatland catchment. We used 6 years of weekly river water colour data (2011 to 2016) from three proximate river sub-catchments in western Ireland. in tandem with a range of topographical, hydrological and climate data, to discover the principle environmental drivers controlling changes in colour concentration in the rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Wenjing Liu, Zhifang Xu, Huiguo Sun, Tong Zhao, Chao Shi, and Taoze Liu
Biogeosciences, 15, 4955–4971, https://doi.org/10.5194/bg-15-4955-2018, https://doi.org/10.5194/bg-15-4955-2018, 2018
Short summary
Short summary
The southeastern coastal region is the top acid-rain-impacted area in China. It is worth evaluating the acid deposition impacts on chemical weathering and CO2 consumption there. River water geochemistry evidenced an overestimation of CO2 sequestration if H2SO4/HNO3 involvement was ignored, which accounted for 33.6 % of the total flux by silicate weathering in this area. This study quantitatively highlights the anthropogenic acid effects on chemical weathering and associated CO2 consumption.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Robert O. Hall Jr. and Hilary L. Madinger
Biogeosciences, 15, 3085–3092, https://doi.org/10.5194/bg-15-3085-2018, https://doi.org/10.5194/bg-15-3085-2018, 2018
Short summary
Short summary
Streams exchange oxygen with the atmosphere, but this rate is difficult to measure. We added argon to small mountain streams to estimate gas exchange. We compared these rates with sulfur hexafluoride, an intense greenhouse gas. Argon worked well to measure gas exchange, but had higher-than-predicted rates than sulfur hexafluoride. Argon exchange is more likely to represent that for oxygen because they share similar physical properties. We suggest argon to measure gas exchange in small streams.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Camille Minaudo, Florence Curie, Yann Jullian, Nathalie Gassama, and Florentina Moatar
Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, https://doi.org/10.5194/bg-15-2251-2018, 2018
Short summary
Short summary
We developed the model QUALity-NETwork (QUAL-NET) to simulate water quality variations in large drainage networks. This model is accurate enough to represent processes occurring over short periods of time such as storm events and helps to fully understand water quality variations in stream networks in the context of climate change and varying human pressures. It was tested on the Loire River and provided good performances and a new understanding of the functioning of the river.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Trent R. Marwick, Fredrick Tamooh, Bernard Ogwoka, Alberto V. Borges, François Darchambeau, and Steven Bouillon
Biogeosciences, 15, 1683–1700, https://doi.org/10.5194/bg-15-1683-2018, https://doi.org/10.5194/bg-15-1683-2018, 2018
Short summary
Short summary
A 2-year biogeochemical record provides annual sediment and element flux estimates for the non-dammed Sabaki River, Kenya, establishing a baseline for future research in light of impending construction of the first major upstream reservoir. Over 80 % of material fluxes occur across the wet season, with annual yields comparable to the adjacent, and dammed, Tana River. Observations at low-flow periods suggest large mammalian herbivores may be vectors of terrestrial subsidies to the water column.
Loris Deirmendjian, Denis Loustau, Laurent Augusto, Sébastien Lafont, Christophe Chipeaux, Dominique Poirier, and Gwenaël Abril
Biogeosciences, 15, 669–691, https://doi.org/10.5194/bg-15-669-2018, https://doi.org/10.5194/bg-15-669-2018, 2018
Short summary
Short summary
Carbon leaching to streams represents a very small (~ 2 %) fraction of forest net ecosystem exchange (NEE). Such weak export of carbon from forest ecosystems, at least in temperate regions, is at odds with recent studies that attempt to integrate the contribution of inland waters in the continent carbon budget. Understanding why local and global carbon mass balances strongly diverge on the proportion of land NEE exported to aquatic systems is a major challenge for research in this field.
Katrin Magin, Celia Somlai-Haase, Ralf B. Schäfer, and Andreas Lorke
Biogeosciences, 14, 5003–5014, https://doi.org/10.5194/bg-14-5003-2017, https://doi.org/10.5194/bg-14-5003-2017, 2017
Short summary
Short summary
We analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from catchments in a temperate stream network. The carbon exported by streams and rivers corresponds to 2.7 % of the terrestrial NPP. CO2 evasion and downstream transport contribute about equally to this flux. A review of existing studies suggests that the catchment-specific carbon export varies in a relatively narrow range across different study regions and spatial scales.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
Cited articles
Aber, J. D., Nadelhoffer, K. J., Steudler, P., and Melillo, J. M.: Nitrogen
Saturation in Northern Forest Ecosystems, Bioscience, 39, 378–386, 1989.
Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G.,
Kamakea, M., McNulty, S., Currie, W., Rustad, L., and Fernandez, I.:
Nitrogen saturation in temperate forest ecosystems – Hypotheses revisited,
Bioscience, 48, 921–934, 1998.
Brown, L. R., Cuffney, T. F., Coles, J. F., Fitzpatrick, F., McMahon, G.,
Steuer, J., Bell, A. H., and May, J. T.: Urban streams across the USA:
lessons learned from studies in 9 metropolitan areas, J. N. Am. Benthol.
Soc., 28, 1051–1069, 2009.
Campbell, D. H., Baron, J. S., Tonnessen, K. A., Brooks, P. D., and
Schuster, P. F.: Controls on nitrogen flux in alpine/subalpine watersheds of
Colorado, Water Resour. Res., 36, 37–47, 2000.
Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W.,
Hedin, L. O., Perakis, S. S., Latty, E. F., Von Fischer, J. C., Elseroad, A.,
and Wasson, M. F.: Global patterns of terrestrial biological nitrogen (N2)
fixation in natural ecosystems, Global Biogeochem. Cy., 13, 623–645, 1999.
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S.
P., Havens, K. E., Lancelot, C., and Likens, G. E.: Controlling
eutrophication: nitrogen and phosphorus, Science, 323, 1014–1015, 2009.
Downing, J. A., Osenberg, C. W., and Sarnelle, O.: Meta-Analysis of marine
nutrient-enrichment experiments: Variation in the magnitude of nutrient
limitation, Ecology, 80, 1157==1167, https://doi.org/10.1890/0012-9658(1999)080[1157:MAOMNE]2.0.CO;2, 1999.
Dumont, E., Harrison, J. A., Kroeze, C., Bakker, E. J., and Seitzinger, S.
P.: Global distribution and sources of dissolved inorganic nitrogen export
to the coastal zone: Results from a spatially explicit, global model, Global
Biogeochem. Cy., 19, GB4S02, https://doi.org/10.1029/2005GB002488, 2005.
Environmental Protection Administration (EPA): Environmental Water Quality
Information, Environmental
Protection Administration, Executive Yuan, Taiwan, available at: http://wq.epa.gov.tw/ (last access: 21 August 2013), 2002.
Food and Agriculture Organization (FAO): Fertilizer use by crop in Taiwan Province
of China, Rome, Italy, 2002.
Fitzpatrick, F. A., Harris, M. A., Arnold, T. L., and Richards, K. D.:
Urbanization influences on aquatic communities in northeastern Illinois
streams, J. Am. Water Resour. As., 40, 461–475, 2004.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A.,
Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A.
R., and Vörosmarty, C. J.: Nitrogen cycles: past, present, and future,
Biogeochemistry, 70, 153–226, 2004.
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C.,
Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.:
Transformation of the nitrogen cycle: Recent trends, questions, and
potential solutions, Science, 320, 889–892, 2008.
Gao, W., Howarth, R. W., Hong, B., Swaney, D. P., and Guo, H. C.: Estimating
net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi basin of China,
Biogeosciences, 11, 4577–4586, https://doi.org/10.5194/bg-11-4577-2014, 2014.
Groffman, P. M., Law, N. L., Belt, K. T., Band, L. E., and Fisher, G. T.:
Nitrogen Fluxes and Retention in Urban Watershed Ecosystems, Ecosystems, 7,
393–403, 2004.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global
nitrogen cycle, Nature, 451, 293–296, 2008.
Halbfaß, S., Gebel, M., and Bürger, S.: Modelling of long term
nitrogen retention in surface waters, Adv. Geosci., 27, 145–148,
https://doi.org/10.5194/adgeo-27-145-2010, 2010.
He, B., Kanae, S., Oki, T., Hirabayashi, Y., Yamashiki, Y., and Takara, K.:
Assessment of global nitrogen pollution in rivers using an integrated
biogeochemical modeling framework, Water Res., 45, 2573–2586, 2011.
Howarth, R. W.: An assessment of human influences on fluxes of nitrogen from
the terrestrial landscape to the estuaries and continental shelves of the
North Atlantic Ocean, Nutr. Cycl. Agroecosys., 52, 213–223, 1998.
Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha,
K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F.,
Freney, J., Kudeyarov, V., Murdoch, P., and Zhu, Z. L.: Regional nitrogen
budgets and riverine N&P fluxes for the drainages to the North Atlantic
Ocean: Natural and human influences, Biogeochemistry, 35, 75–139, 1996.
Howarth, R. W., Sharpley, A., and Walker, D.: Sources of nutrient pollution
to coastal waters in the United States: Implications for achieving coastal
water quality goals, Estuaries, 25, 656–676, 2002.
Howarth, R. W., Swaney, D. P., Boyer, E. W., Marino, R., Jaworski, N., and
Goodale, C.: The influence of climate on average nitrogen export from large
watersheds in the Northeastern United States, Biogeochemistry, 79, 163–186,
2006.
Hsu, S. C., Tsai, F. J., Lin, F. J., Chen, W. N., Shiah, F. K., Huang, J. C.,
Chan, C. Y., Chen, C. C., Liu, T. H., Chen, H. Y., Tseng, C. M., Hung, G. W.,
Huang, C. H., Lin, S. H., and Huang, Y. T.: A super Asian dust storm over the
East and South China Seas: Disproportionate dust deposition, J. Geophys.
Res.-Atmos., 118, 7169–7181, https://doi.org/10.1002/jgrd.50405, 2013.
Huang, J.-C., Lee, T.-Y., Kao, S.-J., Hsu, S.-C., Lin, H.-J., and Peng,
T.-R.: Land use effect and hydrological control on nitrate yield in
subtropical mountainous watersheds, Hydrol. Earth Syst. Sci., 16, 699–714,
https://doi.org/10.5194/hess-16-699-2012, 2012.
Huang, J. C., Lee, T. Y., and Lee, J. Y.: Observed magnified runoff response
to rainfall intensification under global warming, Environ. Res. Lett., 9,
034008, https://doi.org/10.1088/1748-9326/9/3/034008, 2014.
Hunter, H. M. and Walton, R. S.: Land-use effects on fluxes of suspended
sediment, nitrogen and phosphorus from a river catchment of the Great
Barrier Reef, Australia, J. Hydrol., 356, 131–146, 2008.
Hutchison, J. S. and Henry, H. L.: Additive Effects of Warming and Increased
Nitrogen Deposition in a Temperate Old Field: Plant Productivity and the
Importance of Winter, Ecosystems, 13, 661–672, 2010.
Jeuken, A., Veefkind, J. P., Dentener, F., Metzger, S., and Gonzalez, C. R.:
Simulation of the aerosol optical depth over Europe for August 1997 and a
comparison with observations, J. Geophys. Res.-Atmos., 106, 28295–28311,
2001.
Kaushal, S. S., Groffman, P. M., Band, L. E., Shields, C. A., Morgan, R. P.,
Palmer, M. A., Belt, K. T., Fisher, G. T., Swan, C. M., and Findlay, S. E. G.: Interaction
between urbanization and climate variability amplifies watershed nitrate
export in Maryland, Environ. Sci. Technol., 42, 5872–5878, 2008.
Lee, T.-Y., Shih, Y.-T., Huang, J.-C., Kao, S.-J., Shiah, F.-K., and Liu, K.-K.:
Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui
River, Taiwan, Biogeosciences, 11, 5307–5321, https://doi.org/10.5194/bg-11-5307-2014, 2014.
Lelieveld, J. and Dentener, F. J.: What controls tropospheric ozone?, J.
Geophys. Res.-Atmos., 105, 3531–3551, 2000.
Lin, T.-C., Shaner, P.-J. L., Wang, L.-J., Shih, Y.-T., Wang, C.-P., Huang,
G.-H., and Huang, J.-C.: Effects of mountain tea plantations on nutrient
cycling at upstream watersheds, Hydrol. Earth Syst. Sci., 19, 4493–4504,
https://doi.org/10.5194/hess-19-4493-2015, 2015.
Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A. J.
B., and Yangd, H.: A high-resolution assessment on global nitrogen flows in
cropland, P. Natl. Acad. Sci. USA, 107, 8035–8040, 2010.
Liu, S. C., Fu, C. B., Shiu, C. J., Chen, J. P., and Wu, F. T.: Temperature
dependence of global precipitation extremes, Geophys. Res. Lett., 36,
L17702, https://doi.org/10.1029/2009GL040218, 2009.
McCrackin, M. L., Harrison, J. A., and Compton, J. E.: Factors influencing export
of dissolved inorganic nitrogen by major rivers: A new, seasonal, spatially
explicit, global model, Global Biogeochem. Cy., 28, 269–285, https://doi.org/10.1002/2013GB004723, 2014.
McIsaac, G. F., David, M. B., Gertner, G. Z., and Goolsby, D. A.: Relating
Net Nitrogen Input in the Mississippi River Basin to Nitrate Flux in the
Lower Mississippi River: A Comparison of Approaches, J. Environ. Qual.,
31, 1610–1622, 2002.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and
Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources
for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444,
https://doi.org/10.5194/acp-7-4419-2007, 2007.
Peng, T. R., Lin, H. J., Wang, C. H., Liu, T. S., and Kao, S. J.: Pollution
and variation of stream nitrate in a protected high-mountain watershed of
Central Taiwan: evidence from nitrate concentration and nitrogen and oxygen
isotope compositions, Environ. Monit. Assess., 184, 4985–4998, 2012.
Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin,
E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist,
B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sorlin, S.,
Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L.,
Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D.,
Richardson, K., Crutzen, P., and Foley, J. A.: A safe operating space for
humanity, Nature, 461, 472–475, 2009.
Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., and
Bouwman, A. F.: Sources and delivery of carbon, nitrogen, and phosphorus to
the coastal zone: An overview of Global Nutrient Export from Watersheds
(NEWS) models and their application, Global Biogeochem. Cy., 19, GB4S01, https://doi.org/10.1029/2005GB002606,
2005.
Smith, S. V., Swaney, D. P., Buddemeier, R. W., Scarsbrook, M. R.,
Weatherhead, M. A., Humborg, C., Eriksson, H., and Hannerz, F.: River
nutrient loads and catchment size, Biogeochemistry, 75, 83–107, 2005.
Sullivan, B. W., Smith, W. K., Townsend, A. R., Nasto, M. K., Reed, S. C.,
Chazdon, R. L., and Cleveland, C. C.: Spatially robust estimates of biological
nitrogen (N) fixation imply substantial human alteration of the tropical N
cycle, P. Natl. Acad. Sci. USA, 111, 8101–8106, 2014.
Townsend, A. R., Martinelli, L. A., and Howarth, R. W.: The global nitrogen
cycle, biodiversity, and human health, in: Biodiversity change and human
health, edited by: Sala, O. E. and Meyerson, L. A., Island Press, Washington
DC, USA, 159–179, 2009.
Tu, J.: Combined impact of climate and land use changes on streamflow and
water quality in eastern Massachusetts, USA, J. Hydrol., 379, 268–283, 2009.
Van Drecht, G., Bouwman, A. F., Harrison, J., and Knoop, J. M.: Global
nitrogen and phosphate in urban wastewater for the period 1970 to 2050,
Global Biogeochem. Cy., 23, GB-A03, https://doi.org/10.1029/2009GB003458, 2009.
Venohr, M., Donohue, I., Fogelberg, S., Arheimer, B., Irvine, K., and
Behrendt, H.: Nitrogen retention in a river system and the effects of river
morphology and lakes, Water Sci. Technol., 51, 19–29, 2005.
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A.,
Schindler, D. W., Schlesinger, W. H., and Tilman, D. G.: Human alternation
of the global nitrogen cycle: sources and consequences, Ecol. Appl., 7,
737–750, 1997.
Yan, X., Akimoto, H., and Ohara, T.: Estimation of nitrous oxide, nitric
oxide and ammonia emissions from croplands in East, Southeast and South
Asia, Global Change Biol., 9, 1080–1096, 2003.
Short summary
The mean riverine DIN export of 49 watersheds in Taiwan is ∼ 3800 kg N km−2 yr−1, 18 times the global average. The mean riverine DIN export ratio is 0.30–0.51, which is much higher than the average of 0.20–0.25 of large rivers around the world, indicating excessive N input relative to ecosystem retention capacity. The DIN export ratio is positively related to agriculture input, and levels of human disturbance and watersheds with high DIN export ratios are likely at advanced stages of N excess.
The mean riverine DIN export of 49 watersheds in Taiwan is ∼ 3800 kg N km−2 yr−1, 18 times the...
Altmetrics
Final-revised paper
Preprint