Articles | Volume 13, issue 6
https://doi.org/10.5194/bg-13-1877-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1877-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Trace element transport in western Siberian rivers across a permafrost gradient
GET UMR5563 CNRS University of Toulouse (France), 14 Avenue Edouard
Belin, 31400 Toulouse, France
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av., 36,
Tomsk, Russia
Institute of Ecological Problem of the North, 23 Nab Severnoi Dviny,
Arkhangelsk, Russia
Rinat M. Manasypov
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av., 36,
Tomsk, Russia
Institute of Ecological Problem of the North, 23 Nab Severnoi Dviny,
Arkhangelsk, Russia
Sergey V. Loiko
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av., 36,
Tomsk, Russia
Ivan A. Krickov
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av., 36,
Tomsk, Russia
Sergey G. Kopysov
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av., 36,
Tomsk, Russia
Institute of Monitoring of Climatic and Ecological Systems, SB RAS,
Tomsk, Russia
Larisa G. Kolesnichenko
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av., 36,
Tomsk, Russia
Sergey N. Vorobyev
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av., 36,
Tomsk, Russia
Sergey N. Kirpotin
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av., 36,
Tomsk, Russia
Related authors
Artem V. Chupakov, Natalia V. Neverova, Anna A. Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, Taissia Ya. Vorobyeva, and Oleg S. Pokrovsky
Biogeosciences, 21, 5725–5743, https://doi.org/10.5194/bg-21-5725-2024, https://doi.org/10.5194/bg-21-5725-2024, 2024
Short summary
Short summary
In the boreal humic waters of a forest lake and bog, the rate of dissolved organic matter photodegradation is 4 times higher than that of biodegradation. However, given the shallow, light-penetrating layer, the biodegradation provides the largest contribution to CO2 emissions from water surfaces. Trace metals were partially removed (1–10 %) during photodegradation and biodegradation via precipitation of Fe(III) hydroxides after destabilization of organoferric colloids and organic complexes.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
Hydrol. Earth Syst. Sci., 27, 431–451, https://doi.org/10.5194/hess-27-431-2023, https://doi.org/10.5194/hess-27-431-2023, 2023
Short summary
Short summary
Moss, lichen and peat samples are reconstructed using X-ray tomography. Most samples can be cut down to a representative volume based on porosity. However, only homogeneous samples could be reduced to a representative volume based on hydraulic conductivity. For heterogeneous samples, a devoted pore network model is computed. The studied samples are mostly highly porous and water-conductive. These results must be put into perspective with compressibility phenomena occurring in field tests.
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020, https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
Short summary
To better understand the mercury (Hg) content in northern soils, we measured Hg concentration in peat cores across a 1700 km permafrost gradient in Siberia. We demonstrated a northward increase in Hg concentration in peat and Hg pools in frozen peatlands. We revised the 0–30 cm northern soil Hg pool to be 72 Gg, which is 7 % of the global soil Hg pool of 1086 Gg. The results are important for understanding Hg exchange between soil, water, and the atmosphere under climate change in the Arctic.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Vladimir P. Shevchenko, Oleg S. Pokrovsky, Sergey N. Vorobyev, Ivan V. Krickov, Rinat M. Manasypov, Nadezhda V. Politova, Sergey G. Kopysov, Olga M. Dara, Yves Auda, Liudmila S. Shirokova, Larisa G. Kolesnichenko, Valery A. Zemtsov, and Sergey N. Kirpotin
Hydrol. Earth Syst. Sci., 21, 5725–5746, https://doi.org/10.5194/hess-21-5725-2017, https://doi.org/10.5194/hess-21-5725-2017, 2017
Short summary
Short summary
We used a coupled hydrological–hydrochemical approach to assess the impact of snow on river and lake water chemistry across a permafrost gradient in very poorly studied Western Siberia Lowland (WSL), encompassing > 1.5 million km2. The riverine springtime fluxes of major and trace element in WSL rivers might be strongly overestimated due to previously unknown input from the snow deposition.
Aleksandr F. Sabrekov, Benjamin R. K. Runkle, Mikhail V. Glagolev, Irina E. Terentieva, Victor M. Stepanenko, Oleg R. Kotsyurbenko, Shamil S. Maksyutov, and Oleg S. Pokrovsky
Biogeosciences, 14, 3715–3742, https://doi.org/10.5194/bg-14-3715-2017, https://doi.org/10.5194/bg-14-3715-2017, 2017
Short summary
Short summary
Boreal lakes and wetland ponds have pronounced impacts on the global methane cycle. During field campaigns to West Siberian lakes, strong variations in the methane flux on both local and regional scales were observed, with significant emissions from southern taiga lakes. A newly constructed process-based model helps reveal what controls this variability and on what spatial scales. Our results provide insights into the emissions and possible ways to significantly improve global carbon models.
Tatiana V. Raudina, Sergey V. Loiko, Artyom G. Lim, Ivan V. Krickov, Liudmila S. Shirokova, Georgy I. Istigechev, Daria M. Kuzmina, Sergey P. Kulizhsky, Sergey N. Vorobyev, and Oleg S. Pokrovsky
Biogeosciences, 14, 3561–3584, https://doi.org/10.5194/bg-14-3561-2017, https://doi.org/10.5194/bg-14-3561-2017, 2017
Short summary
Short summary
We collected peat porewaters across a 640 km latitudinal transect of sporadic to continuous permafrost zone and analyzed organic carbon and trace metals. There was no distinct decrease in concentration along the latitudinal transect from 62.2° N to 67.4° N. The northward migration of the permafrost boundary or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variation within different micro-landscapes.
O. S. Pokrovsky, R. M. Manasypov, S. Loiko, L. S. Shirokova, I. A. Krickov, B. G. Pokrovsky, L. G. Kolesnichenko, S. G. Kopysov, V. A. Zemtzov, S. P. Kulizhsky, S. N. Vorobyev, and S. N. Kirpotin
Biogeosciences, 12, 6301–6320, https://doi.org/10.5194/bg-12-6301-2015, https://doi.org/10.5194/bg-12-6301-2015, 2015
Short summary
Short summary
The governing parameter of DOC and major element concentrations and fluxes in western Siberia is latitude. High fluxes in the continuous permafrost zone of frozen peat bogs stem from the fact that the underlining mineral layer is not reactive, protected by the permafrost so that the major part of the active layer is located within the organic (peat) matrix and not the mineral matrix. Possible changes in export fluxes of DOC and major river water components under permafrost thaw are quantified.
R. M. Manasypov, S. N. Vorobyev, S. V. Loiko, I. V. Kritzkov, L. S. Shirokova, V. P. Shevchenko, S. N. Kirpotin, S. P. Kulizhsky, L. G. Kolesnichenko, V. A. Zemtzov, V. V. Sinkinov, and O. S. Pokrovsky
Biogeosciences, 12, 3009–3028, https://doi.org/10.5194/bg-12-3009-2015, https://doi.org/10.5194/bg-12-3009-2015, 2015
Short summary
Short summary
A year-around hydrochemical study (including full winter freezing and spring flood) of shallow thermokarst lakes from a discontinuous permafrost zone of western Siberia revealed conceptually new features of element concentration evolution over different seasons within a large scale of the lake size.
R. M. Manasypov, O. S. Pokrovsky, S. N. Kirpotin, and L. S. Shirokova
The Cryosphere, 8, 1177–1193, https://doi.org/10.5194/tc-8-1177-2014, https://doi.org/10.5194/tc-8-1177-2014, 2014
O. S. Pokrovsky, L. S. Shirokova, J. Viers, V. V. Gordeev, V. P. Shevchenko, A. V. Chupakov, T. Y. Vorobieva, F. Candaudap, C. Causserand, A. Lanzanova, and C. Zouiten
Ocean Sci., 10, 107–125, https://doi.org/10.5194/os-10-107-2014, https://doi.org/10.5194/os-10-107-2014, 2014
O. S. Pokrovsky, L. S. Shirokova, S. N. Kirpotin, S. P. Kulizhsky, and S. N. Vorobiev
Biogeosciences, 10, 5349–5365, https://doi.org/10.5194/bg-10-5349-2013, https://doi.org/10.5194/bg-10-5349-2013, 2013
Artem V. Chupakov, Natalia V. Neverova, Anna A. Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, Taissia Ya. Vorobyeva, and Oleg S. Pokrovsky
Biogeosciences, 21, 5725–5743, https://doi.org/10.5194/bg-21-5725-2024, https://doi.org/10.5194/bg-21-5725-2024, 2024
Short summary
Short summary
In the boreal humic waters of a forest lake and bog, the rate of dissolved organic matter photodegradation is 4 times higher than that of biodegradation. However, given the shallow, light-penetrating layer, the biodegradation provides the largest contribution to CO2 emissions from water surfaces. Trace metals were partially removed (1–10 %) during photodegradation and biodegradation via precipitation of Fe(III) hydroxides after destabilization of organoferric colloids and organic complexes.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
Hydrol. Earth Syst. Sci., 27, 431–451, https://doi.org/10.5194/hess-27-431-2023, https://doi.org/10.5194/hess-27-431-2023, 2023
Short summary
Short summary
Moss, lichen and peat samples are reconstructed using X-ray tomography. Most samples can be cut down to a representative volume based on porosity. However, only homogeneous samples could be reduced to a representative volume based on hydraulic conductivity. For heterogeneous samples, a devoted pore network model is computed. The studied samples are mostly highly porous and water-conductive. These results must be put into perspective with compressibility phenomena occurring in field tests.
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020, https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
Short summary
To better understand the mercury (Hg) content in northern soils, we measured Hg concentration in peat cores across a 1700 km permafrost gradient in Siberia. We demonstrated a northward increase in Hg concentration in peat and Hg pools in frozen peatlands. We revised the 0–30 cm northern soil Hg pool to be 72 Gg, which is 7 % of the global soil Hg pool of 1086 Gg. The results are important for understanding Hg exchange between soil, water, and the atmosphere under climate change in the Arctic.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Nikolaos Evangeliou, Vladimir P. Shevchenko, Karl Espen Yttri, Sabine Eckhardt, Espen Sollum, Oleg S. Pokrovsky, Vasily O. Kobelev, Vladimir B. Korobov, Andrey A. Lobanov, Dina P. Starodymova, Sergey N. Vorobiev, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 18, 963–977, https://doi.org/10.5194/acp-18-963-2018, https://doi.org/10.5194/acp-18-963-2018, 2018
Short summary
Short summary
We present EC measurements from an uncertain region in terms of emissions (Russia). Its origin is quantified with a Lagrangian model that uses a recently developed feature that allows backward estimation of the specific source locations that contribute to the deposited mass. In NW European Russia transportation and domestic combustion from Finland was important. A systematic underestimation was found in W Siberia at places where gas flaring was important, implying miscalculation or sources.
Vladimir P. Shevchenko, Oleg S. Pokrovsky, Sergey N. Vorobyev, Ivan V. Krickov, Rinat M. Manasypov, Nadezhda V. Politova, Sergey G. Kopysov, Olga M. Dara, Yves Auda, Liudmila S. Shirokova, Larisa G. Kolesnichenko, Valery A. Zemtsov, and Sergey N. Kirpotin
Hydrol. Earth Syst. Sci., 21, 5725–5746, https://doi.org/10.5194/hess-21-5725-2017, https://doi.org/10.5194/hess-21-5725-2017, 2017
Short summary
Short summary
We used a coupled hydrological–hydrochemical approach to assess the impact of snow on river and lake water chemistry across a permafrost gradient in very poorly studied Western Siberia Lowland (WSL), encompassing > 1.5 million km2. The riverine springtime fluxes of major and trace element in WSL rivers might be strongly overestimated due to previously unknown input from the snow deposition.
Aleksandr F. Sabrekov, Benjamin R. K. Runkle, Mikhail V. Glagolev, Irina E. Terentieva, Victor M. Stepanenko, Oleg R. Kotsyurbenko, Shamil S. Maksyutov, and Oleg S. Pokrovsky
Biogeosciences, 14, 3715–3742, https://doi.org/10.5194/bg-14-3715-2017, https://doi.org/10.5194/bg-14-3715-2017, 2017
Short summary
Short summary
Boreal lakes and wetland ponds have pronounced impacts on the global methane cycle. During field campaigns to West Siberian lakes, strong variations in the methane flux on both local and regional scales were observed, with significant emissions from southern taiga lakes. A newly constructed process-based model helps reveal what controls this variability and on what spatial scales. Our results provide insights into the emissions and possible ways to significantly improve global carbon models.
Tatiana V. Raudina, Sergey V. Loiko, Artyom G. Lim, Ivan V. Krickov, Liudmila S. Shirokova, Georgy I. Istigechev, Daria M. Kuzmina, Sergey P. Kulizhsky, Sergey N. Vorobyev, and Oleg S. Pokrovsky
Biogeosciences, 14, 3561–3584, https://doi.org/10.5194/bg-14-3561-2017, https://doi.org/10.5194/bg-14-3561-2017, 2017
Short summary
Short summary
We collected peat porewaters across a 640 km latitudinal transect of sporadic to continuous permafrost zone and analyzed organic carbon and trace metals. There was no distinct decrease in concentration along the latitudinal transect from 62.2° N to 67.4° N. The northward migration of the permafrost boundary or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variation within different micro-landscapes.
O. S. Pokrovsky, R. M. Manasypov, S. Loiko, L. S. Shirokova, I. A. Krickov, B. G. Pokrovsky, L. G. Kolesnichenko, S. G. Kopysov, V. A. Zemtzov, S. P. Kulizhsky, S. N. Vorobyev, and S. N. Kirpotin
Biogeosciences, 12, 6301–6320, https://doi.org/10.5194/bg-12-6301-2015, https://doi.org/10.5194/bg-12-6301-2015, 2015
Short summary
Short summary
The governing parameter of DOC and major element concentrations and fluxes in western Siberia is latitude. High fluxes in the continuous permafrost zone of frozen peat bogs stem from the fact that the underlining mineral layer is not reactive, protected by the permafrost so that the major part of the active layer is located within the organic (peat) matrix and not the mineral matrix. Possible changes in export fluxes of DOC and major river water components under permafrost thaw are quantified.
R. M. Manasypov, S. N. Vorobyev, S. V. Loiko, I. V. Kritzkov, L. S. Shirokova, V. P. Shevchenko, S. N. Kirpotin, S. P. Kulizhsky, L. G. Kolesnichenko, V. A. Zemtzov, V. V. Sinkinov, and O. S. Pokrovsky
Biogeosciences, 12, 3009–3028, https://doi.org/10.5194/bg-12-3009-2015, https://doi.org/10.5194/bg-12-3009-2015, 2015
Short summary
Short summary
A year-around hydrochemical study (including full winter freezing and spring flood) of shallow thermokarst lakes from a discontinuous permafrost zone of western Siberia revealed conceptually new features of element concentration evolution over different seasons within a large scale of the lake size.
R. M. Manasypov, O. S. Pokrovsky, S. N. Kirpotin, and L. S. Shirokova
The Cryosphere, 8, 1177–1193, https://doi.org/10.5194/tc-8-1177-2014, https://doi.org/10.5194/tc-8-1177-2014, 2014
O. S. Pokrovsky, L. S. Shirokova, J. Viers, V. V. Gordeev, V. P. Shevchenko, A. V. Chupakov, T. Y. Vorobieva, F. Candaudap, C. Causserand, A. Lanzanova, and C. Zouiten
Ocean Sci., 10, 107–125, https://doi.org/10.5194/os-10-107-2014, https://doi.org/10.5194/os-10-107-2014, 2014
O. S. Pokrovsky, L. S. Shirokova, S. N. Kirpotin, S. P. Kulizhsky, and S. N. Vorobiev
Biogeosciences, 10, 5349–5365, https://doi.org/10.5194/bg-10-5349-2013, https://doi.org/10.5194/bg-10-5349-2013, 2013
Related subject area
Biogeochemistry: Rivers & Streams
Seasonal and spatial pattern of dissolved organic matter biodegradation and photodegradation in boreal humic waters
The role of nitrogen and iron biogeochemical cycles in the production and export of dissolved organic matter in agricultural headwater catchments
From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration
The influence of burn severity on dissolved organic carbon concentrations across a stream network differs based on seasonal wetness conditions
Temporal dynamics and environmental controls of carbon dioxide and methane fluxes measured by the eddy covariance method over a boreal river
Molecular level characterization of supraglacial dissolved organic matter sources and exported pools on the southern Greenland Ice Sheet
Seasonal particulate organic carbon dynamics of the Kolyma River tributaries, Siberia
Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes
Shifts in organic matter character and microbial community structure from glacial headwaters to downstream reaches in Canadian Rocky Mountain rivers
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
Physical and stoichiometric controls on stream respiration in a headwater stream
Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration
Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum
Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry
Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Organic matter transformations are disconnected between surface water and the hyporheic zone
CO2 emissions from peat-draining rivers regulated by water pH
Effects of peatland management on aquatic carbon concentrations and fluxes
Resistance and resilience of stream metabolism to high flow disturbances
Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks
Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Diel patterns in stream nitrate concentration produced by in-stream processes
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Behaviour of Dissolved Phosphorus with the associated nutrients in relation to phytoplankton biomass of the Rajang River-South China Sea continuum
Synchrony in catchment stream colour levels is driven by both local and regional climate
The post-monsoon carbon biogeochemistry of the Hooghly–Sundarbans estuarine system under different levels of anthropogenic impacts
Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect
Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Use of argon to measure gas exchange in turbulent mountain streams
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks
Artem V. Chupakov, Natalia V. Neverova, Anna A. Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, Taissia Ya. Vorobyeva, and Oleg S. Pokrovsky
Biogeosciences, 21, 5725–5743, https://doi.org/10.5194/bg-21-5725-2024, https://doi.org/10.5194/bg-21-5725-2024, 2024
Short summary
Short summary
In the boreal humic waters of a forest lake and bog, the rate of dissolved organic matter photodegradation is 4 times higher than that of biodegradation. However, given the shallow, light-penetrating layer, the biodegradation provides the largest contribution to CO2 emissions from water surfaces. Trace metals were partially removed (1–10 %) during photodegradation and biodegradation via precipitation of Fe(III) hydroxides after destabilization of organoferric colloids and organic complexes.
Thibault Lambert, Rémi Dupas, and Patrick Durand
Biogeosciences, 21, 4533–4547, https://doi.org/10.5194/bg-21-4533-2024, https://doi.org/10.5194/bg-21-4533-2024, 2024
Short summary
Short summary
This study investigates dissolved organic carbon (DOC) export in headwater catchments. Results show small links between DOC, nitrates, and the iron cycle throughout the year, calling into question our current conceptualization of DOC export at the catchment scale. Indeed, this study evidences that the winter period, referred as a non-productive period in our current conceptual model, acts as an active period for DOC production in riparian soils and DOC export toward stream waters.
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Katie A. Wampler, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 21, 3093–3120, https://doi.org/10.5194/bg-21-3093-2024, https://doi.org/10.5194/bg-21-3093-2024, 2024
Short summary
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Aki Vähä, Timo Vesala, Sofya Guseva, Anders Lindroth, Andreas Lorke, Sally MacIntyre, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2024-1644, https://doi.org/10.5194/egusphere-2024-1644, 2024
Short summary
Short summary
Boreal rivers are significant sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere but the controls of these emissions are uncertain. We measured four months of CO2 and CH4 exchange between a regulated boreal river and the atmosphere with eddy covariance. We found statistical relationships between the gas exchange and several environmental variables, the most important of which were dissolved CO2 partial pressure in water, wind speed, and water temperature.
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
EGUsphere, https://doi.org/10.5194/egusphere-2024-492, https://doi.org/10.5194/egusphere-2024-492, 2024
Short summary
Short summary
This study provides new insights into the transformation of dissolved organic matter (DOM) that takes place as meltwater flows through the porous crust of weathering ice that covers glacier ice surfaces during the melt season. Movement of water through the weathering crust is slow, allowing microorganisms and sunlight to alter the DOM in glacial meltwater. This is important as supraglacial meltwaters deliver DOM and nutrients to microorganisms living in downstream receiving aquatic environments.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Shuai Chen, Jun Zhong, Lishan Ran, Yuanbi Yi, Wanfa Wang, Zelong Yan, Si-liang Li, and Khan M. G. Mostofa
Biogeosciences, 20, 4949–4967, https://doi.org/10.5194/bg-20-4949-2023, https://doi.org/10.5194/bg-20-4949-2023, 2023
Short summary
Short summary
This study found the source of dissolved organic carbon and its optical properties (e.g., aromaticity, humification) are related to human land use and catchment slope in anthropogenically impacted subtropical mountainous rivers. The study highlights that the combination of dual carbon isotopes and optical properties represents a useful tool in tracing the origin of dissolved organic carbon and its in-stream processes.
Hayley F. Drapeau, Suzanne E. Tank, Maria Cavaco, Jessica A. Serbu, Vincent St.Louis, and Maya P. Bhatia
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-121, https://doi.org/10.5194/bg-2023-121, 2023
Revised manuscript accepted for BG
Short summary
Short summary
From glacial headwaters to 100 km downstream, we found clear organic matter gradients in Canadian Rocky Mountain rivers. In contrast, microbial communities exhibited overall cohesion, indicating that species dispersal may be an over-riding control on community dynamics in these connected rivers. Identification of glacial-specific microbes suggest that glaciers seed headwater microbial communities; these findings show the importance of glacial waters and microbiomes in changing mountain systems.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón
Biogeosciences, 20, 3353–3366, https://doi.org/10.5194/bg-20-3353-2023, https://doi.org/10.5194/bg-20-3353-2023, 2023
Short summary
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271, https://doi.org/10.5194/bg-20-3261-2023, https://doi.org/10.5194/bg-20-3261-2023, 2023
Short summary
Short summary
Small cascades greatly enhance mountain stream gas emissions through the turbulent energy dissipation rate and air bubbles entrained into the water. We numerically studied the local contribution of these mechanisms driving gas transfer velocity used to quantify the outgassing. The gas evasion is primarily due to bubbles concentrated in irregular spots of limited area. Consequently, the gas exchange velocity is scale-dependent and unpredictable, posing concerns about its use in similar scenarios.
Philipp Maurischat, Michael Seidel, Thorsten Dittmar, and Georg Guggenberger
Biogeosciences, 20, 3011–3026, https://doi.org/10.5194/bg-20-3011-2023, https://doi.org/10.5194/bg-20-3011-2023, 2023
Short summary
Short summary
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this sensitive ecosystem. We investigated the chemical composition of dissolved organic matter and the most mobile fraction of OM in glaciers, wetlands, and groundwater as well as in the rivers and a large terminal lake. Our data show that the sources differ in the molecular composition of OM, that the stream is influenced by agriculture, and that the lake strongly changes the inflowing organic matter.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Andrew L. Robison, Nicola Deluigi, Camille Rolland, Nicolas Manetti, and Tom Battin
Biogeosciences, 20, 2301–2316, https://doi.org/10.5194/bg-20-2301-2023, https://doi.org/10.5194/bg-20-2301-2023, 2023
Short summary
Short summary
Climate change is affecting mountain ecosystems intensely, including the loss of glaciers and the uphill migration of plants. How these changes will affect the streams draining these landscapes is unclear. We sampled streams across a gradient of glacier and vegetation cover in Switzerland and found glacier loss reduced the carbon dioxide sink from weathering, while vegetation cover increased dissolved organic carbon in the stream. These changes are important to consider for mountains globally.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Short summary
By monitoring the concentration and Δ17O of stream nitrate in three forested streams, the new nitrogen saturation index of forested catchments (Matm/Datm ratio) was estimated. We found that (1) the unprocessed atmospheric nitrate in our studied forested stream (FK1 catchment) was the highest ever reported in forested streams; (2) the Matm/Datm ratio can be used as a robust index for evaluating nitrogen saturation in forested catchments as the Matm/Datm ratio is independent of the precipitation.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Brynn O'Donnell and Erin R. Hotchkiss
Biogeosciences, 19, 1111–1134, https://doi.org/10.5194/bg-19-1111-2022, https://doi.org/10.5194/bg-19-1111-2022, 2022
Short summary
Short summary
A stream is defined by flowing water, but higher flow from storms is also a frequent disturbance. This paper tests how higher flow changes stream metabolism (respiration and photosynthesis, R and P). P was less resistant to changes in flow compared to R, and P took longer to recover from storms than R (2.2 versus 0.6 d). Further work on metabolic responses to flow disturbance is critical given projected increases in storms and the influence of higher flows on ecosystem health and functioning.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021, https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021, https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Short summary
We show a comprehensive monitoring dataset on the discharge and carbon transport in a small alpine river on the Qinghai–Tibetan Plateau, where riverine carbon increased downstream in the pre-monsoon season due to an increasing contribution of organic matter derived from seasonal permafrost thaw while it fluctuated in the monsoon season induced by sporadic precipitation. These results indicate a high sensitivity of riverine carbon in alpine headwater catchments to local hydrological events.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020, https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
Short summary
About half of the global CO2 sequestration due to chemical weathering occurs in warm and high-runoff regions. To evaluate the temporary and net sinks of atmospheric CO2 due to chemical weathering, we selected a typical subtropical catchment as our study area and did fieldwork to sample surface water along the main channel and major tributaries in 1 hydrological year. The result of mass balance calculation showed that human activities dramatically decreased the CO2 net sink.
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020, https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Short summary
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TMs) to surface waters, and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. This work aims to address the fate of organic carbon and its role as a trace metal carrier in drained peatlands of Indonesia.
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020, https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Edwin Sien Aun Sia, Jing Zhang, Shan Jiang, Zhuoyi Zhu, Gonzalo Carrasco, Faddrine Holt Jang, Aazani Mujahid, and Moritz Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-219, https://doi.org/10.5194/bg-2019-219, 2019
Revised manuscript not accepted
Short summary
Short summary
Nutrient loads carried by large rivers and discharged into the continental shelf and coastal waters are vital to support primary production. Our knowledge of tropical river systems is fragmented with very few seasonal studies available for Southeast Asia (SEA). We present data from three sampling campaigns on the longest river in Malaysia, the Rajang river. Our results show the generalization of SEA as a nutrient hotspot might not hold true for all regions and requires further investigation.
Brian C. Doyle, Elvira de Eyto, Mary Dillane, Russell Poole, Valerie McCarthy, Elizabeth Ryder, and Eleanor Jennings
Biogeosciences, 16, 1053–1071, https://doi.org/10.5194/bg-16-1053-2019, https://doi.org/10.5194/bg-16-1053-2019, 2019
Short summary
Short summary
This study explores the drivers of variation in the water colour of rivers, and hence organic carbon export, in a blanket peatland catchment. We used 6 years of weekly river water colour data (2011 to 2016) from three proximate river sub-catchments in western Ireland. in tandem with a range of topographical, hydrological and climate data, to discover the principle environmental drivers controlling changes in colour concentration in the rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Wenjing Liu, Zhifang Xu, Huiguo Sun, Tong Zhao, Chao Shi, and Taoze Liu
Biogeosciences, 15, 4955–4971, https://doi.org/10.5194/bg-15-4955-2018, https://doi.org/10.5194/bg-15-4955-2018, 2018
Short summary
Short summary
The southeastern coastal region is the top acid-rain-impacted area in China. It is worth evaluating the acid deposition impacts on chemical weathering and CO2 consumption there. River water geochemistry evidenced an overestimation of CO2 sequestration if H2SO4/HNO3 involvement was ignored, which accounted for 33.6 % of the total flux by silicate weathering in this area. This study quantitatively highlights the anthropogenic acid effects on chemical weathering and associated CO2 consumption.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Robert O. Hall Jr. and Hilary L. Madinger
Biogeosciences, 15, 3085–3092, https://doi.org/10.5194/bg-15-3085-2018, https://doi.org/10.5194/bg-15-3085-2018, 2018
Short summary
Short summary
Streams exchange oxygen with the atmosphere, but this rate is difficult to measure. We added argon to small mountain streams to estimate gas exchange. We compared these rates with sulfur hexafluoride, an intense greenhouse gas. Argon worked well to measure gas exchange, but had higher-than-predicted rates than sulfur hexafluoride. Argon exchange is more likely to represent that for oxygen because they share similar physical properties. We suggest argon to measure gas exchange in small streams.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Camille Minaudo, Florence Curie, Yann Jullian, Nathalie Gassama, and Florentina Moatar
Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, https://doi.org/10.5194/bg-15-2251-2018, 2018
Short summary
Short summary
We developed the model QUALity-NETwork (QUAL-NET) to simulate water quality variations in large drainage networks. This model is accurate enough to represent processes occurring over short periods of time such as storm events and helps to fully understand water quality variations in stream networks in the context of climate change and varying human pressures. It was tested on the Loire River and provided good performances and a new understanding of the functioning of the river.
Cited articles
Abgottspon, F.: Bigalke, M., and Wilcke, W.: Mobilization of trace elements
in a carbonatic soil
after experimental flooding, Geoderma, 259–260, 156–163, 2015.
Alexeeva, L. B., Strachan, W. M. J., Shluchkova, V. V., Nazarova, A. A.,
Nikanorov, A. M., Korotova, L. G., and Koreneva, V. I.: Organochlorine pesticide
and trace metal monitoring of Russian rivers flowing to the Arctic Ocean:
1990–1996, Mar. Pollut. Bull., 43, 71–85, 2001.
Andersson, P. S., Dahlqvist, R., Ingri, J., and Gustafsson, Ö.: The
isotopic composition of Nd in a boreal river: A reflection of selective
weathering and colloidal transport, Geochim. Cosmochim. Ac., 65,
521–527, 2001.
Anisimova, N. P.: Cryohydrochemical Features of Permafrost Zone.
(Kriogidrokhimicheskie osobennosti merzloi zony), Nauka, 1981 (in Russian).
Antcibor, I., Eschenbach, A., Zubrzycki, S., Kutzbach, L., Bolshiyanov, D., and Pfeiffer, E.-M.: Trace metal
distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland,
northern Siberia, Russia, Biogeosciences, 11, 1–15, https://doi.org/10.5194/bg-11-1-2014, 2014.
Bagard, M. L., Schmitt, A. D., Chabaux, F., Pokrovsky, O. S., Viers, J.,
Stille, P., Labolle, F., and Prokushkin, A. S.: Biogeochemistry of stable Ca
and radiogenic Sr isotopes in larch-covered permafrost-dominated watersheds
of Central Siberia, Geochim. Cosmochim. Ac., 114, 169–187, 2013.
Barker, A. J., Douglas, T. A., Jacobson, A. D., McClelland, J. W., Ilgen A. G.,
Khosh, M. S., Lehn, G. O., and Trainor, T. P.: Late season mobilization of
trace metals in two small Alaskan arctic watersheds as a proxy for landscape
scale permafrost active layer dynamics, Chem. Geol., 381, 180–193,
2014.
Beaulieu, E., Godderis, Y., Donnadieu, Y., Labat, D., and Roelandt, C.: High
sensitivity of the continental-weathering carbon dioxide sink to future
climate change, Nature Climate Change, 2, 346–349, 2012.
Behrendt, H. and Opitz, D.: Retention of nutrients in river systems:
dependence on specific runoff and hydraulic load, Hydrobiologia, 410,
111–122, 2000.
Beilman, D. W., MacDonald, G. M., Smith, L. C., and Reimer, P. J.: Carbon
accumulation in peatlands of West Siberia over the last 2000 years, Global
Biogeochem. Cy., 23, GB1012, https://doi.org/10.1029/2007GB003112, 2009.
Björkvald, L., Buffam, I., Laudon, H., and Mörth, C.-M.:
Hydrogeochemistry of Fe and Mn in small boreal streams: The role of
seasonality, landscape type and scale, Geochim. Cosmochim. Ac., 72,
2789–2804, 2008.
Botch, M. S., Kobak, K. I., Vinson, T. S., and Kolchugina, T. P.: Carbon
pools and accumulation in peatlands of the former Soviet Union, Global
Biogeochem. Cy., 9, 37–46, https://doi.org/10.1029/94GB03156, 1995.
Buffam, I., Laudon, H., Temnerud, J., Mörth, C.-M., and Bishop, K.:
Landscape-scale variability of acidity and dissolved organic carbon during
spring flood in a boreal stream network, J. Geophys. Res., 112, G01022,
https://doi.org/10.1029/2006JG000218, 2007.
Cooper, L. W., McClelland, J. W., Holmes, R. M., Raymond, P. A., Gibson, J.
J., Guay, C. K., and Peterson, B. J.: Flow-weighted values of runoff tracers
(δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers,
Geophys. Res. Lett., 35, L18606, https://doi.org/10.1029/2008GL035007, 2008.
Dahlqvist, R., Andersson, K., Ingri, J., Larsson, T., Stolpe, B., and
Turner, D.: Temporal variations of colloidal carrier phases and associated
trace elements in a boreal river, Geochim. Cosmochim. Ac., 71, 5339–5354,
2007.
Dessert, C., Dupré, B., Gaillardet, J., Francois, L. M., and
Allégre, C. J.: basalt weathering laws and the impact of basalt
weathering on the global carbon cycle, Chem. Geol., 202, 257–273, 2003.
Ershov, E. D.: Geocryology of the USSR, Western Siberia, Nedra, Moscow, 454 pp., 1989.
FAO: Guidelines for soil description, 4th Edn., Rome, FAO, 2006.
Fotiev, C. M.: Taliks and their formations (Taliki i zakonomernosti ix
formirovanija), in: Geocryology of the USSR, Western Siberia, edited by: Ershov, E.
D.,
Nedra, Moscow, 72–84, 1989 (in Russian).
Fotiev, C. M.: Formation of taliks of Western Siberia, in : Permanently
frozen rocks and cryogenic processes, Moscow, Nauka, 71–78, 1991 (in
Russian).
Fraysse, F., Pokrovsky, O. S., and Meunier, J.-D.: Experimental study of
terrestrial plant litter interaction with aqueous solutions, Geochim.
Cosmochim. Ac., 74, 70–84, 2010.
Frey, K. E. and Smith, L. C.: Amplified carbon release from vast West
Siberian peatlands by 2100, Geophys. Res. Lett., 32, L09401,
https://doi.org/10.1029/2004GL022025, 2005.
Frey, K. E. and Smith, L. C.: How well do we know northern land cover?
Comparison of four global vegetation and wetland products with a new
ground-truth database for West Siberia, Global Biogeochem. Cy., 21, GB1016,
https://doi.org/10.1029/2006GB002706, 2007.
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on
arctic river biogeochemistry, Hydrol. Process., 23, 169–182, 2009.
Frey, K. E., McClelland, J. W., Holmes, R. M., and Smith, L. C.: Impacts of
climate warming and permafrost thaw on the riverine transport of nitrogen
and phosphorus to the Kara Sea, J. Geophys. Res., 112, G04S58, https://doi.org/10.1029/2006JG000369, 2007a.
Frey, K. E., Siegel, D. I., and Smith, L. C.: Geochemistry of west Siberian
streams and their potential response to permafrost degradation, Water
Resour. Res., 43, W03406, https://doi.org/10.1029/2006WR004902, 2007b.
Gaillardet, J., Millot, R., and Dupré, B.: Chemical denudation rates of
the western Canadian orogenic belt: the Stikine terrane, Chem. Geol., 201,
257–279, 2003.
Gaillardet J., Viers J., and Dupré B.: Trace Elements in River
Waters, in: Treatise on Geochemistry,
Second Edn., edited by: Holland, H. D. and Turekian, K. K., Oxford, Elsevier,
7, 195–235, 2014.
Gentsch, N., Mikutta, R., Alves, R. J. E., Barta, J., Capek, P., Gittel, A., Hugelius, G., Kuhry, P.,
Lashchinskiy, N., Palmtag, J., Richter, A., Šantrucková, H., Schnecker, J., Shibistova, O.,
Urich, T., Wild, B., and Guggenberger, G.: Storage and transformation of organic matter fractions in
cryoturbated permafrost soils across the Siberian Arctic, Biogeosciences, 12, 4525–4542, https://doi.org/10.5194/bg-12-4525-2015, 2015.
Geological composition of the USSR: v. 1, Stratigraphy, Moscow,
Gostoptekhizdat, 588 pp., 1958 (in Russian).
Giesler, R., Högberg, M. N., Strobel, B. W., Richter, A., Nordgren, A.,
and Högberg, P.: Production of dissolved organic carbon and
low-molecular weight organic acids in soil solution driven by recent tree
photosynthate, Biogeochemistry, 84, 1–12, 2006.
Gordeev, V. V., Martin, J.-M., Sidorov, I. S., and Sidorova, M. V.: A
reassessment of the Eurasian river input of water, sediment, major elements,
and nutrients to the Arctic Ocean, Am. J. Sci., 296, 664–691, 1996.
Gordeev, V. V., Rachold, V., and Vlasova, I. E.: Geochemical behavior of
major and trace elements in suspended particulate material of the Irtysh
river, the main tributary of the Ob river, Siberia, Appl. Geochem., 19,
593–610, 2004.
Gustafsson, J.: Visual MINTEQ ver. 3.1., available at: http://vminteq.lwr.kth.se (last access: 8 August 2015),
2014.
Hindersmann, I. and Mansfeldt, T.: Trace element solubility in a
multimetal-contaminated soil
as affected by redox conditions, Water Air Soil Pollut., 225, 2158–2178, 2014.
Holmes, R. M., Peterson, B. J., Gordeev, V. V., Zhulidov, A. V., Meybeck,
M., Lammers, R. B., and Vörösmarty, C. J.: Flux of nutrients from
Russian rivers to the Arctic Ocean: Can we establish a baseline against
which to judge future changes?, Water Resour. Res., 36, 2309–2320, 2000.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and annual fluxes of nutrients and organic matter from large
rivers to the Arctic Ocean and surrounding seas, Estuar. Coast., 35,
369–382, https://doi.org/10.1007/s12237-011-9386-6, 2012.
Holmes, R. M., Coe, M. T., Fiske, G. J., Gurtovaya, T., McClelland, J. W.,
Shiklomanov, A. I., Spencer, R. G. M., Tank, S. E., and Zhulidov, A. V.: Climate
change impacts on the hydrology and biogeochemistry of Arctic Rivers, in:
Climatic Changes and Global warming of Inland Waters: Impacts and Mitigation
for Ecosystems and Societies, edited by: Goldman, C. R., Kumagi, M., and
Robarts, R. D., John Wiley and Sons, 1–26, 2013.
Huh, Y. and Edmond, J. M.: The fluvial geochemistry of the rivers of Eastern
Siberia: III. Tributaries of the Lena and Anabar draining the basement
terrain of the Siberian Craton and the Trans-Baikal Highlands, Geochim. Cosmochim. Ac., 63, 967–987, 1999.
Huh, Y., Panteleyev, G., Babich, D., Zaitsev, A., and Edmond, J. M.: The
fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of
the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining
collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges,
Geochim. Cosmochim. Ac., 62, 2053–2075, 1998.
Huser, B. J., Köhler, S. J., Wilander, A., Johansson, K., and Fölster, J.: Temporal and spatial
trends for trace metals in streams and rivers across Sweden (1996–2009), Biogeosciences, 8, 1813–1823, https://doi.org/10.5194/bg-8-1813-2011, 2011.
Huser, B. J., Fölster, J., and Köhler, S. J.: Lead, zinc, and chromium concentrations in acidic headwater
streams in Sweden explained by chemical, climatic, and land-use variations, Biogeosciences, 9, 4323–4335, https://doi.org/10.5194/bg-9-4323-2012, 2012.
Ingri, J., Widerlund, A., Land, M., Gustafsson, Ö., Andersson, P. S., and
Öhlander, B.: Temporal variations in the fractionation of the rare earth
elements in a boreal river, the role of colloidal particles, Chem. Geol.,
166, 23–45, 2000.
Ingri, J., Widerlund, A., and Land, M.: Geochemistry of major elements in a
pristine boreal river system, Hydrological compartments and flow paths,
Aquat. Geochem., 11, 57–88, 2005.
Kaiser, C., Meyer, H., Biasi, C., Rusalimova, O., Barsukov, P., and Richter,
A.: Conservation of soil organic matter through cryoturbation in arctic
soils in Siberia, J. Geophys. Res., 112, 9–17, 2007.
Karlsson, J. M., Jaramillo, F., and Destouni, G.: Hydro-climatic and lake
change patterns in Arctic permafrost and non-permafrost areas, J. Hydrol.,
529, 134–145, 2015.
Kawahigashi, M., Kaiser, K., Kalbitz, K., Rodionov, A., and Guggenberger,
G.: Dissolved organic matter in small streams along a gradient from
discontinuous to continuous permafrost, Glob. Change Biol., 10, 1576–1586,
https://doi.org/10.1111/j.1365-2486.2004.00827.x, 2004.
Keller, K., Blum, J. D., and Kling, G. W.: Geochemistry of soils and streams
on surfaces of varying ages in arctic Alaska, Arct. Antarct. Alp. Res., 39,
84–98, 2007.
Keller, K., Blum, J. D., and Kling, G. W.: Stream geochemistry as an
indicator of increasing permafrost thaw depth in an arctic watershed, Chem.
Geol., 273, 76–81, 2010.
Kirdyanov, A. V., Hagedorn, F., Knorre, A. A., Fedotova, E. V., Vaganov, E.
A., Naurzbaev, M. M., Moiseev, P. A., and Rigling, A.: 20th century
tree-line advance and vegetation changes along an altitudinal transect in
Putorana Mountains, northern Siberia, Boreas, 41, 56–67, 2012.
Khrenov, V. Y.: Soils of cryolithozone of western Siberia: Morphology,
physico-chemical properties and geochemistry, Nauka, Moscow, 214 pp., 2011
(in Russian).
Kremenetski, K. V., Velichko, A. A., Borisova, O. K., MacDonald, G. M.,
Smith, L. C., Frey, K. E., and Orlova, L. A.: Peatlands of the West Siberian
Lowlands: Current knowledge on zonation, carbon content, and Late Quaternary
history, Quaternary Sci. Rev., 22, 703–723, 2003.
Laudon, H., Sjoblom, V., Buffam, I., Seibert, J., and Morth, M.: The role of
catchment scale and landscape characteristics for runoff generation of
boreal streams, J. Hydrol., 344, 198–209, 2007.
Laudon, H., Taberman, I., Agren, A., Futter, M., Ottosson-Lofvenius, M., and
Bishop, K.: The Kryckland catchment study – a flagship infrastructure for
hydrology, biogeochemistry, and climate research in the boreal landscape,
Water Resour. Res., 49, 7154–7158, 2013.
Lidman, F., Morth, C. M., Bjorkvald, L., and Laudon, H.: Selenium dynamics in
boreal streams: The role of wetlands and changing groundwater tables,
Environ. Sci. Technol., 45, 2677–2683, 2011.
Lidman, F., Mörth, C. M., and Laudon, H.: Landscape control of uranium and thorium in boreal streams – spatiotemporal
variability and the role of wetlands, Biogeosciences, 9, 4773–4785, https://doi.org/10.5194/bg-9-4773-2012, 2012.
Lidman, F., Kohler, S. J., Morth, C.-M., and Laudon, H.: Metal transport in
the boreal landscape – the role of wetlands and the affinity for organic
matter, Environ. Sci. Technol., 48, 3783–3790, 2014.
Lyvén, B., Hassellöv, M., Turner, D. R., Haraldsson, C., and Andersson,
K.: Competition between iron- and carbon-based colloidal carriers for trace
metals in a freshwater assessed using flow field-flow fractionation coupled
to ICPMS, Geochim. Cosmochim. Ac., 67, 3791–3802, 2003.
MacMillan, G. A., Girard, C., Chételat, J., Laurion, I., and Amyot, M.: High
methylmercury in arctic and subarctic ponds is related to nutrient Levels in
the warming Eastern Canadian Arctic, Environ. Sci. Technol., 49,
7743–7753, https://doi.org/10.1021/acs.est.5b00763, 2015.
Manasypov, R. M., Pokrovsky, O. S., Kirpotin, S. N., and Shirokova, L. S.: Thermokarst lake
waters across the permafrost zones of western Siberia, The Cryosphere, 8, 1177–1193, https://doi.org/10.5194/tc-8-1177-2014, 2014.
Manasypov, R. M., Vorobyev, S. N., Loiko, S. V., Kritzkov, I. V., Shirokova, L. S., Shevchenko, V. P.,
Kirpotin, S. N., Kulizhsky, S. P., Kolesnichenko, L. G., Zemtzov, V. A., Sinkinov, V. V.,
and Pokrovsky, O. S.: Seasonal dynamics of organic carbon and metals in thermokarst lakes from the
discontinuous permafrost zone of western Siberia, Biogeosciences, 12, 3009–3028, https://doi.org/10.5194/bg-12-3009-2015, 2015.
McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M., and
Wood, E. F.: A pan-Arctic evaluation of changes in river discharge during
the latter half of the 20th century, Geophys. Res. Lett., 33, L06715,
https://doi.org/10.1029/2006GL025753,
2006.
McClelland, J. W., Tank, S. E., Spencer, R. G. M., and Shiklomanov, A. I.:
Coordination and sustainability of river observing activities in the Arctic,
Arctic, 68, https://doi.org/10.14430/arctic4448, 2015.
Mergelov, N. and Targulian, V.: Accumulation of organic matter in the
mineral layers of permafrost-affected soils of coastal lowlands in East
Siberia, Eurasian Soil Sci., 44, 249–260, 2011.
Michel, F. A. and Vaneverdingen, R. O.: Changes in hydrologic regimes in
permafrost regions due to climate-change, Permafrost Periglac., 5, 191–195,
1994.
Millot, R., Gaillardet, J., Dupré, B., and Allègre, C. J.: Northern
latitude chemical weathering rates: Clues from the Mackenzie River Basin,
Canada, Geochim. Cosmochim. Ac., 67, 1305–1329, 2003.
Moran, S. B. and Woods, W. L.: Cd, Cr, Cu, Ni and Pb in the water column and
sediments of the Ob-Irtysh Rivers, Russia, Mar. Pollut. Bull., 35, 270–279,
1997.
Neubauer, E., Kohler, S. J., von der Kammer, F., Laudon, H., and Hofmann, T.:
Effect of pH and stream order on iron and arsenic speciation in boreal
catchments, Environ. Sci. Technol., 47, 7120–7128, 2013.
Nikitin, S. P. and Zemtsov, V. A.: The variability of hydrological
parameters of western Siberia, Nauka, Novosibirsk, 204 pp., 1986 (in
Russian).
Novikov, S. M., Moskvin, Y. P., Trofimov, S. A., Usova, L. I., Batuev, V.
I., Tumanovskaya, S. M., Smirnova, V. P., Markov, M. L., Korotkevicth, A.
E., and Potapova, T. M.: Hydrology of bog territories of the permafrost zone
of western Siberia, BBM publ. House, St. Petersbourg, 535 pp., 2009 (in
Russian).
Oliva, P., Viers, J., and Dupré, B.: Chemical weathering in granitic
environments, Chem. Geol., 202, 225–256, 2003.
Oni, S. K., Futter, M. N., Bishop, K., Köhler, S. J., Ottosson-Löfvenius, M., and Laudon, H.: Long-term patterns
in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends,
mechanisms and heterogeneity, Biogeosciences, 10, 2315–2330, https://doi.org/10.5194/bg-10-2315-2013, 2013.
Oosterwoud, M. R., Temminghoff, E. J. M., and van der Zee, S. E. A. T. M.: Quantification of DOC concentrations
in relation with soil properties of soils in tundra and taiga of Northern European Russia, Biogeosciences Discuss., 7,
3189–3226, https://doi.org/10.5194/bgd-7-3189-2010, 2010.
Pokrovsky, O. S., Schott, J., and Dupre, B.: Trace element fractionation and
transport in boreal rivers and soil porewaters of permafrost-dominated
basaltic terrain in Central Siberia, Geochim. Cosmochim. Ac., 70,
3239–3260, 2006.
Pokrovsky, O. S., Viers, J., Shirokova, L. S., Shevchenko, V. P., Filipov,
A. S., and Dupré, B.: Dissolved, suspended, and colloidal fluxes of
organic carbon, major and trace elements in Severnaya Dvina River and its
tributary, Chem. Geol., 273, 136–149, 2010.
Pokrovsky, O. S., Shirokova, L. S., Kirpotin, S. N., Audry, S., Viers, J., and Dupré, B.: Effect
of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of
western Siberia, Biogeosciences, 8, 565–583, https://doi.org/10.5194/bg-8-565-2011, 2011.
Pokrovsky, O. S., Viers, J., Dupré, B., Chabaux, F., Gaillardet, J.,
Audry, S., Prokushkin, A. S., Shirokova, L. S., Kirpotin, S. N., Lapitsky,
S. A., and Shevchenko, V. P.: Biogeochemistry of carbon, major and trace
elements in watersheds of Northern Eurasia drained to the Arctic Ocean: The
change of fluxes, sources and mechanisms under the climate warming
prospective, C. R. Geosci., 344, 663–677, 2012.
Pokrovsky, O. S., Shirokova, L. S., Kirpotin, S. N., Kulizhsky, S. P., and Vorobiev, S. N.: Impact of
western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes
of discontinuous permafrost zone, Biogeosciences, 10, 5349–5365, https://doi.org/10.5194/bg-10-5349-2013, 2013.
Pokrovsky, O. S., Manasypov, R. M., Loiko, S., Shirokova, L. S., Krickov, I. A., Pokrovsky, B. G.,
Kolesnichenko, L. G., Kopysov, S. G., Zemtzov, V. A., Kulizhsky, S. P., Vorobyev, S. N., and Kirpotin, S. N.:
Permafrost coverage, watershed area and season control of dissolved carbon and major elements in
western Siberian rivers, Biogeosciences, 12, 6301–6320, https://doi.org/10.5194/bg-12-6301-2015, 2015.
Pontér, C., Ingri, J., Burmann, J., and Boström, K.: Temporal
variations in dissolved and suspended iron and manganese in the Kalix River,
northern Sweden, Chem. Geol. 81, 121–131, 1990.
Pontér, C., Ingri, J., and Boström, K.: Geochemistry of
manganese in the Kalix River, northern Sweden, Geochim. Cosmochim. Ac., 56,
1485–1494, 1992.
Porcelli, D., Andersson, P. S., Wasserburg, G. J., Ingri, J., and Baskaran,
M.: The importance of colloids and mires for the transport of uranium
isotopes through the Kalix River watershed and Baltic Sea, Geochim.
Cosmochim. Ac., 61, 4095–4113, 1997.
Reeder, S. W., Hitchon, B., and Levinson, A. A.: Hydrogeochemistry of the
surface waters of the Mackenzie River drainage basin, Canada – I, Factors
controlling inorganic composition, Geochim. Cosmochim. Ac., 36, 826–865,
1972.
Rember, R. D. and Trefry, J. H.: Increased concentrations of dissolved trace
metals and organic carbon during snowmelt in rivers of the Alaskan Arctic,
Geochim. Cosmochim. Ac., 68, 477–489, 2004.
Roux, N., Grenier, C., and Costard, F.: Experimental and numerical
simulations of heat transfers between flowing water and a frozen porous
medium, Geophysical Research Abstracts
17, EGU2015-8860, 2015.
Serreze, M. C., Walsh, J. E., Chapin, E., Osterkamp, T., Dyugerov, M.,
Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T., and Barry, R. G.:
Observation evidence of recent change in the northern high-latitude
environment, Climatic Change, 46, 159–207, 2000.
Seyler, P., Pinelli, M., and Boaventura, G. R.: A first quantitative estimate of
trace metal fluxes from Amazon river and its main tributaries, Journal
Physique IV (Proceedings), 107, 1213–1218, https://doi.org/10.1051/jp4:20030519, 2003.
Shirokova, L. S., Pokrovsky, O. S., Kirpotin, S. N., Desmukh, C., Pokrovsky,
B. G., Audry, S., and Viers, J.: Biogeochemistry of organic carbon,
CO2, CH4, and trace elements in thermokarst water bodies in
discontinuous permafrost zones of Western Siberia, Biogeochemistry, 113,
573–593, 2013.
Smith, L. C., Macdonald, G. M., Velichko, A. A., Beilman, D. W., Borisova,
O. K., Frey, K. E., Kremenetsky, K. V., and Sheng, Y.: Siberian peatlands as
a net carbon sink and global methane source since the early Holocene,
Science, 303, 353–356, 2004.
Stepanova, V. M., Pokrovsky, O. S., Viers, J., Mironycheva-Tokareva, N. P.
Kosykh, N. P., and Vishnyakova, E. K.: Major and trace elements in peat
profiles in Western Siberia: impact of the landscape context, latitude and
permafrost coverage, Appl. Geochem., 53, 53–70, 2015.
Stolpe, B., Guo, L., Shiller, A. M., and Aiken, G. R.: Abundance, size
distribution and trace-element binding of organic and iron-rich nanocolloids
in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS,
Geochim. Cosmochim. Ac., 105, 221–239, 2013.
Sturm, M., Racine, C., and Tape, K.: Increasing shrub abundance in the
Arctic, Nature, 411, 546–547, 2001.
Sugai, S. F. and Burrell, D. C.: Transport of Dissolved Organic Carbon,
Nutrients, and Trace Metals from the Wilson and Blossom Rivers to Smeaton
Bay, Southeast Alaska, Can. J. Fish. Aquat. Sci., 41,
180–190, https://doi.org/10.1139/f84-019, 1984.
Tank, S. E., Raymond, P. A., Striegl, R. G., McClelland, J. W., Holmes, R.
M., Fiske, G. J., and Peterson, B. J.: A land-to-ocean perspective on the
magnitude, source and implication of DIC flux from major Arctic rivers to
the Arctic Ocean, Global Biogeochem. Cy., 26, GB4018,
https://doi.org/10.1029/2011GB004192, 2012.
Tape, K., Sturm, M., and Racine, C.: The evidence for shrub expansion in
Northern Alaska and the Pan-Arctic, Glob. Change Biol., 12, 686–702,
https://doi.org/10.1111/j.1365-2486.2006.01128.x, 2006.
Tarvainen, T., Lahermo P., and Mannio J.: Sources of trace metals in streams and
headwater lakes in Finland, Water Air Soil Pollut., 94, 1–32, 1997.
Temnerud, J., Düker, A., Karlsson, S., Allard, B., Bishop, K., Fölster, J., and Köhler, S.: Spatial
patterns of some trace elements in four Swedish stream networks, Biogeosciences, 10, 1407–1423, https://doi.org/10.5194/bg-10-1407-2013, 2013.
Tyrtikov, A. P.: Thawing of soils in tundra of western Siberia, in: Natural environment of western Siberia, edited by:
Popov,
A. I., Issue 3, Izd-vo MG,
Moscow, 160–169, 1973 (in Russian).
Vasil'evskaya, V. D., Ivanov, V. V., and Bogatyrev, L. G.: Soils of North of
western Siberia, Moscow University Publ. House, Moscow, 228 pp., 1986 (in
Russian).
Vasyukova, E. V., Pokrovsky, O. S., Viers, J., Oliva, P., Dupré, B.,
Martin, F., and Candadaup, F.: Trace elements in organic- and iron-rich
surficial fluids of the boreal zone: Assessing colloidal forms via dialysis
and ultrafiltration, Geochim. Cosmochim. Ac., 74, 449–468, 2010.
Vink, R. J., Behrendt, H., and Salomons, W.: Point and diffuse source
analysis of heavy metals in the Elbe drainage area: Comparing heavy metal
emissions with transported river loads, Hydrobiologia, 410, 307–314, 1999.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M.,
Billet, M. F., Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J.,
MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and syntheses: Effects of
permafrost thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, 2015.
Vorobyev, S. N., Pokrovsky, O. S., Kirpotin, S. N., Kolesnichenko, L. G.,
Shirokova, L. S., and Manasypov, R. M.: Flood zone biogeochemistry of the Ob'
River middle course, Appl. Geochem., 63, 133–145, 2015.
Wadleigh, M. A., Veizer, J., and Brooks, C.: Strontium and its isotopes in
Canadian Rivers – fluxes and global implications, Geochim. Cosmochim. Ac.,
49, 1727–1736, 1985.
Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream
discharge from permafrost thawing in the Yukon River basin: Potential
impacts on lateral export of carbon and nitrogen, J. Geophys. Res., 34,
L12402, https://doi.org/10.1029/2007GL030216, 2007.
Walvoord, M. A., Voss, C. I., and Wellman, T. P.: Influence of permafrost
distribution on groundwater flow in the context of climate-driven permafrost
thaw: Example from Yukon Flats Basin, Alaska, United States, Water Resour.
Res., 48, W07524, https://doi.org/10.1029/2011WR011595, 2012.
Wällstedt, T., Björkvald, L., and Gustafsson, J. P.: Increasing
concentrations of arsenic and vanadium in (southern) Swedish streams, Appl.
Geochem., 25, 1162–1175, 2010.
Weber, F. A., Voegelin, A., and Kretzschmar, R.: Multi-metal contaminant
dynamics in temporarily flooded soil under sulfate limitation, Geochim. Cosmochim. Ac., 73, 5513–5527, 2009.
White, D., Hinzman, L., Alessa, L., Cassano, J., Chambers, M., Falkner, K.,
Francis, J., Gutowski Jr., W. J., Holland, M., Holmes, R. M., Huntington,
H., Kane, D., Kliskey, A., Lee, C., McClelland, J., Peterson, B., Rupp, T.
S., Straneo, F., Steele, M., Woodgate, R., Yang, D., Yoshikawa, K., and
Zhang T.: The arctic freshwater system: Changes and impacts, J. Geophys.
Res., 112, G04S54, https://doi.org/10.1029/2006JG000353, 2007.
Yang, D., Ye, B., and Shiklomanov, A.: Discharge characteristics and changes
over the Ob River watershed in Siberia, J. Hydrometeorol., 5, 595–610,
2004.
Yastrebov, A. A. and Ivanov, Y. K.: Fresh groundwater regional dynamics of
the Yamal-Nenets autonomous region, Lithosphere (Litosfere), 5, 99–112,
2008 (in Russian).
Ye, B., Yang, D., Zhang, Z., and Kane, D. L.: Variation of hydrological
regime with permafrost coverage over Lena basin in Siberia, J. Geophys.
Res., 114, D07102, https://doi.org/10.1029/2008JD010537, 2009.
Yeghicheyan, D., Bossy, C., Bouhnik Le Coz, M., Douchet, Ch., Granier, G.,
Heimburger, A., Lacan, F., Lanzanova, A., Rousseau, T. C. C., Seidel, J.-L.,
Tharaud, M., Candaudap, F., Chmeleff, J., Cloquet, C., Delpoux, S., Labatut,
M., Losno, R., Pradoux, C., Sivry, Y., and Sonke, J. E.: A Compilation of
Silicon, Rare Earth Element and Twenty-One other Trace Element
Concentrations in the Natural River Water Reference Material SLRS-5
(NRC-CNRC), Geostand. Geoanal. Res., 37, 449–467,
https://doi.org/10.1111/j.1751-908X.2013.00232.x, 2013.
Zhil, I. M. and Alushkinskaya, N. M.: Resources of Surface Waters USSR
Vol. III, Northern regions, Gidrometeoizdat, Leningrad, 633 pp.,
1972.
Download
- Article
(4191 KB) - Full-text XML
Short summary
Climate change in western Siberia and permafrost boundary migration will essentially affect the elements controlled by underground water feeding (DIC, alkaline earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids.
Climate change in western Siberia and permafrost boundary migration will essentially affect the...
Altmetrics
Final-revised paper
Preprint