Articles | Volume 13, issue 11
https://doi.org/10.5194/bg-13-3305-2016
https://doi.org/10.5194/bg-13-3305-2016
Research article
 | 
06 Jun 2016
Research article |  | 06 Jun 2016

Modelling interannual variation in the spring and autumn land surface phenology of the European forest

Victor F. Rodriguez-Galiano, Manuel Sanchez-Castillo, Jadunandan Dash, Peter M. Atkinson, and Jose Ojeda-Zujar

Related authors

GEOSTATISTICAL SOLUTIONS FOR DOWNSCALING REMOTELY SENSED LAND SURFACE TEMPERATURE
Q. Wang, V. Rodriguez-Galiano, and P. M. Atkinson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 913–917, https://doi.org/10.5194/isprs-archives-XLII-2-W7-913-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W7-913-2017, 2017

Related subject area

Earth System Science/Response to Global Change: Climate Change
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023,https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Ideas and perspectives: Land–ocean connectivity through groundwater
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023,https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Bioclimatic change as a function of global warming from CMIP6 climate projections
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023,https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023,https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Drivers of intermodel uncertainty in land carbon sink projections
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022,https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary

Cited articles

Archetti, M., Richardson, A. D., O'Keefe, J., and Delpierre, N.: Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest, PLoS ONE, 8, e57373, https://doi.org/10.1371/journal.pone.0057373, 2013.
Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J.: What limits fire? An examination of drivers of burnt area in Southern Africa, Glob. Change Biol., 15, 613–630, 2009.
Atkinson, P. M., Jeganathan, C., Dash, J., and Atzberger, C.: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote Sens. Environ., 123, 400–417, 2012.
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and García-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe, Science, 332, 220–224, 2011.
Bicheron, P., Amberg, V., Bourg, L., Petit, D., Huc, M., Miras, B., Brockmann, C., Hagolle, O., Delwart, S., Ranera, F., Leroy, M., and Arino, O.: Geolocation Assessment of MERIS GlobCover Orthorectified Products, IEEE T. Geosci. Remote, 49, 2972–2982, 2011.
Download
Short summary
This research reveals new insights into the weather drivers of land surface phenology (LSP) across the entire European forest, while at the same time it establishes a new conceptual framework for modelling LSP. Specifically, a sophisticated machine learning regression method (RF) was introduced for LSP modelling across very large areas and across multiple years simultaneously. The RF models explained 81 and 62 % of the variance in the spring and autumn LSP interannual variation.
Altmetrics
Final-revised paper
Preprint