Articles | Volume 13, issue 11
https://doi.org/10.5194/bg-13-3305-2016
https://doi.org/10.5194/bg-13-3305-2016
Research article
 | 
06 Jun 2016
Research article |  | 06 Jun 2016

Modelling interannual variation in the spring and autumn land surface phenology of the European forest

Victor F. Rodriguez-Galiano, Manuel Sanchez-Castillo, Jadunandan Dash, Peter M. Atkinson, and Jose Ojeda-Zujar

Related authors

GEOSTATISTICAL SOLUTIONS FOR DOWNSCALING REMOTELY SENSED LAND SURFACE TEMPERATURE
Q. Wang, V. Rodriguez-Galiano, and P. M. Atkinson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 913–917, https://doi.org/10.5194/isprs-archives-XLII-2-W7-913-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W7-913-2017, 2017

Related subject area

Earth System Science/Response to Global Change: Climate Change
The effectiveness of agricultural carbon dioxide removal using the University of Victoria Earth System Climate Model
Rebecca Chloe Evans and H. Damon Matthews
Biogeosciences, 22, 1969–1984, https://doi.org/10.5194/bg-22-1969-2025,https://doi.org/10.5194/bg-22-1969-2025, 2025
Short summary
Consistency of global carbon budget between concentration- and emission-driven historical experiments simulated by CMIP6 Earth system models and suggestions for improved simulation of CO2 concentration
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris D. Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
Biogeosciences, 22, 1447–1473, https://doi.org/10.5194/bg-22-1447-2025,https://doi.org/10.5194/bg-22-1447-2025, 2025
Short summary
Selecting allometric equations to estimate forest biomass from plot- rather than individual-level predictive performance
Nicolas Picard, Noël Fonton, Faustin Boyemba Bosela, Adeline Fayolle, Joël Loumeto, Gabriel Ngua Ayecaba, Bonaventure Sonké, Olga Diane Yongo Bombo, Hervé Martial Maïdou, and Alfred Ngomanda
Biogeosciences, 22, 1413–1426, https://doi.org/10.5194/bg-22-1413-2025,https://doi.org/10.5194/bg-22-1413-2025, 2025
Short summary
Impact of winter warming on CO2 fluxes in evergreen needleleaf forests
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025,https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Effects of pH/pCO2 fluctuations on photosynthesis and fatty acid composition of two marine diatoms, with reference to consequences of coastal acidification
Yu Shang, Jingmin Qiu, Yuxi Weng, Xin Wang, Di Zhang, Yuwei Zhou, Juntian Xu, and Futian Li
Biogeosciences, 22, 1203–1214, https://doi.org/10.5194/bg-22-1203-2025,https://doi.org/10.5194/bg-22-1203-2025, 2025
Short summary

Cited articles

Archetti, M., Richardson, A. D., O'Keefe, J., and Delpierre, N.: Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest, PLoS ONE, 8, e57373, https://doi.org/10.1371/journal.pone.0057373, 2013.
Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J.: What limits fire? An examination of drivers of burnt area in Southern Africa, Glob. Change Biol., 15, 613–630, 2009.
Atkinson, P. M., Jeganathan, C., Dash, J., and Atzberger, C.: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote Sens. Environ., 123, 400–417, 2012.
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and García-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe, Science, 332, 220–224, 2011.
Bicheron, P., Amberg, V., Bourg, L., Petit, D., Huc, M., Miras, B., Brockmann, C., Hagolle, O., Delwart, S., Ranera, F., Leroy, M., and Arino, O.: Geolocation Assessment of MERIS GlobCover Orthorectified Products, IEEE T. Geosci. Remote, 49, 2972–2982, 2011.
Download
Short summary
This research reveals new insights into the weather drivers of land surface phenology (LSP) across the entire European forest, while at the same time it establishes a new conceptual framework for modelling LSP. Specifically, a sophisticated machine learning regression method (RF) was introduced for LSP modelling across very large areas and across multiple years simultaneously. The RF models explained 81 and 62 % of the variance in the spring and autumn LSP interannual variation.
Share
Altmetrics
Final-revised paper
Preprint