Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Volume 13, issue 2
Biogeosciences, 13, 399–413, 2016
https://doi.org/10.5194/bg-13-399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 13, 399–413, 2016
https://doi.org/10.5194/bg-13-399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Jan 2016

Research article | 21 Jan 2016

Map-based prediction of organic carbon in headwater streams improved by downstream observations from the river outlet

J. Temnerud et al.

Related authors

Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020,https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale
Roger D. Finlay, Shahid Mahmood, Nicholas Rosenstock, Emile B. Bolou-Bi, Stephan J. Köhler, Zaenab Fahad, Anna Rosling, Håkan Wallander, Salim Belyazid, Kevin Bishop, and Bin Lian
Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020,https://doi.org/10.5194/bg-17-1507-2020, 2020
Short summary
Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019,https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
A GIS-based multivariate approach to identify flood damage affecting factors
Barbara Blumenthal, Jan Haas, and Jan-Olov Andersson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-286,https://doi.org/10.5194/nhess-2018-286, 2018
Manuscript not accepted for further review

Related subject area

Biogeochemistry: Rivers & Streams
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020,https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020,https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020,https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019,https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019,https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary

Cited articles

Ågren, A. M., Buffam, I., Cooper, D. M., Tiwari, T., Evans, C. D., and Laudon, H.: Can the heterogeneity in stream dissolved organic carbon be explained by contributing landscape elements?, Biogeosciences, 11, 1199–1213, https://doi.org/10.5194/bg-11-1199-2014, 2014.
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., and Moore, R. B.: The role of headwater streams in downstream water quality, J. Am. Water Resour. As., 43, 41–59, https://doi.org/10.1111/j.1752-1688.2007.00005.x, 2007.
Andersson, J.-O. and Nyberg, L.: Using official map data on topography, wetlands and vegetation cover for prediction of stream water chemistry in boreal headwater catchments, Hydrol. Earth Syst. Sci., 13, 537–549, https://doi.org/10.5194/hess-13-537-2009, 2009.
Arheimer, B. and Lindström, G.: Implementing the EU Water Framework Directive in Sweden, in: Runoff Predictions in Ungauged Basins – Synthesis across Processes, Places and Scales, edited by: Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H., Cambridge University Press, Cambridge, 353–359, 2013.
Publications Copernicus
Download
Short summary
In this study we test whether river outlet chemistry can be used as an additional source of information to improve the prediction of the total organic carbon (TOC) of headwaters, relative to models based on map information alone. Including river outlet TOC as a predictor in the models gave 5-15 % lower prediction errors than using map information alone. Thus, data on water chemistry measured at river outlets offer information which can complement GIS-based modelling of headwaters chemistry.
In this study we test whether river outlet chemistry can be used as an additional source of...
Citation
Altmetrics
Final-revised paper
Preprint