Research article
06 Oct 2016
Research article
| 06 Oct 2016
Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species
Jonatan F. Siegmund et al.
Related authors
No articles found.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
Jonathan F. Donges, Wolfgang Lucht, Sarah E. Cornell, Jobst Heitzig, Wolfram Barfuss, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, https://doi.org/10.5194/esd-12-1115-2021, 2021
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855, https://doi.org/10.5194/esd-12-837-2021, https://doi.org/10.5194/esd-12-837-2021, 2021
Short summary
Short summary
We provide a novel approach to diagnose the strength of the ocean–atmosphere coupling by using both a reduced order model and reanalysis data. Our findings suggest the ocean–atmosphere dynamics presents a rich variety of features, moving from a chaotic to a coherent coupled dynamics, mainly attributed to the atmosphere and only marginally to the ocean. Our observations suggest further investigations in characterizing the occurrence and spatial dependency of the ocean–atmosphere coupling.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Frederik Wolf, Aiko Voigt, and Reik V. Donner
Earth Syst. Dynam., 12, 353–366, https://doi.org/10.5194/esd-12-353-2021, https://doi.org/10.5194/esd-12-353-2021, 2021
Short summary
Short summary
In our work, we employ complex networks to study the relation between the time mean position of the intertropical convergence zone (ITCZ) and sea surface temperature (SST) variability. We show that the information hidden in different spatial SST correlation patterns, which we access utilizing complex networks, is strongly correlated with the time mean position of the ITCZ. This research contributes to the ongoing discussion on drivers of the annual migration of the ITCZ.
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021, https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Short summary
Motivated by a lacking onset prediction scheme, we examine the temporal evolution of synchronous heavy rainfall associated with the East Asian Monsoon System employing a network approach. We find, that the evolution of the Baiu front is associated with the formation of a spatially separated double band of synchronous rainfall. Furthermore, we identify the South Asian Anticyclone and the North Pacific Subtropical High as the main drivers, which have been assumed to be independent previously.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Jonathan F. Donges, Jobst Heitzig, Wolfram Barfuss, Marc Wiedermann, Johannes A. Kassel, Tim Kittel, Jakob J. Kolb, Till Kolster, Finn Müller-Hansen, Ilona M. Otto, Kilian B. Zimmerer, and Wolfgang Lucht
Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, https://doi.org/10.5194/esd-11-395-2020, 2020
Short summary
Short summary
We present an open-source software framework for developing so-called
world–Earth modelsthat link physical, chemical and biological processes with social, economic and cultural processes to study the Earth system's future trajectories in the Anthropocene. Due to its modular structure, the software allows interdisciplinary studies of global change and sustainable development that combine stylized model components from Earth system science, climatology, economics, ecology and sociology.
Jaqueline Lekscha and Reik V. Donner
Nonlin. Processes Geophys., 27, 261–275, https://doi.org/10.5194/npg-27-261-2020, https://doi.org/10.5194/npg-27-261-2020, 2020
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam., 11, 17–34, https://doi.org/10.5194/esd-11-17-2020, https://doi.org/10.5194/esd-11-17-2020, 2020
Short summary
Short summary
Drivers from both the mid-latitudes and the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-11, https://doi.org/10.5194/esd-2019-11, 2019
Manuscript not accepted for further review
Short summary
Short summary
Both drivers from the mid-latitudes and from the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Steven J. Lade, Jonathan F. Donges, Ingo Fetzer, John M. Anderies, Christian Beer, Sarah E. Cornell, Thomas Gasser, Jon Norberg, Katherine Richardson, Johan Rockström, and Will Steffen
Earth Syst. Dynam., 9, 507–523, https://doi.org/10.5194/esd-9-507-2018, https://doi.org/10.5194/esd-9-507-2018, 2018
Short summary
Short summary
Around half of the carbon that humans emit into the atmosphere each year is taken up on land (by trees) and in the ocean (by absorption). We construct a simple model of carbon uptake that, unlike the complex models that are usually used, can be analysed mathematically. Our results include that changes in atmospheric carbon may affect future carbon uptake more than changes in climate. Our simple model could also study mechanisms that are currently too uncertain for complex models.
Tim Kittel, Catrin Ciemer, Nastaran Lotfi, Thomas Peron, Francisco Rodrigues, Jürgen Kurths, and Reik V. Donner
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-69, https://doi.org/10.5194/npg-2017-69, 2017
Revised manuscript not accepted
Jasper G. Franke, Johannes P. Werner, and Reik V. Donner
Clim. Past, 13, 1593–1608, https://doi.org/10.5194/cp-13-1593-2017, https://doi.org/10.5194/cp-13-1593-2017, 2017
Short summary
Short summary
We apply evolving functional network analysis, a tool for studying temporal changes of the spatial co-variability structure, to a set of
Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to
long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). We obtain a
qualitative reconstruction of the NAO long-term variability over the entire Common Era.
Finn Müller-Hansen, Maja Schlüter, Michael Mäs, Jonathan F. Donges, Jakob J. Kolb, Kirsten Thonicke, and Jobst Heitzig
Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, https://doi.org/10.5194/esd-8-977-2017, 2017
Short summary
Short summary
Today, human interactions with the Earth system lead to complex feedbacks between social and ecological dynamics. Modeling such feedbacks explicitly in Earth system models (ESMs) requires making assumptions about individual decision making and behavior, social interaction, and their aggregation. In this overview paper, we compare different modeling approaches and techniques and highlight important consequences of modeling assumptions. We illustrate them with examples from land-use modeling.
Lukas Baumbach, Jonatan F. Siegmund, Magdalena Mittermeier, and Reik V. Donner
Biogeosciences, 14, 4891–4903, https://doi.org/10.5194/bg-14-4891-2017, https://doi.org/10.5194/bg-14-4891-2017, 2017
Short summary
Short summary
Temperature extremes play a crucial role for vegetation growth and vitality in vast parts of the European continent. Here, we study the likelihood of simultaneous occurrences of extremes in daytime land surface temperatures and the normalized difference vegetation index (NDVI) for three main periods during the growing season. Our results reveal a particularly high vulnerability of croplands to temperature extremes, while other vegetation types are considerably less affected.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Wolfram Barfuss, Jonathan F. Donges, Marc Wiedermann, and Wolfgang Lucht
Earth Syst. Dynam., 8, 255–264, https://doi.org/10.5194/esd-8-255-2017, https://doi.org/10.5194/esd-8-255-2017, 2017
Short summary
Short summary
Human societies depend on the resources ecosystems provide. We study this coevolutionary relationship by utilizing a stylized model of resource users on a social network. This model demonstrates that social–cultural processes can have a profound influence on the environmental state, such as determining whether the resources collapse from overuse or not. This suggests that social–cultural processes should receive more attention in the modeling of sustainability transitions and the Earth system.
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Vera Heck, Jonathan F. Donges, and Wolfgang Lucht
Earth Syst. Dynam., 7, 783–796, https://doi.org/10.5194/esd-7-783-2016, https://doi.org/10.5194/esd-7-783-2016, 2016
Short summary
Short summary
We assess the co-evolutionary dynamics of the Earth's carbon cycle and societal interventions through terrestrial carbon dioxide removal (tCDR) with a conceptual model in a planetary boundary context. The focus on one planetary boundary alone may lead to navigating the Earth system out of the safe operating space due to transgression of other boundaries. The success of tCDR depends on the degree of anticipation of climate change, the potential tCDR rate and the underlying emission pathway.
J. Heitzig, T. Kittel, J. F. Donges, and N. Molkenthin
Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, https://doi.org/10.5194/esd-7-21-2016, 2016
Short summary
Short summary
The debate about a safe and just operating space for humanity and the possible pathways towards and within it requires an analysis of the inherent dynamics of the Earth system and of the options for influencing its evolution. We present and illustrate with examples a conceptual framework for performing such an analysis not in a quantitative, optimizing mode, but in a qualitative way that emphasizes the main decision dilemmas that one may face in the sustainable management of the Earth system.
T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski
Nonlin. Processes Geophys., 22, 545–570, https://doi.org/10.5194/npg-22-545-2015, https://doi.org/10.5194/npg-22-545-2015, 2015
Short summary
Short summary
The paper reviews the available visualisation techniques and tools for the visual analysis of geo-physical climate networks. The results from a questionnaire with experts from non-linear physics are presented, and the paper surveys recent developments from information visualisation and cartography with respect to their applicability for visual climate network analytics. Several case studies based on own solutions illustrate the potentials of state-of-the-art network visualisation technology.
A. Y. Sun, J. Chen, and J. Donges
Nonlin. Processes Geophys., 22, 433–446, https://doi.org/10.5194/npg-22-433-2015, https://doi.org/10.5194/npg-22-433-2015, 2015
Short summary
Short summary
Terrestrial water storage (TWS) plays a key role in global water and energy cycles. This work applies complex climate networks to analyzing spatial patterns in TWS. A comparative analysis is conducted using a remotely sensed (GRACE) and a model-generated TWS data set. Our results reveal hotspots of TWS anomalies around the global land surfaces. Prospects are offered on using network connectivity as constraints to further improve current global land surface models.
J. F. Donges, R. V. Donner, N. Marwan, S. F. M. Breitenbach, K. Rehfeld, and J. Kurths
Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, https://doi.org/10.5194/cp-11-709-2015, 2015
Short summary
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig
Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, https://doi.org/10.5194/acp-14-13337-2014, 2014
Y. Zou, R. V. Donner, N. Marwan, M. Small, and J. Kurths
Nonlin. Processes Geophys., 21, 1113–1126, https://doi.org/10.5194/npg-21-1113-2014, https://doi.org/10.5194/npg-21-1113-2014, 2014
Short summary
Short summary
We use visibility graphs to characterize asymmetries in the dynamics of sunspot areas in both solar hemispheres. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between effects due to statistical versus dynamical properties of the observed data. Temporal changes in the hemispheric predominance of the graph connectivity are found to lag those directly associated with the total hemispheric sunspot areas themselves.
R. V. Donner and G. Balasis
Nonlin. Processes Geophys., 20, 965–975, https://doi.org/10.5194/npg-20-965-2013, https://doi.org/10.5194/npg-20-965-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Climate Change
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models
Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
The European forest carbon budget under future climate conditions and current management practices
The influence of mesoscale climate drivers on hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a decade of water quality data
Contrasting responses of phytoplankton productivity between coastal and offshore surface waters in the Taiwan Strait and the South China Sea to short-term seawater acidification
Modeling interactions between tides, storm surges, and river discharges in the Kapuas River delta
The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions
Climate, land cover and topography: essential ingredients in predicting wetland permanence
Not all biodiversity rich spots are climate refugia
Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
Anthropogenic CO2-mediated freshwater acidification limits survival, calcification, metabolism, and behaviour in stress-tolerant freshwater crustaceans
Quantifying the role of moss in terrestrial ecosystem carbon dynamics in northern high latitudes
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Acidification, deoxygenation, nutrient and biomasses decline in a warming Mediterranean Sea
On the influence of erect shrubs on the irradiance profile in snow
Tolerance of tropical marine microphytobenthos exposed to elevated irradiance and temperature
Persistent impacts of the 2018 drought on forest disturbance regimes in Europe
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century
Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2
Effects of elevated CO2 and extreme climatic events on forage quality and in vitro rumen fermentation in permanent grassland
Cushion bog plant community responses to passive warming in southern Patagonia
Blue carbon stocks and exchanges along the California coast
Oceanic primary production decline halved in eddy-resolving simulations of global warming
Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model
Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees?
Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
Sensitivity of 21st-century projected ocean new production changes to idealized biogeochemical model structure
Ocean carbon uptake under aggressive emission mitigation
Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration
Wetter environment and increased grazing reduced the area burned in northern Eurasia from 2002 to 2016
Physiological responses of Skeletonema costatum to the interactions of seawater acidification and the combination of photoperiod and temperature
Technical note: Interpreting pH changes
Timing of drought in the growing season and strong legacy effects determine the annual productivity of temperate grasses in a changing climate
Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel
Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions
Ocean-related global change alters lipid biomarker production in common marine phytoplankton
Multi-decadal changes in structural complexity following mass coral mortality on a Caribbean reef
Stable isotopes track the ecological and biogeochemical legacy of mass mangrove forest dieback in the Gulf of Carpentaria, Australia
Global climate response to idealized deforestation in CMIP6 models
Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models
Ecosystem physio-phenology revealed using circular statistics
Understanding the uncertainty in global forest carbon turnover
Characterizing deepwater oxygen variability and seafloor community responses using a novel autonomous lander
Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system
Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2
Foraminiferal holobiont thermal tolerance under future warming – roommate problems or successful collaboration?
Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
Potential predictability of marine ecosystem drivers
Is deoxygenation detectable before warming in the thermocline?
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022, https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Roberto Pilli, Ramdane Alkama, Alessandro Cescatti, Werner A. Kurz, and Giacomo Grassi
Biogeosciences, 19, 3263–3284, https://doi.org/10.5194/bg-19-3263-2022, https://doi.org/10.5194/bg-19-3263-2022, 2022
Short summary
Short summary
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to −450 Mt CO2 yr-1. Our study highlights that under current management practices (i.e. excluding any policy scenario) the forest C sink of the EU27 member states and the UK may decrease to about −250 Mt CO2eq yr-1 in 2050. The expected impacts of future climate change, however, add a considerable uncertainty, potentially nearly doubling or halving the sink associated with forest management.
Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller
Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022, https://doi.org/10.5194/bg-19-3131-2022, 2022
Short summary
Short summary
Deep coastal inlets are important sites for regulating land-based organic pollution before it enters coastal oceans. This study focused on how large climate forces, rainfall, and river flow impact organic loading and oxygen conditions in a coastal inlet in Tasmania. Increases in rainfall were linked to higher organic loading and lower oxygen in basin waters. Finally we observed a significant correlation between the Southern Annular Mode and oxygen concentrations in the system's basin waters.
Guang Gao, Tifeng Wang, Jiazhen Sun, Xin Zhao, Lifang Wang, Xianghui Guo, and Kunshan Gao
Biogeosciences, 19, 2795–2804, https://doi.org/10.5194/bg-19-2795-2022, https://doi.org/10.5194/bg-19-2795-2022, 2022
Short summary
Short summary
After conducting large-scale deck-incubation experiments, we found that seawater acidification (SA) increased primary production (PP) in coastal waters but reduced it in pelagic zones, which is mainly regulated by local pH, light intensity, salinity, and community structure. In future oceans, SA combined with decreased upward transports of nutrients may synergistically reduce PP in pelagic zones.
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Biogeosciences, 19, 2741–2757, https://doi.org/10.5194/bg-19-2741-2022, https://doi.org/10.5194/bg-19-2741-2022, 2022
Short summary
Short summary
This study is the first assessment to evaluate the interactions between river discharges, tides, and storm surges and how they can drive compound flooding in the Kapuas River delta. We successfully created a realistic hydrodynamic model whose domain covers the land–sea continuum using a wetting–drying algorithm in a data-scarce environment. We then proposed a new method to delineate compound flooding hazard zones along the river channels based on the maximum water level profiles.
Svenja Dobbert, Roland Pape, and Jörg Löffler
Biogeosciences, 19, 1933–1958, https://doi.org/10.5194/bg-19-1933-2022, https://doi.org/10.5194/bg-19-1933-2022, 2022
Short summary
Short summary
Understanding how vegetation might respond to climate change is especially important in arctic–alpine ecosystems, where major shifts in shrub growth have been observed. We studied how such changes come to pass and how future changes might look by measuring hourly variations in the stem diameter of dwarf shrubs from one common species. From these data, we are able to discern information about growth mechanisms and can thus show the complexity of shrub growth and micro-environment relations.
Jody Daniel, Rebecca C. Rooney, and Derek T. Robinson
Biogeosciences, 19, 1547–1570, https://doi.org/10.5194/bg-19-1547-2022, https://doi.org/10.5194/bg-19-1547-2022, 2022
Short summary
Short summary
The threat posed by climate change to prairie pothole wetlands is well documented, but gaps remain in our ability to make meaningful predictions about how prairie pothole wetlands will respond. We integrate aspects of topography, land cover/land use and climate to model the permanence class of tens of thousands of wetlands at the western edge of the Prairie Pothole Region.
Ádám T. Kocsis, Qianshuo Zhao, Mark J. Costello, and Wolfgang Kiessling
Biogeosciences, 18, 6567–6578, https://doi.org/10.5194/bg-18-6567-2021, https://doi.org/10.5194/bg-18-6567-2021, 2021
Short summary
Short summary
Biodiversity is under threat from the effects of global warming, and assessing the effects of climate change on areas of high species richness is of prime importance to conservation. Terrestrial and freshwater rich spots have been and will be less affected by climate change than other areas. However, marine rich spots of biodiversity are expected to experience more pronounced warming.
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Alex R. Quijada-Rodriguez, Pou-Long Kuan, Po-Hsuan Sung, Mao-Ting Hsu, Garett J. P. Allen, Pung Pung Hwang, Yung-Che Tseng, and Dirk Weihrauch
Biogeosciences, 18, 6287–6300, https://doi.org/10.5194/bg-18-6287-2021, https://doi.org/10.5194/bg-18-6287-2021, 2021
Short summary
Short summary
Anthropogenic CO2 is chronically acidifying aquatic ecosystems. We aimed to determine the impact of future freshwater acidification on the physiology and behaviour of an important aquaculture crustacean, Chinese mitten crabs. We report that elevated freshwater CO2 levels lead to impairment of calcification, locomotor behaviour, and survival and reduced metabolism in this species. Results suggest that present-day calcifying invertebrates could be heavily affected by freshwater acidification.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Roland Séférian, and Alessandro Tagliabue
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-320, https://doi.org/10.5194/bg-2021-320, 2021
Revised manuscript accepted for BG
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N-fixation, and its response to future climate change, as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-301, https://doi.org/10.5194/bg-2021-301, 2021
Revised manuscript accepted for BG
Short summary
Short summary
Mediterranean Sea ecosystems and their capability to provide ecosystem services are affected by several impacts related to human activities (e.g. overexploitation of marine resources and pollution). Future projections of the Mediterranean Sea biogeochemistry at the end of the 21st century, under two climate change emission scenarios, show an overall decline in the nutrient, oxygen and biomass content. The acidification trend is confirmed, and it is projected to be stronger in the Eastern part.
Maria Belke-Brea, Florent Domine, Ghislain Picard, Mathieu Barrere, and Laurent Arnaud
Biogeosciences, 18, 5851–5869, https://doi.org/10.5194/bg-18-5851-2021, https://doi.org/10.5194/bg-18-5851-2021, 2021
Short summary
Short summary
Expanding shrubs in the Arctic change snowpacks into a mix of snow, impurities and buried branches. Snow is a translucent medium into which light penetrates and gets partly absorbed by branches or impurities. Measurements of light attenuation in snow in Northern Quebec, Canada, showed (1) black-carbon-dominated light attenuation in snowpacks without shrubs and (2) buried branches influence radiation attenuation in snow locally, leading to melting and pockets of large crystals close to branches.
Sazlina Salleh and Andrew McMinn
Biogeosciences, 18, 5313–5326, https://doi.org/10.5194/bg-18-5313-2021, https://doi.org/10.5194/bg-18-5313-2021, 2021
Short summary
Short summary
The benthic diatom communities in Tanjung Rhu, Malaysia, were regularly exposed to high light and temperature variability during the tidal cycle, resulting in low photosynthetic efficiency. We examined the impact of high temperatures on diatoms' photosynthetic capacities, and temperatures beyond 50 °C caused severe photoinhibition. At the same time, those diatoms exposed to temperatures of 40 °C did not show any sign of photoinhibition.
Cornelius Senf and Rupert Seidl
Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021, https://doi.org/10.5194/bg-18-5223-2021, 2021
Short summary
Short summary
Europe was affected by an extreme drought in 2018. We show that this drought has increased forest disturbances across Europe, especially central and eastern Europe. Disturbance levels observed 2018–2020 were the highest on record for 30 years. Increased forest disturbances were correlated with low moisture and high atmospheric water demand. The unprecedented impacts of the 2018 drought on forest disturbances demonstrate an urgent need to adapt Europe’s forests to a hotter and drier future.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Vincent Niderkorn, Annette Morvan-Bertrand, Aline Le Morvan, Angela Augusti, Marie-Laure Decau, and Catherine Picon-Cochard
Biogeosciences, 18, 4841–4853, https://doi.org/10.5194/bg-18-4841-2021, https://doi.org/10.5194/bg-18-4841-2021, 2021
Short summary
Short summary
Climate change can change vegetation characteristics in grasslands with a potential impact on forage chemical composition and quality, as well as its use by ruminants. Using controlled conditions mimicking a future climatic scenario, we show that forage quality and ruminant digestion are affected in opposite ways by elevated atmospheric CO2 and an extreme event (heat wave, severe drought), indicating that different factors of climate change have to be considered together.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
Melissa A. Ward, Tessa M. Hill, Chelsey Souza, Tessa Filipczyk, Aurora M. Ricart, Sarah Merolla, Lena R. Capece, Brady C O'Donnell, Kristen Elsmore, Walter C. Oechel, and Kathryn M. Beheshti
Biogeosciences, 18, 4717–4732, https://doi.org/10.5194/bg-18-4717-2021, https://doi.org/10.5194/bg-18-4717-2021, 2021
Short summary
Short summary
Salt marshes and seagrass meadows ("blue carbon" habitats) can sequester and store high levels of organic carbon (OC), helping to mitigate climate change. In California blue carbon sediments, we quantified OC storage and exchange between these habitats. We find that (1) these salt marshes store about twice as much OC as seagrass meadows do and (2), while OC from seagrass meadows is deposited into neighboring salt marshes, little of this material is sequestered as "long-term" carbon.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Anna Katavouta and Richard G. Williams
Biogeosciences, 18, 3189–3218, https://doi.org/10.5194/bg-18-3189-2021, https://doi.org/10.5194/bg-18-3189-2021, 2021
Short summary
Short summary
Diagnostics of the latest-generation Earth system models reveal the ocean will continue to absorb a large fraction of the anthropogenic carbon released to the atmosphere in the next century, with the Atlantic Ocean storing a large amount of this carbon relative to its size. The ability of the ocean to absorb carbon will reduce in the future as the ocean warms and acidifies. This reduction is larger in the Atlantic Ocean due to a weakening of the meridional overturning with changes in climate.
Genevieve Jay Brett, Daniel B. Whitt, Matthew C. Long, Frank Bryan, Kate Feloy, and Kelvin J. Richards
Biogeosciences, 18, 3123–3145, https://doi.org/10.5194/bg-18-3123-2021, https://doi.org/10.5194/bg-18-3123-2021, 2021
Short summary
Short summary
We quantify one form of uncertainty in modeled 21st-century changes in phytoplankton growth. The supply of nutrients from deep to surface waters decreases in the warmer future ocean, but the effect on phytoplankton growth also depends on changes in available light, how much light and nutrient the plankton need, and how fast they can grow. These phytoplankton properties can be summarized as a biological timescale: when it is short, future growth decreases twice as much as when it is long.
Sean M. Ridge and Galen A. McKinley
Biogeosciences, 18, 2711–2725, https://doi.org/10.5194/bg-18-2711-2021, https://doi.org/10.5194/bg-18-2711-2021, 2021
Short summary
Short summary
Approximately 40 % of the CO2 emissions from fossil fuel combustion and cement production have been absorbed by the ocean. The goal of the UNFCCC Paris Agreement is to reduce humanity's emissions so as to limit global warming to no more than 2 °C, and ideally less than 1.5 °C. If we achieve this level of mitigation, the ocean's uptake of carbon will be strongly reduced. Excess carbon trapped in the near-surface ocean will begin to mix back to the surface and will limit additional uptake.
Alexander Koch, Chris Brierley, and Simon L. Lewis
Biogeosciences, 18, 2627–2647, https://doi.org/10.5194/bg-18-2627-2021, https://doi.org/10.5194/bg-18-2627-2021, 2021
Short summary
Short summary
Estimates of large-scale tree planting and forest restoration as a carbon sequestration tool typically miss a crucial aspect: the Earth system response to the increased land carbon sink from new vegetation. We assess the impact of tropical forest restoration using an Earth system model under a scenario that limits warming to 2 °C. Almost two-thirds of the carbon impact of forest restoration is offset by negative carbon cycle feedbacks, suggesting a more modest benefit than in previous studies.
Wei Min Hao, Matthew C. Reeves, L. Scott Baggett, Yves Balkanski, Philippe Ciais, Bryce L. Nordgren, Alexander Petkov, Rachel E. Corley, Florent Mouillot, Shawn P. Urbanski, and Chao Yue
Biogeosciences, 18, 2559–2572, https://doi.org/10.5194/bg-18-2559-2021, https://doi.org/10.5194/bg-18-2559-2021, 2021
Short summary
Short summary
We examined the trends in the spatial and temporal distribution of the area burned in northern Eurasia from 2002 to 2016. The annual area burned in this region declined by 53 % during the 15-year period under analysis. Grassland fires in Kazakhstan dominated the fire activity, comprising 47 % of the area burned but accounting for 84 % of the decline. A wetter climate and the increase in grazing livestock in Kazakhstan are the major factors contributing to the decline in the area burned.
Hangxiao Li, Tianpeng Xu, Jing Ma, Futian Li, and Juntian Xu
Biogeosciences, 18, 1439–1449, https://doi.org/10.5194/bg-18-1439-2021, https://doi.org/10.5194/bg-18-1439-2021, 2021
Short summary
Short summary
Few studies have investigated effects of ocean acidification and seasonal changes in temperature and day length on marine diatoms. We cultured a marine diatom under two CO2 levels and three combinations of temperature and day length, simulating different seasons, to investigate combined effects of these factors. Acidification had contrasting effects under different combinations, indicating that the future ocean may show different effects on diatoms in different clusters of factors.
Andrea J. Fassbender, James C. Orr, and Andrew G. Dickson
Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, https://doi.org/10.5194/bg-18-1407-2021, 2021
Short summary
Short summary
A decline in upper-ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Claudia Hahn, Andreas Lüscher, Sara Ernst-Hasler, Matthias Suter, and Ansgar Kahmen
Biogeosciences, 18, 585–604, https://doi.org/10.5194/bg-18-585-2021, https://doi.org/10.5194/bg-18-585-2021, 2021
Short summary
Short summary
While existing studies focus on the immediate effects of drought events on grassland productivity, long-term effects are mostly neglected. But, to conclude universal outcomes, studies must consider comprehensive ecosystem mechanisms. In our study, we found that the resistance of growth rates to drought in grasses varies across seasons, and positive legacy effects of drought indicate a high resilience. The high resilience compensates for immediate drought effects on grasses to a large extent.
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Yong Zhang, Sinéad Collins, and Kunshan Gao
Biogeosciences, 17, 6357–6375, https://doi.org/10.5194/bg-17-6357-2020, https://doi.org/10.5194/bg-17-6357-2020, 2020
Short summary
Short summary
Our results show that ocean acidification, warming, increased light exposure and reduced nutrient availability significantly reduce the growth rate but increase particulate organic and inorganic carbon in cells in the coccolithophore Emiliania huxleyi, indicating biogeochemical consequences of future ocean changes on the calcifying microalga. Concurrent changes in nutrient concentrations and pCO2 levels predominantly affected E. huxleyi growth, photosynthetic carbon fixation and calcification.
Rong Bi, Stefanie M. H. Ismar-Rebitz, Ulrich Sommer, Hailong Zhang, and Meixun Zhao
Biogeosciences, 17, 6287–6307, https://doi.org/10.5194/bg-17-6287-2020, https://doi.org/10.5194/bg-17-6287-2020, 2020
Short summary
Short summary
Lipids provide crucial insight into the trajectory of ecological functioning in changing environments. We experimentally explore responses of lipid biomarker production in phytoplankton to projected changes in temperature, nutrients and pCO2. Differential responses of lipid biomarkers indicate rearrangements of cellular carbon pools under future ocean scenarios. Such variations in lipid biomarker production would have important impacts on marine ecological functions and biogeochemical cycles.
George Roff, Jennifer Joseph, and Peter J. Mumby
Biogeosciences, 17, 5909–5918, https://doi.org/10.5194/bg-17-5909-2020, https://doi.org/10.5194/bg-17-5909-2020, 2020
Short summary
Short summary
In recent decades, extensive mortality of reef-building corals throughout the Caribbean region has led to the erosion of reef frameworks and declines in biodiversity. Using field observations, models, and high-precision U–Th dating, we quantified changes in the structural complexity of coral reef frameworks over the past 2 decades. Structural complexity was stable at reef scales, yet bioerosion led to declines in small-scale microhabitat complexity with cascading effects on cryptic fauna.
Yota Harada, Rod M. Connolly, Brian Fry, Damien T. Maher, James Z. Sippo, Luke C. Jeffrey, Adam J. Bourke, and Shing Yip Lee
Biogeosciences, 17, 5599–5613, https://doi.org/10.5194/bg-17-5599-2020, https://doi.org/10.5194/bg-17-5599-2020, 2020
Short summary
Short summary
In 2015–2016, an extensive area of mangroves along ~ 1000 km of coastline in the Gulf of Carpentaria, Australia, experienced dieback as a result of a climatic extreme event that included drought conditions and low sea levels. Multiannual field campaigns conducted from 2016 to 2018 show substantial recovery of the mangrove vegetation. However, stable isotopes suggest long-lasting changes in carbon, nitrogen and sulfur cycling following the dieback.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Natalya D. Gallo, Kevin Hardy, Nicholas C. Wegner, Ashley Nicoll, Haleigh Yang, and Lisa A. Levin
Biogeosciences, 17, 3943–3960, https://doi.org/10.5194/bg-17-3943-2020, https://doi.org/10.5194/bg-17-3943-2020, 2020
Short summary
Short summary
Environmental exposure histories can affect organismal sensitivity to climate change and ocean deoxygenation. The natural variability of environmental conditions for nearshore deep-sea habitats is poorly known due to technological challenges. We develop and test a novel, autonomous, hand-deployable lander outfitted with environmental sensors and a camera system and use it to characterize high-frequency oxygen, temperature, and pH variability at 100–400 m as well as seafloor community responses.
Vincent Echevin, Manon Gévaudan, Dante Espinoza-Morriberón, Jorge Tam, Olivier Aumont, Dimitri Gutierrez, and François Colas
Biogeosciences, 17, 3317–3341, https://doi.org/10.5194/bg-17-3317-2020, https://doi.org/10.5194/bg-17-3317-2020, 2020
Short summary
Short summary
The coasts of Peru encompass the richest fisheries in the entire ocean. It is therefore very important for this country to understand how the nearshore marine ecosystem may evolve under climate change. Fine-scale numerical models are very useful because they can represent precisely the evolution of key parameters such as temperature, water oxygenation, and plankton biomass. Here we study the evolution of the Peruvian marine ecosystem in the 21st century under the worst-case climate scenario.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Doron Pinko, Sigal Abramovich, and Danna Titelboim
Biogeosciences, 17, 2341–2348, https://doi.org/10.5194/bg-17-2341-2020, https://doi.org/10.5194/bg-17-2341-2020, 2020
Short summary
Short summary
Future warming threatens many marine organisms; among these are large benthic foraminifera. These symbiont-bearing protists are major carbonate producers and ecosystem engineers. To assess the relative contribution of host and symbiont algae to the holobiont thermal tolerance, we evaluated the calcification rate and photosynthetic activity under future warming scenarios.
Wagner de Oliveira Garcia, Thorben Amann, Jens Hartmann, Kristine Karstens, Alexander Popp, Lena R. Boysen, Pete Smith, and Daniel Goll
Biogeosciences, 17, 2107–2133, https://doi.org/10.5194/bg-17-2107-2020, https://doi.org/10.5194/bg-17-2107-2020, 2020
Short summary
Short summary
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to sequester CO2. Many CO2 uptake estimates do not include the effect of nutrient deficiencies in soils on biomass production. We show that nutrients can be partly resupplied by enhanced weathering (EW) rock powder application, increasing the effectiveness of tNETs. Depending on the deployed amounts of rock powder, EW could also improve soil hydrology, adding a new dimension to the coupling of tNETs with EW.
Thomas L. Frölicher, Luca Ramseyer, Christoph C. Raible, Keith B. Rodgers, and John Dunne
Biogeosciences, 17, 2061–2083, https://doi.org/10.5194/bg-17-2061-2020, https://doi.org/10.5194/bg-17-2061-2020, 2020
Short summary
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020, https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Short summary
Ocean deoxygenation and warming are observed and projected to intensify under continued greenhouse gas emissions. Whereas temperature is considered the main climate change indicator, we show that in certain regions, thermocline doxygenation may be detectable before warming.
Cited articles
Ahas, R., Jaagus, J., and Aasa, A.: The phenological calendar of Estonia and its correlation with mean air temperature, Int. J. Biometeorol., 44, 159–166, 2000.
Atkinson, M. and Atkinson, E.: Sambucus nigra L., J. Ecol., 90, 895–923, 2002.
Augspurger, C.: Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest, Funct. Ecol., 23, 1031–1039, 2009.
Balasis, G., Donner, R., Potirakis, S., Runge, J., Papadimitriou, C., Daglis, I., Eftaxias, K., and Kurths, J.: Statistical Mechanics and Information-Theoretic Perspectives on Complexity in the Earth System, Entropy, 15, 4844–4888, 2013.
Barriopedro, D., Fischer, E., Luterbacher, J., Trigo, R., and Garcia-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe, Science, 332, 220–224, 2011.
Burkle, L., Marlin, J., and Knight, T.: Plant-Pollinator Interactions over 120 Years: Loss of Species, Co-Occurrence, and Function, Science, 339, 1611–1615, 2013.
Cleland, E., Chuine, I., Menzel, A., Mooney, H., and Schwartz, M.: Shifting plant phenology in response to global change, Trends Ecol. Evol., 22, 357–365, 2007.
Cook, B., Wolkovich, E., and Parmesan, C.: Divergent responses to spring and winter warming drive community level flowering trends, P. Natl. Acad. Sci. USA, 109, 9000–9005, 2012.
Cooper, E., Dullinger, S., and Semenchuk, P.: Late snowmelt delays plant development and results in lower reproductive success in the High Arctic, Plant Sci., 180, 157–167, 2011.
Coumou, D. and Rahmstorf, S.: A decade of weather extremes, Nature Climate Change, 2, 491–496, 2012.
Crimmins, T., Crimmins, M., and Bertelsen, C.: Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient, J. Ecol., 98, 1042–1051, 2010.
Deutscher Wetterdienst, Offenbach: DWD Klimastationen: Daten der Klimastationen des Deutschen Wetterdienstes, 2009.
Donges, J., Donner, R., Trauth, M., Marwan, N., Schellnhuber, H.-J., and Kurths, J.: Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, P. Natl. Acad. Sci. USA of the USA, 108, 20422–20427, 2011.
Donges, J., Schleussner, C.-F., Siegmund, J., and Donner, R.: Event coincidence analysis for quantifying statistical interrelationships between event time series: on the role of flood events as triggers of epidemic outbreaks, Eur. Phys. J.-Spec. Top., 225, 471–487, 2016.
Duffey, E., Morris, M., Sheail, J., Ward, L., Wells, D., and Wells, T.: Grassland Ecology and Wildlife Management, Chapman and Hall, 1974.
Dunne, J., Harte, J., and Taylor, K.: Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods, Ecol. Monogr., 73, 69–86, 2003.
Easterling, D., Meehl, G., Parmesan, C., Changnon, S., Karl, T., and Mearns, L.: Climate extremes: observations, modeling, and impact, Science, 289, 2069–2074, 2000.
Fischer, E., Seneviratne, S., Luethi, D., and Schaer, C.: Contribution of land-atmosphere coupling to recent European summer heat waves, Geophys. Res. Lett., 34, L0607, https://doi.org/10.1029/2006GL029068, 2007.
Fitter, A., Fitter, R., Harris, I., and Williamson, M.: Relationships between first flowering date and temperature in the flora of a locality in central England, Funct. Ecol., 9, 55–60, 1995.
Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M., Smith, P., Van der Velde, M., Vicca, S., Babst, F., Beer, C., Buchmann, N., Canadell, J., Ciais, P., Cramer, W., Ibrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne, S., Walz, A., Wattenbach, M., Zavala, M., and Zscheischler, J.: Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts, Glob. Change Biol., 21, 7861–2880, 2015.
Garcia-Herrera, R., Diaz, J., Trigo, R., Luterbacher, J., and Fischer, E.: A Review of the European Summer Heat Wave of 2003, Critical Reviews in Environmental Science and Technology, 40, 267–306, 2010.
Gudmundsson, L. and Seneviratne, S. I.: European drought trends, Proc. IAHS, 369, 75–79, https://doi.org/10.5194/piahs-369-75-2015, 2015.
Haylock, M. and Goodess, C.: Interannual variability of european extreme winter rainfall and links with mean large-scale circulation, Int. J. Climatol., 24, 759–776, 2004.
Heide, O.: High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming, Tree Physiol., 23, 931–936, 2003.
Inouye, D.: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers, Ecology, 89, 353–362, 2008.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Iwi, A., Sutton, R., and Norton, W.: Influence of May Atlantic Ocean initial conditions on the subsequent North Atlantic winter climate, Q. J. Roy. Meteorol. Soc., 132, 2977–2999, 2006.
Jacobs, J., Clak, S., Denholm, I., Goulson, D., Stoate, C., and Osborne, J.: Pollination biology of fruit-bearing hedgerow plants and the role of flower-visiting insects in fruit-set, Ann. Bot., 104, 1397–1404, 2009.
Jentsch, A., Kreyling, J., and Beierkuhnlein, C.: A new generation of climate change experiments: events not trends, Front. Ecol. Environ., 5, 365–374, 2007.
Jentsch, A., Kreyling, J., Boettcher-Treschkow, J., and Beierkuhnlein, C.: Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species, Glob. Change Biol., 15, 837–849, 2009.
Kudo, G. and Ida, T.: Early onset of spring increases the phenological mismatch between plants and pollinators, Ecology, 94, 2311–2320, 2013.
Kumar, A. and Hoerling, M.: The nature and causes for the delayed atmospheric response to El Nino, J. Climate, 16, 1391–1403, 2003.
Kundzewicz, Z., Radziejewski, M., and Pinskwar, I.: Precipitation extremes in the changing climate of Europe, Clim. Res., 31, 51–58, 2006.
Kysely, J., Gaal, L., Beranova, R., and Plavcova, E.: Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models, Theor. Appl. Climatol., 104, 529–542, 2011.
Law, B., Mackowski, C., Schoer, L., and Tweedie, T.: Flowering phenology of myrtaceous trees and their relation to climatic, environmental and disturbance variables in northern New South Wales, Aust. Ecol., 25, 160–178, 2000.
Lupikasza, E., Hansel, S., and Matschullat, J.: Regional and seasonal variability of extreme precipitation trends in southern Poland and central-eastern Germany 1951–2006, Int. J. Climatol., 31, 2249–2271, 2011.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303, 1409–1503, 2004.
Luterbacher, J., Lininger, M., Menzel, A., Estrella, N., Della-Marta, P., Pfister, C., Rutishauser, T., and Xoplaki, E.: Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts, Geophys. Res. Lett., 34, L12704, https://doi.org/10.1029/2007GL029951, 2007.
McKinney, A., CaraDonna, P., Inouye, D., Barr, B., Bertelsen, C., and Waser, N.: Asynchronous changes in phenology of migrating Broad-tailed Hummingbirds and their early-season nectar resources, Ecology, 93, 1987–1993, 2012.
Menzel, A.: Plant phenological anomalies in Germany and their relation to air temperature and NAO, Climatic Change, 57, 243–263, 2003.
Menzel, A., Seifert, H., and Estrella, N.: Effects of recent warm and cold spells on European plant phenology, Int. J. Biometeorol., 55, 921–932, 2011.
Nagy, L., Kreyling, J., Gellesch, E., Beierkuhnlein, C., and Jentsch, A.: Recurring weather extremes alter the flowering phenology of two common temperate shrubs, Int. J. Biometeorol., 57, 579–588, 2013.
Österle, H., Werner, P., and Gerstengarbe, F.: Qualitätsprüfung, Ergänzung und Homogenisierung der täglichen Datenreihen in Deutschland, 1951-2003: ein neuer Datensatz, in: 7. Deutsche Klimatagung, Klimatrends: Vergangenheit und Zukunft, 9–11 Oktober 2006, 2006.
Parmesan, C.: Ecological and evolutionary responses to recent climate change, Annual Review of Ecology, Evolution and Systematics, 37, 637–669, 2006.
Parmesan, C., Root, T., and Willig, M.: Impacts of Extreme Weather and Climate on Terrestrial Biota, B. Am. Meteorol. Soc., 81, 444–449, 2000.
Perneger, T.: What's wrong with Bonferroni adjustments, British Medical Journal, 316, 1236–1238, 1998.
Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H.-J.: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes, P. Natl. Acad. Sci. USA of the USA, 110, 5336–5341, 2013.
Post, E. and Stenseth, N.: Climate Variability, Plant Phenology and Northern Ungulates, Ecology, 80, 1322–1339, 1999.
Prieto, P., Penuelas, J., Ogaya, R., and Estiarte, M.: Precipitation-dependent flowering of Globularia alypum and Erica multiflora in Mediterranean shrubland under experimental drought and warming, and its inter-annual variability, Ann. Bot., 102, 275–285, 2008.
Rafferty, N., CaraDonna, P., and Bronstein, J.: Phenological shifts and the fate of mutualisms, Oikos, 124, 14–21, 2015.
Rahmstorf, S. and Coumou, D.: Increase of extreme events in a warming world, P. Natl. Acad. Sci. USA, 108, 17905–17909, 2011.
Rajczak, J. P. P. and Schar, C.: Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region, J. Geophys. Res.-Atmos., 118, 3610–3626, 2013.
Rammig, A., Wiedermann, M., Donges, J. F., Babst, F., von Bloh, W., Frank, D., Thonicke, K., and Mahecha, M. D.: Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity, Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, 2015.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M., Seneviratne, S., Zscheischler, J., Beer, C., Buchmann, N., Frank, D., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500, 287–295, 2013.
Reyer, C., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R., Bonfante, A., Lorenz, F., Dury, M., Glonning, P., Jaoude, R., Klein, T., Kuster, T., Martinis, M., Niedrist, G., Riccardi, M., Wohlfahrt, G., Angelis, P., DeDato, G., Francous, L., Menzel, A., and Pereira, M.: A plant's perspective of extremes: terrestrial plant responses to changing climatic variability, Glob. Change Biol., 19, 75–89, 2013.
Rutishauser, T., Luterbacher, J., Defila, C., Frank, D., and Wanner, H.: Swiss spring plant phenology 2007: Extremes, a multi-century perspective, and changes in temperature sensitivity, Geophys. Res. Lett., 35, L05703, https://doi.org/10.1029/2007GL032545, 2008.
Rybski, D., Holstern, A., and Kropp, J.: Towards a unified characterization of phenological phases: Fluctuations and correlations with temperature, Physica A, 390, 680–688, 2011.
Schaer, C., Vidale, P., Luethi, D., Frei, C., Haeberli, C., Liniger, M., and Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves, Nature, 427, 332–336, 2004.
Schleip, C., Ankerst, D., Bock, A., Estrella, N., and Menzel, A.: Comprehensive methodological analysis of long-term changes in phenological extremes in Germany, Glob. Change Biol., 18, 2349–2364, 2012.
Semenchuk, P., Elberling, B., and Cooper, E.: Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard, Ecol. Evol., 3, 2586–2599, 2013.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their impacts on the natural physical environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, and New York, NY, USA, 109–230, 2012.
Shaffer, J.: Multiple Hypothesis Testing, Annu. Rev. Psychol., 46, 561–584, 1995.
Siegmund, J., Sanders, T., Heinrich, I., van der Maaten, E., Simard, S., Helle, G., and Donner, R.: Meteorological Drivers of Extremes in Daily Stem Radius Variations of Beech, Oak, and Pine in Northeastern Germany: An Event Coincidence Analysis, Front. Plant Sci., 7, 733, 2016a.
Siegmund, J., Siegmund, N., and Donner, R.: CoinCalc - A new R package for quantifying simultaneities of event (time) series, arXiv:1603.05038, 2016b.
Sitch, S., Smith, B., Prentice, I., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J., Levis, S., Lucht, W., Sykes, M., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185, 2003.
Southwood, T.: The Number of Insect Species Associated with Various Trees, J. Animal Ecol., 30, 1–8, 1961.
Sparks, T. and Menzel, A.: Observed changes in seasons: an overview, Int. J. Climatol., 22, 1715–1725, 2002.
Sparks, T., Jeffree, E., and Jeffree, C.: An examination on the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK, Int. J. Biometeorol., 44, 82–87, 2000.
Spinoni, J., Naumann, G., and Vogt, J.: Spatial patterns of European droughts under a moderate emission scenario, Adv. Sci. Res., 12, 179–186, 2015a.
Spinoni, J., Naumann, G., Vogt, J., and Barbosa, P.: European drought climatologies and trends based on a multi-indicator approach, Global Planet. Change, 127, 50–57, 2015b.
Stott, P., Stone, D., and Allen, R.: Human contribution to the European heatwave of 2003, Nature, 432, 610–614, 2004.
Tank, K. and Konnen, G.: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99, J. Climate, 16, 3665–3680, 2003.
Trenberth, K. and Fasullo, J.: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010, J. Geophys. Res.-Atmos., 117, D17103, https://doi.org/10.1029/2012JD018020, 2012.
Wedgbrow, C., Wilby, R. L., Fox, H., and O'Hare, G.: Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales, Int. J. Climatol., 22, 219–236, 2002.
WMO: Standardized Precipitation Index User Guide, Geneva, 2012.
Zimmermann, N., Yoccoz, N., Edwards, T., Meier, E., Thuiller, W., Guisan, A., Schmatz, D., and Pearman, P.: Climatic extremes improve predictions of spatial patterns of tree species, P. Natl. Acad. Sci. USA, 17, 19723–19728, 2009.
Zscheischler, J., Michalak, A., Schwalm, C., Mahecha, M., Huntzinger, D., Reichstein, M., Berthier, G., Ciais, P., Cook, R., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., and Zeng, N.: Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data, Global Biochem. Cy., 28, 585–600, 2014.
Short summary
In this study we systematically quantify simultaneities between meteorological extremes and the timing of flowering of four shrub species across Germany by using event coincidence analysis. Our study confirms previous findings of experimental studies, highlighting the impact of early spring temperatures on the flowering of the investigated plants. Additionally, the analysis reveals statistically significant indications of an influence of temperature extremes in the fall preceding the flowering.
In this study we systematically quantify simultaneities between meteorological extremes and the...
Altmetrics
Final-revised paper
Preprint