Articles | Volume 14, issue 1
https://doi.org/10.5194/bg-14-187-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-187-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Smallholder farms in eastern African tropical highlands have low soil greenhouse gas fluxes
David Pelster
CORRESPONDING AUTHOR
International Livestock Research Institute (ILRI), P.O. Box 30709,
Nairobi, Kenya
Mariana Rufino
Centre for International Forestry Research (CIFOR), P.O. Box
30677-00100, UN Avenue, Nairobi, Kenya
Lancaster Environment Centre, Lancaster University, Lancaster, LA1
4YQ, UK
Todd Rosenstock
World Agroforestry Centre (ICRAF), P.O. Box 30677-00100, UN Avenue,
Nairobi, Kenya
Joash Mango
World Agroforestry Centre (ICRAF), P.O. Box 30677-00100, UN Avenue,
Nairobi, Kenya
Gustavo Saiz
Karlsruhe Institute of Technology – Institute of Meteorology and
Climate Research, Institute of Atmospheric Environmental Research (KIT/IMK–IFU),
Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
now at: Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot,
Berkshire, SL5 7PY, UK
Eugenio Diaz-Pines
Karlsruhe Institute of Technology – Institute of Meteorology and
Climate Research, Institute of Atmospheric Environmental Research (KIT/IMK–IFU),
Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
German Baldi
Grupo de Estudios Ambientales – IMASL, Universidad Nacional de San
Luis and CONICET, Ejército de los Andes 950, D5700HHW, San Luis,
Argentina
Klaus Butterbach-Bahl
International Livestock Research Institute (ILRI), P.O. Box 30709,
Nairobi, Kenya
Karlsruhe Institute of Technology – Institute of Meteorology and
Climate Research, Institute of Atmospheric Environmental Research (KIT/IMK–IFU),
Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
Related authors
Dong-Gill Kim, Andrew D. Thomas, David Pelster, Todd S. Rosenstock, and Alberto Sanz-Cobena
Biogeosciences, 13, 4789–4809, https://doi.org/10.5194/bg-13-4789-2016, https://doi.org/10.5194/bg-13-4789-2016, 2016
Short summary
Short summary
African natural ecosystems and agricultural lands are a significant source of GHG. However, there are huge research gaps and understanding of Africa's contribution to global GHG emissions remains highly uncertain. The strategy for addressing this data gap involves identifying priorities for data acquisition, utilizing appropriate technologies, and establishing networks and collaboration.
M. Liu, M. Dannenmann, S. Lin, G. Saiz, G. Yan, Z. Yao, D. E. Pelster, H. Tao, S. Sippel, Y. Tao, Y. Zhang, X. Zheng, Q. Zuo, and K. Butterbach-Bahl
Biogeosciences, 12, 4831–4840, https://doi.org/10.5194/bg-12-4831-2015, https://doi.org/10.5194/bg-12-4831-2015, 2015
Short summary
Short summary
We demonstrate for the first time that a ground cover rice production system (GCRPS) significantly increased soil organic C and total N stocks at spatially representative paired sites under varying edaphic conditions. Our results suggest that GCRPS is a stable and sustainable technique that maintains key soil functions, while increasing rice yield and expanding the cultivation into regions where it has been hampered by low seasonal temperatures and/or a lack of irrigation water.
Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Armin Hofbauer, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Christoph Wohner, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Sophie Zechmeister, Anita Zolles, and Stephan Glatzel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-110, https://doi.org/10.5194/essd-2024-110, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Long-term observation sites have been established in Austria's six regions, covering major ecosystem types such as forests, grasslands, and wetlands. The purpose of these observations is to measure baselines for assessing the impacts of extreme climate events on the carbon cycle. The collected data sets include meteorological variables, soil temperature and moisture, carbon dioxide fluxes from the soil, and tree stem growth in forests at a resolution of 30–60 minutes between 2019 and 2021.
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023, https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Rahayu Adzhar, Douglas I. Kelley, Ning Dong, Charles George, Mireia Torello Raventos, Elmar Veenendaal, Ted R. Feldpausch, Oliver L. Phillips, Simon L. Lewis, Bonaventure Sonké, Herman Taedoumg, Beatriz Schwantes Marimon, Tomas Domingues, Luzmila Arroyo, Gloria Djagbletey, Gustavo Saiz, and France Gerard
Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, https://doi.org/10.5194/bg-19-1377-2022, 2022
Short summary
Short summary
The MODIS Vegetation Continuous Fields (VCF) product underestimates tree cover compared to field data and could be underestimating tree cover significantly across the tropics. VCF is used to represent land cover or validate model performance in many land surface and global vegetation models and to train finer-scaled Earth observation products. Because underestimation in VCF may render it unsuitable for training data and bias model predictions, it should be calibrated before use in the tropics.
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021, https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Carlos Alberto Quesada, Claudia Paz, Erick Oblitas Mendoza, Oliver Lawrence Phillips, Gustavo Saiz, and Jon Lloyd
SOIL, 6, 53–88, https://doi.org/10.5194/soil-6-53-2020, https://doi.org/10.5194/soil-6-53-2020, 2020
Short summary
Short summary
Amazon soils hold as much carbon (C) as is contained in the vegetation. In this work we sampled soils across 8 different Amazonian countries to try to understand which soil properties control current Amazonian soil C concentrations. We confirm previous knowledge that highly developed soils hold C through clay content interactions but also show a previously unreported mechanism of soil C stabilization in the younger Amazonian soil types which hold C through aluminium organic matter interactions.
Friederike Gerschlauer, Gustavo Saiz, David Schellenberger Costa, Michael Kleyer, Michael Dannenmann, and Ralf Kiese
Biogeosciences, 16, 409–424, https://doi.org/10.5194/bg-16-409-2019, https://doi.org/10.5194/bg-16-409-2019, 2019
Short summary
Short summary
Mount Kilimanjaro is an iconic environmental asset under serious threat due to increasing human pressures and climate change constraints. We studied variations in the stable isotopic composition of carbon and nitrogen in plant, litter, and soil material sampled along a strong land-use and altitudinal gradient. Our results show that, besides management, increasing temperatures in a changing climate may promote carbon and nitrogen losses, thus altering the stability of Kilimanjaro ecosystems.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Suzanne R. Jacobs, Edison Timbe, Björn Weeser, Mariana C. Rufino, Klaus Butterbach-Bahl, and Lutz Breuer
Hydrol. Earth Syst. Sci., 22, 4981–5000, https://doi.org/10.5194/hess-22-4981-2018, https://doi.org/10.5194/hess-22-4981-2018, 2018
Short summary
Short summary
This study investigated how land use affects stream water sources and flow paths in an East African tropical montane area. Rainfall was identified as an important stream water source in the forest and smallholder agriculture sub-catchments, while springs were more important in the commercial tea plantation sub-catchment. However, 15 % or less of the stream water consisted of water with an age of less than 3 months, indicating that groundwater plays an important role in all land use types.
Rosa Maria Roman-Cuesta, Martin Herold, Mariana C. Rufino, Todd S. Rosenstock, Richard A. Houghton, Simone Rossi, Klaus Butterbach-Bahl, Stephen Ogle, Benjamin Poulter, Louis Verchot, Christopher Martius, and Sytze de Bruin
Biogeosciences, 13, 5799–5819, https://doi.org/10.5194/bg-13-5799-2016, https://doi.org/10.5194/bg-13-5799-2016, 2016
Short summary
Short summary
The land use sector (AFOLU) is a pivotal component of countries' mitigation commitments under the Paris Agreement. Global land use data are therefore important to complement and fill in countries' data gaps. But how different are the existing AFOLU datasets and why? Here we contrast six AFOLU datasets for the tropics at different levels of aggregation (spatial, gases, emission sources) and point out possible reasons for the observed differences and the next steps to improve land use emissions.
Dong-Gill Kim, Andrew D. Thomas, David Pelster, Todd S. Rosenstock, and Alberto Sanz-Cobena
Biogeosciences, 13, 4789–4809, https://doi.org/10.5194/bg-13-4789-2016, https://doi.org/10.5194/bg-13-4789-2016, 2016
Short summary
Short summary
African natural ecosystems and agricultural lands are a significant source of GHG. However, there are huge research gaps and understanding of Africa's contribution to global GHG emissions remains highly uncertain. The strategy for addressing this data gap involves identifying priorities for data acquisition, utilizing appropriate technologies, and establishing networks and collaboration.
Rosa Maria Roman-Cuesta, Mariana C. Rufino, Martin Herold, Klaus Butterbach-Bahl, Todd S. Rosenstock, Mario Herrero, Stephen Ogle, Changsheng Li, Benjamin Poulter, Louis Verchot, Christopher Martius, John Stuiver, and Sytze de Bruin
Biogeosciences, 13, 4253–4269, https://doi.org/10.5194/bg-13-4253-2016, https://doi.org/10.5194/bg-13-4253-2016, 2016
Short summary
Short summary
This research provides spatial data on gross emissions from the land use sector for the tropical region for the period 2000–2005. This sector contributes up to 24 % of the global emissions, but there is little understanding of where the hotspots of emissions are, how uncertain they are, and what the human activities behind these emissions are. Data provided here should assist countries to identify priority areas for mitigation action and contrast the effectiveness of their current measures.
G. Saiz, M. Bird, C. Wurster, C. A. Quesada, P. Ascough, T. Domingues, F. Schrodt, M. Schwarz, T. R. Feldpausch, E. Veenendaal, G. Djagbletey, G. Jacobsen, F. Hien, H. Compaore, A. Diallo, and J. Lloyd
Biogeosciences, 12, 5041–5059, https://doi.org/10.5194/bg-12-5041-2015, https://doi.org/10.5194/bg-12-5041-2015, 2015
Short summary
Short summary
We demonstrate and explain differential patterns in SOM dynamics in C3/C4 mixed ecosystems at various spatial scales across contrasting climate and soils. This study shows that the interdependence between biotic and abiotic factors ultimately determines whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results also highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM.
M. Liu, M. Dannenmann, S. Lin, G. Saiz, G. Yan, Z. Yao, D. E. Pelster, H. Tao, S. Sippel, Y. Tao, Y. Zhang, X. Zheng, Q. Zuo, and K. Butterbach-Bahl
Biogeosciences, 12, 4831–4840, https://doi.org/10.5194/bg-12-4831-2015, https://doi.org/10.5194/bg-12-4831-2015, 2015
Short summary
Short summary
We demonstrate for the first time that a ground cover rice production system (GCRPS) significantly increased soil organic C and total N stocks at spatially representative paired sites under varying edaphic conditions. Our results suggest that GCRPS is a stable and sustainable technique that maintains key soil functions, while increasing rice yield and expanding the cultivation into regions where it has been hampered by low seasonal temperatures and/or a lack of irrigation water.
S. Carter, M. Herold, M. C. Rufino, K. Neumann, L. Kooistra, and L. Verchot
Biogeosciences, 12, 4809–4825, https://doi.org/10.5194/bg-12-4809-2015, https://doi.org/10.5194/bg-12-4809-2015, 2015
Short summary
Short summary
Emission from agriculture-driven deforestation can be mitigated by reducing the expansion of agriculture into forests through intensification and utilizing non-forested land for agriculture. Climate-smart agriculture can reduce emissions from existing agricultural land. Tropical countries which are priorities for action can be identified by assessing the mitigation potential of these interventions, by assessing capacity for implementation and the risks associated with these approaches.
E. M. Veenendaal, M. Torello-Raventos, T. R. Feldpausch, T. F. Domingues, F. Gerard, F. Schrodt, G. Saiz, C. A. Quesada, G. Djagbletey, A. Ford, J. Kemp, B. S. Marimon, B. H. Marimon-Junior, E. Lenza, J. A. Ratter, L. Maracahipes, D. Sasaki, B. Sonké, L. Zapfack, D. Villarroel, M. Schwarz, F. Yoko Ishida, M. Gilpin, G. B. Nardoto, K. Affum-Baffoe, L. Arroyo, K. Bloomfield, G. Ceca, H. Compaore, K. Davies, A. Diallo, N. M. Fyllas, J. Gignoux, F. Hien, M. Johnson, E. Mougin, P. Hiernaux, T. Killeen, D. Metcalfe, H. S. Miranda, M. Steininger, K. Sykora, M. I. Bird, J. Grace, S. Lewis, O. L. Phillips, and J. Lloyd
Biogeosciences, 12, 2927–2951, https://doi.org/10.5194/bg-12-2927-2015, https://doi.org/10.5194/bg-12-2927-2015, 2015
Short summary
Short summary
When nearby forest and savanna stands are compared, they are not as structurally different as first seems. Moreover, savanna-forest transition zones typically occur at higher rainfall for South America than for Africa but with coexistence confined to a well-defined edaphic-climate envelope. With interacting soil cation-soil water storage–precipitations effects on canopy cover also observed we argue that both soils and climate influence the location of the two major tropical vegetation types.
G. Saiz, J. G. Wynn, C. M. Wurster, I. Goodrick, P. N. Nelson, and M. I. Bird
Biogeosciences, 12, 1849–1863, https://doi.org/10.5194/bg-12-1849-2015, https://doi.org/10.5194/bg-12-1849-2015, 2015
Short summary
Short summary
Around half of all pyrogenic carbon (charcoal+soot) derived from wildfires comes from semi-annual burning of tropical savannas. This pyrogenic carbon is significant because it is a component of global aerosols capable of modulating the greenhouse effect and is resistant to degradation. We use controlled field burns in northern Australian savannas to determine how much pyrogenic carbon is formed, how much of this is recalcitrant and how it is partitioned between ground residues and airborne soot.
K. J. Bloomfield, T. F. Domingues, G. Saiz, M. I. Bird, D. M. Crayn, A. Ford, D. J. Metcalfe, G. D. Farquhar, and J. Lloyd
Biogeosciences, 11, 7331–7347, https://doi.org/10.5194/bg-11-7331-2014, https://doi.org/10.5194/bg-11-7331-2014, 2014
Related subject area
Biogeochemistry: Greenhouse Gases
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Technical note: A low-cost, automatic soil–plant–atmosphere enclosure system to investigate CO2 and evapotranspiration flux dynamics
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake
Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in northern Norway inferred from laboratory incubations
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Interannual and seasonal variability of the air–sea CO2 exchange at Utö in the coastal region of the Baltic Sea
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Seasonal and inter-annual variability of carbon fluxes in southern Africa seen by GOSAT
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Eddy covariance fluxes of CO2, CH4 and N2O on a drained peatland forest after clearcutting
Using eddy covariance observations to determine the carbon sequestration characteristics of subalpine forests in the Qinghai–Tibet Plateau
Dynamics of CO2 and CH4 fluxes in Red Sea mangrove soils
Isotopomer labeling and oxygen dependence of hybrid nitrous oxide production
The emission of CO from tropical rainforest soils
Interferences caused by the microbial methane cycle during the assessment of abandoned oil and gas wells
Carbon sequestration in different urban vegetation types in Southern Finland
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
Ensemble estimates of global wetland methane emissions over 2000–2020
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Seasonal carbon fluxes from vegetation and soil in a Mediterranean non-tidal salt marsh
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Proglacial methane emissions driven by meltwater and groundwater flushing in a high Arctic glacial catchment
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices
Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in Northern Europe
Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data
Explainable machine learning for modelling of net ecosystem exchange in boreal forest
Enhanced Southern Ocean CO2 outgassing as a result of stronger and poleward shifted southern hemispheric westerlies
Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond
Optical and radar Earth observation data for upscaling methane emissions linked to permafrost degradation in sub-Arctic peatlands in northern Sweden
Herbivore–shrub interactions influence ecosystem respiration and biogenic volatile organic compound composition in the subarctic
Methane emissions due to reservoir flushing: a significant emission pathway?
Carbon dioxide and methane fluxes from mounds of African fungus-growing termites
Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea
Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands
Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary
Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions
Simulated methane emissions from Arctic ponds are highly sensitive to warming
Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale
Relationships between greenhouse gas production and landscape position during short-term permafrost thaw under anaerobic conditions in the Lena Delta
Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska
Carbon monoxide (CO) cycling in the Fram Strait, Arctic Ocean
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024, https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere. Our study describes N2O distribution and its drivers in one such system in Macquarie Harbour, Tasmania. Water samples were collected seasonally in 2022 and 2023. Results show the system removes atmospheric N2O when river flow is high, whereas the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Wael Al Hamwi, Maren Dubbert, Jörg Schaller, Matthias Lück, Marten Schmidt, and Mathias Hoffmann
Biogeosciences, 21, 5639–5651, https://doi.org/10.5194/bg-21-5639-2024, https://doi.org/10.5194/bg-21-5639-2024, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil–plant enclosure system to monitor CO2 and evapotranspiration fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, where multiple chambers connect to a single gas analyzer via a low-cost multiplexer. This system provides precise, accurate measurements and high temporal resolution, enabling comprehensive monitoring of plant–soil responses to various treatments and conditions.
Zhao-Jun Yong, Wei-Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin
Biogeosciences, 21, 5247–5260, https://doi.org/10.5194/bg-21-5247-2024, https://doi.org/10.5194/bg-21-5247-2024, 2024
Short summary
Short summary
We measured CO2 and CH4 fluxes from mangrove stems and soils of Avicennia marina and Kandelia obovata during tidal cycles. Both stem types served as CO2 and CH4 sources, emitting less CH4 than soils, with no difference in CO2 flux. While A. marina stems showed increased CO2 fluxes from low to high tides, they acted as a CH4 sink before flooding and as a source after ebbing. However, K. obovata stems showed no flux pattern. This study highlights the need to consider tidal influence and species.
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024, https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the eddy covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate-change-induced droughts.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024, https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Eva-Marie Metz, Sanam Noreen Vardag, Sourish Basu, Martin Jung, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1955, https://doi.org/10.5194/egusphere-2024-1955, 2024
Short summary
Short summary
We estimate CO2 fluxes in semi-arid southern Africa from 2009 to 2018 based on satellite CO2 measurements and atmospheric inverse modelling. By selecting process-based vegetation models, which agree with the satellite CO2 fluxes, we find that soil respiration mainly drives the seasonality, whereas photosynthesis substantially influences the interannual variability. Our study emphasizes the need of better representing the response of semi-arid ecosystems to soil rewetting in vegetation models.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martinez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
EGUsphere, https://doi.org/10.5194/egusphere-2024-1994, https://doi.org/10.5194/egusphere-2024-1994, 2024
Short summary
Short summary
The emissions of greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clearcut peatland forest site. The measurements covered the whole year of 2022 which was the second growing season after the clearcut. The site was a strong GHG source and the highest emissions came from CO2 followed by N2O and CH4. A statistical model that included information on different surfaces in the site was developed to unravel surface-type specific GHG fluxes.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Jessica Ashley Valerie Breavington, Alexandra Steckbauer, Chuancheng Fu, Mongi Ennasri, and Carlos Manuel Duarte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1831, https://doi.org/10.5194/egusphere-2024-1831, 2024
Short summary
Short summary
Mangroves are known for storing large amounts of carbon in their soils, but this is lower in the Red Sea due to challenging growth conditions. We collected soil cores over multiple seasons to measure soil properties, and the greenhouse gasses (GHG) of carbon dioxide and methane. We found that GHG emissions are generally a small offset to carbon storage but punctuated by periods of very high GHG emission and this variability is linked to multiple environmental and soil properties.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Sebastian F. A. Jordan, Stefan Schloemer, Martin Krüger, Tanja Heffner, Marcus A. Horn, and Martin Blumenberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1461, https://doi.org/10.5194/egusphere-2024-1461, 2024
Short summary
Short summary
In a multilayered approach, we studied eight cut and buried abandoned oil wells in a peat rich area of Northern Germany for methane flux, soil gas composition, and isotopic signatures of soil methane and carbon dioxide. The detected methane emissions were of biogenic, peat origin and were not associated with the abandoned wells. Additional microbial analysis and methane oxidation rate measurements demonstrated a high methane-emission mitigation potential in the studied peat-soils.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-1453, https://doi.org/10.5194/egusphere-2024-1453, 2024
Short summary
Short summary
Cities seek carbon neutrality and are interested in the sinks of urban vegetation. Measurements are difficult to do which leads to the need for modeling carbon cycle. In this study, we examined the performance of models in estimating carbon sequestration rates in lawns, park trees, and urban forests in Helsinki, Finland. We found that models simulated seasonal and annual variations well. Trees had larger carbon sequestration rates compared with lawns and irrigation often increased carbon sink.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Lorena Carrasco-Barea, Dolors Verdaguer, Maria Gispert, Xavier D. Quintana, Hélène Bourhis, and Laura Llorens
EGUsphere, https://doi.org/10.5194/egusphere-2024-1320, https://doi.org/10.5194/egusphere-2024-1320, 2024
Short summary
Short summary
Carbon dioxide fluxes have been measured seasonally in four plant species in a Mediterranean non-tidal salt marsh highlighting the high carbon removal potential that these species have. Carbon dioxide and methane emissions from soil showed high variability among the habitats studied and they were generally higher than those observed in tidal salt marshes. Our results are important to make more accurate predictions regarding carbon emissions from these ecosystems.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Gabrielle Emma Kleber, Leonard Magerl, Alexandra V. Turchyn, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1273, https://doi.org/10.5194/egusphere-2024-1273, 2024
Short summary
Short summary
Our research on Svalbard has uncovered that melting glaciers can release large amounts of methane, a potent greenhouse gas. By studying a glacier over two summers, we found that its river was highly concentrated in methane. This suggests that as the Arctic warms and glaciers melt, they could be a significant source of methane emissions. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as similar processes may occur across the Arctic.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024, https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Short summary
Determination of dissolved greenhouse gas (GHG) in freshwater allows us to estimate GHG fluxes. Mercuric chloride (HgCl2) is used to preserve water samples prior to GHG analysis despite its environmental and health impacts and interferences with water chemistry in freshwater. Here, we tested the effects of HgCl2, two substitutes and storage time on GHG in water from two boreal lakes. Preservation with HgCl2 caused overestimation of CO2 concentration with consequences for GHG flux estimation.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024, https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024, https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Short summary
Landscapes are often assumed to be homogeneous when using eddy covariance fluxes, which can lead to biases when calculating carbon budgets. In this study we report eddy covariance carbon fluxes from heterogeneous tundra. We used the footprints of each flux observation to unmix the fluxes coming from components of the landscape. We identified and quantified hot spots of carbon emissions in the landscape. Accurately scaling with landscape heterogeneity yielded half as much regional carbon uptake.
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024, https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Short summary
We studied urban lawns and meadows in the Helsinki metropolitan area, Finland. We found that meadows are more resistant to drought events but that they do not increase carbon sequestration compared with lawns. Moreover, the transformation from lawns to meadows did not demonstrate any negative climate effects in terms of greenhouse gas emissions. Even though social and economic aspects also steer urban development, these results can guide planning to consider carbon-smart options.
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Short summary
We established an oil palm management experiment in a large-scale oil palm plantation in Jambi, Indonesia. We recorded oil palm fruit yield and measured soil CO2, N2O, and CH4 fluxes. After 4 years of treatment, compared with conventional fertilization with herbicide weeding, reduced fertilization with mechanical weeding did not reduce yield and soil greenhouse gas emissions, which highlights the legacy effects of over a decade of conventional management prior to the start of the experiment.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Mueller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2873, https://doi.org/10.5194/egusphere-2023-2873, 2024
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in Northern Europe using ecosystem models, atmospheric inversions and up-scaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions and up-scaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2023-2559, https://doi.org/10.5194/egusphere-2023-2559, 2023
Short summary
Short summary
ML models are gaining popularity in biogeosciences. They are applied as gapfilling methods and used to upscale carbon fluxes to larger areas based on local measurements. In this study, we use Explainable ML methods to elucidate performance of machine learning models for carbon dioxide fluxes in boreal forest. We show that statistically equal models treat input variables differently. Explainable ML can help scientists to make informed solutions when applying ML models in their research.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Petr Znachor, Jiří Nedoma, Vojtech Kolar, and Anna Matoušů
Biogeosciences, 20, 4273–4288, https://doi.org/10.5194/bg-20-4273-2023, https://doi.org/10.5194/bg-20-4273-2023, 2023
Short summary
Short summary
We conducted intensive spatial sampling of the hypertrophic fishpond to better understand the spatial dynamics of methane fluxes and environmental heterogeneity in fishponds. The diffusive fluxes of methane accounted for only a minor fraction of the total fluxes and both varied pronouncedly within the pond and over the studied summer season. This could be explained only by the water depth. Wind substantially affected temperature, oxygen and chlorophyll a distribution in the pond.
Sofie Sjögersten, Martha Ledger, Matthias Siewert, Betsabé de la Barreda-Bautista, Andrew Sowter, David Gee, Giles Foody, and Doreen S. Boyd
Biogeosciences, 20, 4221–4239, https://doi.org/10.5194/bg-20-4221-2023, https://doi.org/10.5194/bg-20-4221-2023, 2023
Short summary
Short summary
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is difficult given the large and remote areas impacted. We show that UAV data together with satellite data can be used to extrapolate emissions across the wider landscape as well as detect areas at risk of higher emissions. A transition of currently degrading areas to fen type vegetation can increase emission by several orders of magnitude, highlighting the importance of quantifying areas at risk.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Ole Lessmann, Jorge Encinas Fernández, Karla Martínez-Cruz, and Frank Peeters
Biogeosciences, 20, 4057–4068, https://doi.org/10.5194/bg-20-4057-2023, https://doi.org/10.5194/bg-20-4057-2023, 2023
Short summary
Short summary
Based on a large dataset of seasonally resolved methane (CH4) pore water concentrations in a reservoir's sediment, we assess the significance of CH4 emissions due to reservoir flushing. In the studied reservoir, CH4 emissions caused by one flushing operation can represent 7 %–14 % of the annual CH4 emissions and depend on the timing of the flushing operation. In reservoirs with high sediment loadings, regular flushing may substantially contribute to the overall CH4 emissions.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Tim René de Groot, Anne Margriet Mol, Katherine Mesdag, Pierre Ramond, Rachel Ndhlovu, Julia Catherine Engelmann, Thomas Röckmann, and Helge Niemann
Biogeosciences, 20, 3857–3872, https://doi.org/10.5194/bg-20-3857-2023, https://doi.org/10.5194/bg-20-3857-2023, 2023
Short summary
Short summary
This study investigates methane dynamics in the Wadden Sea. Our measurements revealed distinct variations triggered by seasonality and tidal forcing. The methane budget was higher in warmer seasons but surprisingly high in colder seasons. Methane dynamics were amplified during low tides, flushing the majority of methane into the North Sea or releasing it to the atmosphere. Methanotrophic activity was also elevated during low tide but mitigated only a small fraction of the methane efflux.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Julian Koch, Lars Elsgaard, Mogens H. Greve, Steen Gyldenkærne, Cecilie Hermansen, Gregor Levin, Shubiao Wu, and Simon Stisen
Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, https://doi.org/10.5194/bg-20-2387-2023, 2023
Short summary
Short summary
Utilizing peatlands for agriculture leads to large emissions of greenhouse gases worldwide. The emissions are triggered by lowering the water table, which is a necessary step in order to make peatlands arable. Many countries aim at reducing their emissions by restoring peatlands, which can be achieved by stopping agricultural activities and thereby raising the water table. We estimate a total emission of 2.6 Mt CO2-eq for organic-rich peatlands in Denmark and a potential reduction of 77 %.
Mélissa Laurent, Matthias Fuchs, Tanja Herbst, Alexandra Runge, Susanne Liebner, and Claire C. Treat
Biogeosciences, 20, 2049–2064, https://doi.org/10.5194/bg-20-2049-2023, https://doi.org/10.5194/bg-20-2049-2023, 2023
Short summary
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
Michael Moubarak, Seeta Sistla, Stefano Potter, Susan M. Natali, and Brendan M. Rogers
Biogeosciences, 20, 1537–1557, https://doi.org/10.5194/bg-20-1537-2023, https://doi.org/10.5194/bg-20-1537-2023, 2023
Short summary
Short summary
Tundra wildfires are increasing in frequency and severity with climate change. We show using a combination of field measurements and computational modeling that tundra wildfires result in a positive feedback to climate change by emitting significant amounts of long-lived greenhouse gasses. With these effects, attention to tundra fires is necessary for mitigating climate change.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Cited articles
Adamtey, N., Musyoka, M. W., Zundel, C., Cobo, J. G., Karanja, E., Fiaboe, K. K. M., Muriuki, A., Mucheru-Muna, M., Vanlauwe, B., Berset, E., Messmer, M. M., Gattinger, A., Bhullar, G. S., Cadisch, G., Fliessbach, A., Mäder, P., Niggli, U., and Foster, D.: Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya, Agr. Ecosyst. Environ., 235, 61–79, 2016.
Altieri, M. A. and Koohafkan, P.: Enduring farms: Climate change, smallholders and traditional farming communities, Third World Network, Environment and Development series No. 6, Penang, Malaysia, 63 pp., 2008.
Arias-Navarro, C., Díaz-Pinés, E., Kiese, R., Rosenstock, T. S., Rufino, M. C., Stern, D., Neufeldt, H., Verchot, L. V., and Butterbach-Bahl, K.: Gas pooling: A sampling technique to overcome spatial heterogeneity of soil carbon dioxide and nitrous oxide fluxes, Soil Biol. Biochem., 67, 20–23, 2013.
Baggs, E. M., Chebii, J., and Ndufa, J. K.: A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya, Soil Till. Res., 90, 69–76, 2006.
Baldi, G., Houspanossian, J., Murray, F., Rosales, A. A., Rueda, C. V., and Jobbágy, E. G.: Cultivating the dry forests of South America: Diversity of land users and imprints on ecosystem functioning, J. Arid Environ., 123, 47–59, https://doi.org/10.1016/j.jaridenv.2014.05.027, 2015.
Barron, J., Rockström, J., Gichuki, F., and Hatibu, N.: Dry spell analysis and maize yields for two semi-arid locations in east Africa, Agr. Forest Meteorol., 117, 23-37, 2003.
Barton, L., Wolf, B., Rowlings, D., Scheer, C., Kiese, R., Grace, P., Stefanova, K., and Butterbach-Bahl, K.: Sampling frequency affects estimates of annual nitrous oxide fluxes, Scientific Reports, 5, 15912, https://doi.org/10.1038/srep15912, 2015.
Birch, H. F.: Nitrification in soils after different periods of dryness, Plant Soil, 12, 81–96, 1960.
Bolleter, W. T., Bushman, C. J., and Tidwell, P. W.: Spectrophotometric Determination of Ammonia as Indophenol, Anal. Chem., 33, 592–594, 1961.
Braun, A. R., Smaling, E. M. A., Muchugu, E. I., Shepherd, K. D., and Corbett, J. D.: Maintenance and improvement of soil productivity in the highlands of Ethiopia, Kenya, Madagascar and Uganda : an inventory of spatial and non-spatial survey and research data on natural resources and land productivity, International Centre for Research in Agroforestry, Nairobi, Kenya, 1997.
Brümmer, C., Brüggemann, N., Butterbach-Bahl, K., Falk, U., Szarzynski, J., Vielhauer, K., Wassmann, R., and Papen, H.: Soil-atmosphere exchange of N2O and NO in near-natural savanna and agricultural land in Burkina Faso (W. Africa), Ecosystems, 11, 582–600, 2008.
Brümmer, C., Papen, H., Wassmann, R., and Brüggemann, N.: Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa), Global Biogeochem. Cy., 23, GB1001, https://doi.org/10.1029/2008GB003237, 2009.
Buchkina, N., Rizhiya, E., and Balashov, E.: N2O emission from a loamy sand Spodosol as related to soil fertility and N-fertilizer application for barley and cabbage, Archives of Agronomy and Soil Science, 58, S141–S146, 2012.
Butterbach-Bahl, K. and Papen, H.: Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany, Plant Soil, 240, 77–90, 2002.
Butterbach-Bahl, K., Kock, M., Willibald, G., Hewett, B., Buhagiar, S., Papen, H., and Kiese, R.: Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem, Global Biogeochem. Cy., 18, GB3012, https://doi.org/10.1029/2004GB002243, 2004.
CCAFS: Harvard Dataverse, V1, UNF:6:RlGI7+je0vm9bkmK1IEmEQ==, available at: https://doi.org/10.7910/DVN/LVRFMT, last access: 9 January 2017.
Chantigny, M. H., Rochette, P., Angers, D. A., Bittman, S., Buckley, K., Massé, D., Belanger, G., Eriksen-Hamel, N., and Gasser, M. O.: Soil nitrous oxide emissions following band-incorporation of fertilizer nitrogen and swine manure, J. Environ. Qual., 39, 1545–1553, 2010.
Chapuis-Lardy, L., Metay, A., Martinet, M., Rabenarivo, M., Toucet, J., Douzet, J. M., Razafimbelo, T., Rabeharisoa, L., and Rakotoarisoa, J.: Nitrous oxide fluxes from Malagasy agricultural soils, Geoderma, 148, 421–427, 2009.
Chen, G. X., Huang, B., Xu, H., Zhang, Y., Huang, G. H., Yu, K. W., Hou, A. X., Du, R., Han, S. J., and VanCleemput, O.: Nitrous oxide emissions from terrestrial ecosystems in China, Chemosphere, 2, 373–378, 2000.
Chikowo, R., Mapfumo, P., Nyamugafata, P., and Giller, K. E.: Mineral N dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe, Plant Soil, 259, 315–330, 2004.
Davidson, E. A.: Sources of nitric oxide and nitrous oxide following wetting of dry soil, Soil Sci. Soc. Am. J., 56, 95–102, 1992.
Dick, J., Skiba, U., Munro, R., and Deans, D.: Effect of N-fixing and non N-fixing trees and crops on NO and N2O emissions from Senegalese soils, J. Biogeogr., 33, 416–423, 2006.
Dick, J., Kaya, B., Soutoura, M., Skiba, U., Smith, R., Niang, A., and Tabo, R.: The contribution of agricultural practices to nitrous oxide emissions in semi-arid Mali, Soil Use Manage., 24, 292–301, 2008.
Drury, C. F., Reynolds, W. D., Tan, C. S., Welacky, T. W., Calder, W., and McLaughlin, N. B.: Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth, Soil Sci. Soc. Am. J., 70, 570–81, 2006.
Ellert, B. H. and Janzen, H. H.: Short-term influence of tillage on CO2 fluxes from a semi-arid soil on the Canadian Prairies, Soil Till. Res., 50, 21–32, 1999.
Grageda-Cabrera, O. A., Medina-Cazares, T., Aguilar-Acuña, J. L., Hernandez-Martinez, M., Solis-Moya, E., Aguado-Santacruz, G. A., and Pena-Cabriales, J. J.: Gaseous nitrogen loss by N2 and N2O emissions from different tillage systems and three nitrogen sources, Agrociencia, 38, 625–633, 2004.
Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a meta analysis, Glob. Change Biol., 8, 345–360, 2002.
Halvorson, A. D., del Grosso, S. J., and Reule, C. A.: Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems, J. Environ. Qual., 37, 1337–1344, 2008.
Helgason, B. L., Janzen, H. H., Chantigny, M. H., Drury, C. F., Ellert, B. H., Gregorich, E. G., Lemke, R. L., Pattey, E., Rochette, P., and Wagner-Riddle, C.: Toward improved coefficients for predicting direct N2O emissions from soil in Canadian agroecosystems, Nutr. Cycl. Agroecosys., 72, 87–99, 2005.
Hickman, J. E., Palm, C. A., Mutuo, P., Melillo, J. M., and Tang, J.: Nitrous oxide (N2O) emissions in response to increasing fertilizer addition in maize (Zea mays L.) agriculture in western Kenya, Nutr. Cycl. Agroecosys., 100, 177–187, 2014a.
Hickman, J. E., Scholes, R. J., Rosenstock, T. S., Pérez García-Pando, C., and Nyamangara, J.: Assessing non-CO2 climate-forcing emissions and mitigation in sub-Saharan Africa, Current Opinion in Environmental Sustainability, 9–10, 65–72, 2014b.
Hickman, J. E., Tully, K. L., Groffman, P. M., Diru, W., and Palm, C. A.: A potential tipping point in tropical agriculture: Avoiding rapid increases in nitrous oxide fluxes from agricultural intensification in Kenya, J. Geophys. Res.-Biogeo., 120, 938–951, https://doi.org/10.1002/2015JG002913, 2015.
IPCC: 2006 IPCC guidelines for national greenhouse gas inventories, Prepared by the National Greenhouse Gas Inventories Programme, edited by: Eggleston, S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., IGES, Japan, 2006.
IUSS Working Group: World Reference Base for Soil Resources 2014, International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, Italy, 2015.
Jäger, N., Stange, C., Ludwig, B., and Flessa, H.: Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments – a laboratory study, Biol. Fert. Soils, 47, 483–494, 2011.
Jensen, J. R.: Introductory digital image processing. A remote sensing perspective, in: Prentice Hall series in geographic information science, Prentice Hall, Englewood Cliffs, NJ, USA, 1996.
Jönsson, P. and Eklundh, L.: Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE T. Geosci. Remote, 40, 1824–1832, 2002.
Khan, S., Clough, T. J., Goh, K. M., and Sherlock, R. R.: Influence of soil pH on NOx and N2O emissions from bovine urine applied to soil columns, New Zeal. J. Agr. Res., 54, 285–301, 2011.
Kimetu, J. M., Mugendi, D. N., Bationo, A., Palm, C. A., Mutuo, P. K., Kihara, J., Nandwa, S., and Giller, K.: Partial balance of nitrogen in a maize cropping system in humic nitisol of Central Kenya, in: Advances in Integrated Soil Fertility Management in sub-Saharan Africa: Challenges and Opportunities, edited by: Bationo, A., Waswa, B., Kihara, J., and Kimetu, J., Springer, the Netherlands, 2007.
Koerber, G. R., Edwards-Jones, G., Hill, P. W., Canals, L. M. i., Nyeko, P., York, E. H., and Jones, D. L.: Geographical variation in carbon dioxide fluxes from soils in agro-ecosystems and its implications for life-cycle assessment, J. Appl. Ecol., 46, 306–314, 2009.
Lebel, S., Fleskens, L., Forster, P. M., Jackson, L. S., and Lorenz, S.: Evaluation of In Situ Rainwater Harvesting as an Adaptation Strategy to Climate Change for Maize Production in Rainfed Africa, Water Resour. Manag., 29, 4803–4816, 2015.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of methane by soils: A review, Eur. J. Soil Biol., 37, 25–50, 2001.
Levy, P. E., Gray, A., Leeson, S. R., Gaiawyn, J., Kelly, M. P. C., Cooper, M. D. A., Dinsmore, K. J., Jones, S. K., and Sheppard, L. J.: Quantification of uncertainty in trace gas fluxes measured by the static chamber method, Eur. J. Soil Sci., 62, 811–821, 2011.
Linn, D. M. and Doran, J. W.: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils, Soil Sci. Soc. Am. J., 48, 1267–1272, 1984.
Lloyd, D.: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery, Int. J. Remote Sens., 11, 2269–2279, 1990.
Lompo, D. J. P., Sangaré, S. A. K., Compaoré, E., Papoada Sedogo, M., Predotova, M., Schlecht, E., and Buerkert, A.: Gaseous emissions of nitrogen and carbon from urban vegetable gardens in Bobo-Dioulasso, Burkina Faso, J. Plant Nutr. Soil Sc., 175, 846–853, 2012.
MacDonald, J. A., Skiba, U., Sheppard, L. J., Hargreaves, K. J., Smith, K. A., and Fowler, D.: Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils, Biogeochemistry, 34, 113–132, 1996.
Maillard, É. and Angers, D. A.: Animal manure application and soil organic carbon stocks: a meta-analysis, Glob. Change Biol., 20, 666–679, 2014.
Makumba, W., Akinnifesi, F. K., Janssen, B., and Oenema, O.: Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in southern Malawi, Agr. Ecosyst. Environ., 118, 237–243, 2007.
Mapanda, F., Mupini, J., Wuta, M., Nyamangara, J., and Rees, R. M.: A cross-ecosystem assessment of the effects of land cover and land use on soil emission of selected greenhouse gases and related soil properties in Zimbabwe, Eur. J. Soil Sci., 61, 721–733, 2010.
Mapanda, F., Wuta, M., Nyamangara, J., and Rees, R.: Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe, Plant Soil, 343, 67–81, 2011.
Millar, N., Ndufa, J. K., Cadisch, G., and Baggs, E. M.: Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics, Global Biogeochem. Cy., 18, GB1032, https://doi.org/10.1029/2003GB002114, 2004.
Parkin, T. B.: Soil microsites as a source of denitrification variability, Soil Sci. Soc. Am. J., 51, 1194–1199, 1987.
Parkin, T. B.: Effect of sampling frequency on estimates of cumulative nitrous oxide emissions, J. Environ. Qual., 37, 1390–1395, 2008.
Parkin, T. B., Venterea, R. T., and Hargreaves, S. K.: Calculating the Detection Limits of Chamber-based Soil Greenhouse Gas Flux Measurements. J. Environ. Qual. 41, 705–715, 2012.
Paruelo, J. M., Jobbagy, E. G., and Sala, O. E.: Current distribution of ecosystem functional types in temperate South Amerca, Ecosystems, 4, 683–698, 2001.
Pelster, D. E., Gisore, B., Koske, J. K., Goopy, J., Korir, D., Rufino, M. C., and Butterbach-Bahl, K.: Methane and nitrous oxide emissions from cattle excreta on an east African grassland, J. Environ. Qual., 45, 1531–1539, https://doi.org/10.2134/jeq2016.02.0050, 2016.
Piva, J. T., Dieckow, J., Bayer, C., Zanatta, J. A., de Moraes, A., Tomazi, M., Pauletti, V., Barth, G., and Piccolo, M. d. C.: Soil gaseous N2O and CH4 emissions and carbon pool due to integrated crop-livestock in a subtropical Ferralsol, Agr. Ecosyst. Environ., 190, 87–93, 2014.
Predotova, M., Gebauer, J., Diogo, R. V. C., Schlecht, E., and Buerkert, A.: Emissions of ammonia, nitrous oxide and carbon dioxide from urban gardens in Niamey, Niger, Field Crop. Res., 115, 1–8, 2010.
Priemé, A. and Christensen, S.: Methane uptake by a selection of soils in Ghana with different land use, J. Geophys. Res.-Atmos., 104, 23617–23622, 1999.
Quiñones, M. A., Borlaug, N. E., and Dowswell, C. R.: A Fertilizer-Based Green Revolution for Africa, in: Replenishing Soil Fertility in Africa, edited by: Buresh, R. J., Sanchez, P. A., and Calhoun, F., SSSA Special Publication, 51, Soil Science Society of America and American Society of Agronomy, Madison, WI, USA 1997.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123–125, 2009.
Reicosky, D. C., Lindstrom, M. J., Schumacher, T. E., Lobb, D. E., and Malo, D. D.: Tillage-induced CO2 loss across an eroded landscape, Soil Till. Res., 81, 183–194, 2005.
Rochette, P.: Towards a standard non-steady-state chamber methodology for measuring soil N2O emissions, Anin. Feed Sci. Tech., 166–167, 141–146, 2011.
Rochette, P. and Bertrand, N.: Soil-surface gas emissions, in: Soil Sampling and Methods of Analysis, edited by: Carter, M. and Gregorich, E. G., CRC Press, Boca Raton, FL, USA, 2008.
Rochette, P. and Eriksen-Hamel, N. S.: Chamber Measurements of Soil Nitrous Oxide Flux: Are Absolute Values Reliable?, Soil Sci. Soc. Am. J., 72, 331–342, 2008.
Rochette, P., Angers, D. A., Chantigny, M. H., and Bertrand., N.: Nitrous oxide emissions respond differently to no-till in a loam and a heavy clay soil, Soil Sci. Soc. Am. J., 72, 1363–1369, 2008.
Rochette, P., Angers, D. A., and Flanagan, L. B.: Maize residue decomposition measurement using soil surface carbon dioxide fluxes and natural abundance of carbon-13, Soil Sci. Soc. Am. J., 63, 1385–1396, 1999.
Rosenstock, T. S., Diaz-Pines, E., Zuazo, P., Jordan, G., Predotova, M., Mutuo, P., Abwanda, S., Thiong'o, M., Buerkert, A., Rufino, M. C., Kiese, R., Neufeldt, H., and Butterbach-Bahl, K.: Accuracy and precision of photoacoustic spectroscopy not guaranteed, Glob. Change Biol., 19, 3565–3567, 2013a.
Rosenstock, T. S., Rufino, M. C., Butterbach-Bahl, K., and Wollenberg, E.: Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems, Environ. Res. Lett., 8, 021003, https://doi.org/10.1088/1748-9326/8/2/021003, 2013b.
Rosenstock, T. S., Mathew, M., Pelster, D. E., Butterbach-Bahl, K., Rufino, M. C., Thiong'o, M., Mutuo, P., Abwanda, S., Rioux, J., Kimaro, A. A., and Neufeldt, H.: Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania, J. Geophys. Res.-Biogeo., 121. 1568–1580, https://doi.org/10.1002/2016JG003341, 2016.
Rufino, M. C., Atzberger, C., Baldi, G., Butterbach-Bahl, K., Rosenstock, T. S., and Stern, D.: Targeting landscapes to identify mitigation options in smallholder agriculture, in: Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture, edited by: Rosenstock, T. S., Rufino, M. C., Butterbach-Bahl, K., Wollenberg, L., and Richards, M., Springer International Publishing, https://doi.org/10.1007/978-3-319-29794-1_2, 2016.
Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., and Munch, J. C.: Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting, Soil Biol. Biochem., 38, 263–274, 2006.
Sánchez, M. L., Ozores, M. I., López, M. J., Colle, R., De Torre, B., Garcìa, M. A., and Pérez, I.: Soil CO2 fluxes beneath barley on the central Spanish plateau, Agric. Forest Meteorol., 118, 85–95, 2003.
Sanchez, P., Denning, G., and Nziguheba, G.: The African Green Revolution moves forward, Food Sec., 1, 37–44, 2009.
Sapkota, T. B., Rai, M., Singh, L. K., Gathala, M. K., Jat, M. L., Sutaliya, J. M., Bijarnya, D., Jat, M. K., Jat, R. K., Parihar, C. M., Kapoor, P., Jat, H. S., Dadarwal, R. S., Sharma, P. C., and Sharma, D. K.: Greenhouse gas measurement from smallholder production systems: guidelines for static chamber method, International Maize and Wheat Improvement Center (CIMMYT) and Indian Council of Agricultural Research (ICAR), New Dehli, India, 18 pp., 2014.
Shcherbak, I., Millar, N., and Robertson, G. P.: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen, P. Natl. Acad. Sci. USA, 111, 9199–9204, 2014.
Sijmons, K., Kiplimo, J., Förch, W., Thornton, P. K., Radeny, M., and Kinyangi, J.: CCAFS Site Atlas – Nyando/Katuk Odeyo. CCAFS site atlas series, The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark, 2013.
Stehfest, E. and Bouwman, L.: N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions, Nutr. Cycl. Agroecosys., 74, 207–228, 2006.
Sugihara, S., Funakawa, S., Kilasara, M., and Kosaki, T.: Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture, Soil Biol. Biochem., 46, 1–9, 2012.
Thomas, A. D.: Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana, Philos. T. R. Soc. B, 367, 3076–3086, 2012.
Tittonell, P., Vanlauwe, B., Corbeels, M., and Giller, K. E.: Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya, Plant Soil, 313, 19–37, 2008.
Tittonell, P., Muriuki, A., Klapwijk, C. J., Shepherd, K. D., Coe, R., and Vanlauwe, B.: Soil Heterogeneity and Soil Fertility Gradients in Smallholder Farms of the East African Highlands, Soil Sci. Soc. Am. J., 77, 525–538, 2013.
Tubiello, F. N., Salvatore, M., Condor, R., Ferrara, A., Rossi, S., Federici, S., Jacobs, H., and Flammini, A.: Agriculture, forestry and other land use emissions by sources and removals by sinks 1990–2011 Analysis, FAO Statistics Division Working Paper, Rome, Italy, 2014.
Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., Ciais, P., Grieco, E., Hartmann, J., Henry, M., Houghton, R. A., Jung, M., Kutsch, W. L., Malhi, Y., Mayorga, E., Merbold, L., Murray-Tortarolo, G., Papale, D., Peylin, P., Poulter, B., Raymond, P. A., Santini, M., Sitch, S., Vaglio Laurin, G., van der Werf, G. R., Williams, C. A., and Scholes, R. J.: A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities, Biogeosciences, 11, 381–407, 2014.
van Groenigen, J. W., Velthof, G. L., Oenema, O., van Groenigen, K. J., and van Kessel, C.: Towards an agronomic assessment of N2O emissions: a case study for arable crops, Eur. J. Soil Sci., 61, 903–913, 2010.
van Reeuwijk, L. P.: Procedures for soil analysis. No. 9. International soil reference and information centre (ISIRC), Wageningen, the Netherlands, 6th edition, 2002.
Vermeulen, S. J., Campbell, B. M., and Ingram, J. S. I.: Climate Change and Food Systems, Annu. Rev. Env. Resour., 37, 195–222, 2012.
Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., Johnes, P. J., Katzenberger, J., Martinelli, L. A., Matson, P. A., Nziguheba, G., Ojima, D., Palm, C. A., Robertson, G. P., Sanchez, P. A., Townsend, A. R., and Zhang, F. S.: Nutrient Imbalances in Agricultural Development, Science, 324, 1519–1520, 2009.
Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore Iii, B., and Ojima, D.: Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data, Remote Sens. Environ., 91, 256–270, 2004.
Yamulki, S. and Jarvis, S. C.: Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland, Biol. Fert. Soils, 36, 224–231, 2002.
Zhou, M., Brandt, P., Pelster, D. E., Rufino, M., C. , Robinson, T., and Butterbach-Bahl, K.: Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties and perspectives, Environ. Res. Lett., 9, 105009–105019, 2014.
Short summary
In order to quantify greenhouse gas fluxes from typical eastern African smallholder farms, we measured flux rates every week for 1 year at 59 farms in western Kenya. These upland soils tend to be small sinks for CH4 and small sources of N2O. The management intensity of the farm plots had no effect on emissions, likely because the variability was low. Plots with trees had higher CH4 uptake than other plots. This suggests that emissions from small, low-input farms in this region are quite low.
In order to quantify greenhouse gas fluxes from typical eastern African smallholder farms, we...
Altmetrics
Final-revised paper
Preprint