Articles | Volume 14, issue 13
https://doi.org/10.5194/bg-14-3253-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-3253-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modification of the RothC model to simulate soil C mineralization of exogenous organic matter
Claudio Mondini
CORRESPONDING AUTHOR
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Branch Office of Gorizia, Via Trieste 23, 34170 Gorizia, Italy
Maria Luz Cayuela
Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Soil and Water Conservation and Waste Management,
Campus Universitario de Espinardo, Apartado de Correos 164, 30100 Espinardo, Murcia, Spain
Tania Sinicco
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Branch Office of Gorizia, Via Trieste 23, 34170 Gorizia, Italy
Flavio Fornasier
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Branch Office of Gorizia, Via Trieste 23, 34170 Gorizia, Italy
Antonia Galvez
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
Miguel Angel Sánchez-Monedero
Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Soil and Water Conservation and Waste Management,
Campus Universitario de Espinardo, Apartado de Correos 164, 30100 Espinardo, Murcia, Spain
Related authors
No articles found.
Francisco Contreras, María Luz Cayuela, Miguel Ángel Sánchez-Monedero, and Pedro Pérez-Cutillas
EGUsphere, https://doi.org/10.5194/egusphere-2025-917, https://doi.org/10.5194/egusphere-2025-917, 2025
Short summary
Short summary
This article presents a modeling approach for mapping Above-Ground Biomass Density using remote sensing data. The model was trained with GEDI data and multisource datasets, employing a volumetric approach to estimate biomass in olive trees. The study provides a national-scale distribution of biomass density and quantifies the biomass stock in the olive orchard sector. Spain is the largest producer of olive orchard biomass in Europe, although it does not have the highest biomass yield density.
Cited articles
Abbas, F. and Fares, A.: Soil organic carbon and carbon dioxide emission from an organically amended Hawaiian tropical soil, Soil Sci. Soc. Am. J., 73, 995–1003, 2009.
Ahrens, B., Reichstein, M., Borken, W., Muhr, J., Trumbore, S. E., and Wutzler, T.: Bayesian calibration of a soil organic carbon model using Δ14C measurements of soil organic carbon and heterotrophic respiration as joint constraints, Biogeosciences, 11, 2147–2168, https://doi.org/10.5194/bg-11-2147-2014, 2014.
Antil, R. S., Bar-Tal, A., Fine, P., and Hadas, A.: Predicting nitrogen and carbon mineralization of composted manure and sewage sludge in soil, Compost Sci. Util., 19, 33–43, 2011.
Barak, P., Molina, J. A. E, Hadas, A., and Clapp, C. E.: Optimization of an ecological model with the Marquardt algorithm, Ecol. Model., 51, 251–263, 1990.
Batlle-Aguilar J., Brovelli A., Porporato A., and Barry, D. A.: Modelling soil carbon and nitrogen cycles during land use change, A review, Agron. Sustain. Dev., 31, 251–274, 2011.
Beloso, M. C., Villar, M. C., Carbaneiro, A., Carballas, M., Gonzalez-Pietro, S .J., and Carballas, T.: Carbon and nitrogen mineralization in an acid soil fertilized with composted urban refuses, Bioresource Technol., 45, 123–129, 1993.
Bhogal, A., Chambers, B. J., Whitmore, A. P., and Young, I.: DEFRA Organic manure and crop organic carbon returns – effects on soil quality: SOIL-QC, Final report for Defra Project SP0530, 72 pp., available at: http://randd.defra.gov.uk/Document.aspx?Document=SP0530_10030_FRP.pdf (last access: 23 November 2016), 2010.
Borgen, S. K., Molstad, L., Bruun, S., Breland, T. A., Bakken, L. R., and Bleken, M. A.: Estimation of plant litter pools and decomposition-related parameters in a mechanistic model, Plant Soil, 338, 205–222, 2011.
Bruun, S., Christensen, B. T., Hansen, E. M., Magid, J., and Jensen, L. S.: Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments, Soil Biol. Biochem., 35, 67–76, 2003.
Cabrera, M. L., Kissel, D. E., and Vigil M. F.: Nitrogen mineralization from organic residues: research opportunities, J. Environ. Qual., 34, 75–79, 2005.
Cavalli, D. and Bechini, L.: Sensitivity analysis and calibration of CN-SIM to simulate the mineralisation of liquid dairy manures, Soil Biol. Biochem, 43, 1207–1219, 2011.
Cavalli, D. and Bechini, L.: Multi-objective optimisation of a model of the decomposition of animal slurry in soil: Tradeoffs between simulated C and N dynamics, Soil Biol. Biochem., 48, 113–124, 2012.
Cavalli, D., Bechini, L., and Marino, P.: Measuring and modelling soil carbon respiration following repeated dairy slurry application, Soil Sci. Soc. Am. J., 78, 1414–1425, 2014.
Cayuela, M. L., Oenema, O., Kuikman, P. J., Bakker, R. R., and van Groeningen, J. W.: Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions, GCB Bioenergy, 2, 201–213, 2010.
Coleman, K. and Jenkinson, D. S.: RothC-26.3 – A model for the turnover of carbon in soil, in: Evaluation of Soil Organic Matter Models, NATO ASI Series Volume 38, edited by: Powlson, D. S., Smith, P., and Smith, J. U., Springer-Verlag, Berlin, Germany, 237–246, 1996.
Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klír, J., Körschens, M., Poulton, P. R., and Richter, D. D.: Simulating trends in soil organic carbon in long-term experiments using RothC-26.3, Geoderma, 81, 29–44, 1997.
Corbeels, M., Hofman, G., and Van Cleemput, O.: Simulation of net N immobilisation and mineralisation in substrate-amended soils by the NCSOIL computer model, Biol. Fert. Soils, 28, 422–430, 1999.
De Neve, S., Sleutel, S., and Hofman, G.: Carbon mineralization from composts and food industry wastes added to soil, Nutr. Cycl. Agroecosys., 67, 13–20, 2003.
Do Nascimento, A. F., Mendonça, E. S., Leite, L. F. C., Scholberg J., and Neves, J. C. L.: Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics, Sci. Agric., 69, 393–401, 2012.
Falloon, P.: Large scale spatial modelling of soil organic carbon dynamics, PhD thesis, School of Life and Environmental Sciences, University of Nottingham, Nottingham, UK, 2001.
Falloon, P. and Smith, P.: Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application, Soil Use Manage., 18, 101–111, 2002.
Farina, R., Coleman, K., and Whitmore, A. P.: Modification of the RothC model for simulations of soil organic C dynamics in dryland regions, Geoderma, 200–201, 18–30, 2013.
Francaviglia, R., Coleman, K., Whitmore, A. P., Doro, L., Urracci, G., Rubino, M., and Ledda, L..: Changes in soil organic carbon and climate change – Application of the RothC model in agro-silvo-pastoral Mediterranean systems, Agr. Syst., 112, 48–54, 2012.
Franzluebbers, A. J.: Organic residues, decomposition, in: Encyclopedia of Soils in the Environment, edited by: Hillel, D., Hatfield, J. L., Powlson, D. S., Rosenzweig, C., Scow, K. M., Singer, M. J., and Sparks, D. L., Elsevier/Academic Press, Amsterdam, the Netherlands, 112–118, 2004.
Gabrielle, B., Da-Silveira, J., Houot, S., and Francou C.: Simulating urban waste compost effects on carbon and nitrogen dynamics using a biochemical index, J. Environ. Qual., 33, 2333–2342, 2004.
Gabrielle, B., Da-Silveira, J., Houot, S., and Michelin, J.: Field-scale modelling of carbon and nitrogen dynamics in soils amended with urbane waste compost, Agr. Ecosyst. Environ., 110, 289–299, 2005.
Gale, E. S., Sullivan, D. M., Cogger, C. G., Bary, A. I., Hemphill, D. D., and Myhre, E. A.: Estimating plant-available nitrogen release from manures, composts, and specialty products, J. Environ. Qual., 35, 2321–2332, 2006.
Garcia, C., Hernandez, T., and Costa, F.: Mineralization in a calcareous soil of a sewage sludge composted with different organic resources, Waste Manage. Res., 10, 445–452, 1992.
Garnier, P., Neel, C., Aita, C., Recous, S., Lafolie, F., and Mary, B.: Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation, Eur. J. Soil Sci., 54, 555–568, 2003.
Gerke, H. H., Arnin, M., and Stoppler-Zimmer, H.: Modeling long-term compost application effects on nitrate leaching, Plant Soil, 213, 75–92, 1999.
Henriksen, T. M. and Breland, T. A.: Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil, Soil Biol. Biochem., 31, 1121–1134, 1999.
Henriksen, T. M., Korsaeth, A., Breland, T. A., Stenberg, B., Jensen, L. S., Bruun, S., Gudmundsson, J., Palmason, F., Pedersen, A., and Salo, T. J.: Stepwise chemical digestion, near-infrared spectroscopy or total N measurement to take account of decomposability of plant C and N in a mechanistic model, Soil Biol. Biochem., 39, 3115–3126, 2007.
Houot, S., Lhoutellier, C., Peltre, C., Doublet, J., Biquillon, R., Pereira, A., and Angenis-Nevers, M.: Carbo-Pro: a simulation model to manage soil organic matter through compost applications, in: Proceedings of 8th International Conference Orbit 2012, 12–15 June 2012, Rennes, France, European Compost Network ECN, Bochum, Germany, 9 pp., 2012.
Incerti, G., Bonanomi, G., Giannino, F., Rutigliano, F.A., Piermatteo, D., Castaldi, S., De Marco, A., Fierro, A., Fioretto, A., Maggi, O., Papa, S., Persiani, A. M., Feoli, E., Virzo De Santo, A., and Mazzoleni, S.: Litter decomposition in Mediterranean ecosystems: Modelling the controlling role of climatic conditions and litter quality, Appl. Soil Ecol., 49, 148–157, 2011.
Jenkinson, D. S. and Rayner, J. H.: The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Sci., 123, 298–305, 1977.
Jenkinson, D. S., Adams, D. E., and Wild, A.: Model estimates of CO2 emissions from soil in response to global warming, Nature, 351, 304–306, 1991.
Kaboré, W. T., Pansu, M., Hien, E., Houot, S., Zombré, N. P., and Masse, D.: Usefulness of TAO model to predict and manage the transformation in soil of carbon and nitrogen forms from West-Africa urban solid wastes, Waste Manage., 31, 154–167, 2011.
Karhu, K., Gärdenäs, A. I., Heikkinene, J., Vanhala, P., Tuomi, M., and Liski, J.: Impacts of organic amendments on carbon stocks of an agricultural soil – Comparison of model-simulations to measurements, Geoderma, 189–190, 606–616, 2012.
Lal, R.: Soil carbon sequestration to mitigate climate change, Geoderma, 123, 1–22, 2004.
Lashermes, G., Nicolardot, B., Parnaudeau, V., Thuriès, L., Chaussod, R., Guillotin, M. L., Linères, M., Mary, B., Metzger, L., Morvan, T., Tricaud, A., Villette, C., and Houot, S.: Indicator of potential residual carbon in soils after exogenous organic matter application, Eur. J. Soil Sci., 60, 297–310, 2009.
Levi-Minzi, R., Riffaldi, R., and Saviozzi, A.: Carbon mineralization in soil amended with different organic materials, Agr. Ecosyst. Environ., 31, 325–335, 1990.
Marmo, L., Feix, I., Bourmeau, E., Amlinger, F., Bannick, C.G., De Neve, S., Favoino, E., Gendebien, A., Gibert, J., Givelet, M., Leifert, I., Morris, R., Rodriguez Cruz, A., Ruck, F., Siebert, S., and Tittarelli, F.: Taskgroup 4 Exogenous Organic Matter, Volume III – Organic Matter and Biodiversity, in: Reports of the technical working groups established under the thematic strategy for soil protection, edited by: Van-Camp, L., Bujarrabal, B., Gentile, A.-R., Jones, R. J. A., Montanarella, L., Olazabal, C., and Selvaradjou, S.-K., EUR 21319 EN/3, Office for Official Publications of the European Communities, Luxembourg, available at: http://ec.europa.eu/environment/archives/soil/pdf/vol3.pdf (last access: 25 November 2016), 2004.
Mazerolle, M. J.: Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses, Amphibia-Reptilia, 27, 169–180, 2006.
McGill, W. B.: Review and classification of 10 soil organic matter (SOM) models, in: Evaluation of Soil Organic Matter Models Using Existing Long-Term Datasets, edited by: Powlson, D. S., Smith, P., and Smith, J. U., NATO ASI Series I, vol. 38, Springer-Verlag, Berlin, Germany, 111–132, 1996.
Mondini, C., Sinicco, T., Cayuela, M. L., and Sanchez-Monedero, M. A.: A simple automated system for measuring soil respiration by gas chromatography, Talanta, 81, 849–855, 2010.
Mueller, T., Jensen, L. S., Magid, J., and Nielsen, N. E.: Temporal variation of C and N turnover in soil after oilseed rape straw incorporation in the field: simulations with the soil-plant-atmosphere model DAISY, Ecol. Model., 99, 247–262, 1997.
Mueller, T., Magid, J., Jensen, L. S., Svendsen, H., and Nielsen, N. E.: Soil C and N turnover after incorporation of chopped maize, barley straw and blue grass in the field: Evaluation of the DAISY soil–organic-matter submodel, Ecol. Model., 111, 1–15, 1998.
Mueller, T., Magid, J., Jensen, L. S., and Nielsen, N. E.: Decomposition of plant residues of different quality in soil-DAISY model calibration and simulation based on experimental data, Ecol. Model., 166, 3–18, 2003.
Noirot-Cosson, P. E., Vaudour, E., Gilliot, J. M., Gabrielle, B., and Houot, S.: Modelling the long-term effect of urban waste compost applications on carbon and nitrogen dynamics in temperate cropland, Soil Biol. Biochem., 94, 138–153, 2016.
Pansu, M. and Thuries, L.: Kinetics of C and N mineralization, N immobilization and N volatilization of organic inputs in soil, Soil Biol. Biochem., 35, 37–48, 2003.
Parnaudeau, V.: Caractéristiques biochimiques de produits organiques résiduaires, prédiction et modélisation de leur minéralisation dans les sols, PhD thesis, INRA, Rennes, France, 2005 (in French).
Parshotam, A., Saggar, S., Tate, K., and Parfitt, R.: Modelling organic matter dynamics in New Zealand soils, Environ. Int., 27, 111–119, 2001.
Paustian, K., Parton, W. J., and Persson, J.: Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots, Soil Sci. Soc. Am. J., 56, 476–488, 1992.
Pedra, F., Polo, A., Ribeiro, A., and Domingues, H.: Effect of municipal solid waste compost and sewage sludge on mineralization of soil organic matter, Soil Biol. Biochem., 39, 1375–1382, 2007.
Peltre, C., Thuriès, L., Barthès, B., Brunet, D., Morvan, T., Nicolardot, B., Parnaudeau, V., and Houot, S.: Near infrared reflectance spectroscopy: A tool to characterize the composition of different types of exogenous organic matter and their behaviour in soil, Soil Biol. Biochem., 43, 197–205, 2011.
Peltre, C., Christensen, B. T., Dragon, S., Icard, C., and Katterer, T.: RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments, Soil Biol. Biochem., 52, 49–60, 2012.
Peltre, C., Bruun, S., Houot, S., Magid, J., and Jensen, L. S.: Modelling environmental impacts of land application of organic waste products with the DAISY model, in: Book of Abstracts, 15th Ramiran Conference, 2–5 June 2013, Versailles, France, S2.49, 2013.
Petersen, B. M., Berntsen, J., Hansen, S., and Jensen, L. S.: CN-SIM – a model for the turnover of soil organic matter. I: Long-term carbon and radiocarbon development, Soil Biol. Biochem., 37, 359–374, 2005a.
Petersen, B. M., Jensen, L. S., Berntsen, B., Hansen, S., Pedersen, A., Henriksen, T. M., Sørensen, P., and Trinsoutrot-Gattin, I.: CN-SIM – a model for the turnover of soil organic matter. II: Short term carbon and nitrogen development, Soil Biol. Biochem., 37, 375–393, 2005b.
Plaza, C., Gollany, H. T., Baldoni, G., Polo, A., and Ciavatta, C.: Predicting long-term organic carbon dynamics in organically amended soils using the CQESTR model, J. Soils Sediments, 12, 486–49, 2012.
Robinson, J. A.: Determining microbial kinetic parameters using nonlinear regression analysis: advantages and limitation in microbial ecology, Adv. Microb. Ecol., 8, 61–114, 1985.
Saviozzi, A., Vanni, G., and Cardelli, R.: Carbon mineralization kinetics in soils under urban environment, Appl. Soil Ecol., 73, 64–69, 2014.
Scharnagl, B., Herbst, M., Huisman, J. A., and Vereecken, H.: Uncertainty in the ROTHC model for carbon turnover in soil resulting from model initialization, Geophys. Res. Abstr., 10, EGU2008-A-08466, European Geosciences Union, Vienna, Austria, 2008.
Schimel, J. P., Fahnestock, J., Michaelson, G., Mikan, C., Ping, C.-L., Romanovsky, V. E., and Welker, J.: Cold-season production of CO2 in arctic soils: can laboratory and field estimates be reconciled through a simple modeling approach?, Arct. Antarct. Alp. Res., 38, 249–256, 2006.
Sierra, C. A., Harmon, M. E., and Perakis, S. S.: Decomposition of heterogeneous organic matter and its long-term stabilization in soils, Ecol. Monogr., 81, 619–634, 2011.
Skjemstad, O., Spouncer, L. R., Cowie, B., and Swift, R. S.: Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools, Aus. J. Soil Res., 42, 79–88, 2004.
Sleutel, S., De Neve, S., Prat Roibas, M. R., and Hofman, G.: The influence of model type and incubation time on the estimation of stable organic carbon in organic materials, Eur. J. Soil Sci., 56, 505–514, 2005.
Sleutel, S., De Neve, S., Beheydt, D., Li, C., and Hofman, G.: Regional simulation of long-term organic carbon stock changes in cropland soils using the DNDC model: 2. Scenario analysis of management options, Soil Use Manage., 22, 352–361, 2006.
Smith, J. and Smith, P.: Introduction to Environmental Modelling, Oxford University Press, Oxford, UK, 180 pp., 2007.
Smith, J., Smith, P., and Addiscott, M.: Quantitative methods to evaluate and compare soil organic matter (SOM) models, in: Evaluation of Soil Organic Matter Models, edited by: Powlson, D., Smith, P., and Smith, J. U., NATO ASI Series I, vol. 38, Springer-Verlag, Berlin, Germany, 181–200, 1996.
Smith, P.: Carbon sequestration in croplands: the potential in Europe and the global context, Eur. J. Agron., 20, 229–236, 2004a.
Smith, P.: Monitoring and verification of soil carbon changes under article 3.4 of the Kyoto Protocol, Soil Use Manage., 20, 264–270, 2004b.
Smith, P., Smith, J., Powlson, D., McGill, W., Arah, J., Chertov, O., Coleman, K., Franko, U., Frolking, S., and Jenkinson, D.: A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma, 81, 153–225, 1997.
Snipes, M. and Taylor, D. C.: Model selection and Akaike Information Criteria: an example from wine ratings and prices, Wine Economics and Policy, 3, 3–9, 2014.
Stöppler-Zimmer, H., Gerke, H. H., and Arning, M.: Model-based investigations into long-term compost application effects on nitrate leaching at different agricultural sites, in: Proceedings of the International Conference ORBIT 99, part II, edited by: Bidlingmaier, W., de Bertoldi, M., Diaz, L. F., and Papadimitriou, E. K., 2–4 September 1999, Weimar, Germany, Rhombos-Verlag, Berlin, Germany, 453–461, 1999.
Symonds, M. R. E. and Moussalli, A.: A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion, Behav. Ecol. Sociobiol., 65, 13–21, 2011.
Thuries, L., Pansu, M., Feller, C., Herrmann, P., and Remy, J.-C.: Kinetics of added organic matter decomposition in a Mediterranean sandy soil, Soil Biol. Biochem., 33, 997–1010, 2001.
Tits, M., Hermans, H., Elsen, A., and Vandendriessche, H.: The C-simulator as a tool to investigate the potential of household waste compost to increase soil organic matter in Flanders, Geophys. Res. Abstr., Vol. 12, EGU 2010-9779, European Geosciences Union, Vienna, Austria, 2010.
Tits, M., Elsen, A., Bries, J., and Vandendriessche, H.: Short-term and long-term effects of vegetable, fruit and garden waste compost applications in an arable crop rotation in Flanders, Plant Soil, 376, 43–59, 2014.
Trinsoutrot, I., Recous, S., Bentz, B., Lineres, M., Cheneby, D., and Nicolardot, B.: Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions, Soil Sci. Soc. Am. J., 64, 918–926, 2000.
Vidal-Beaudet, L., Grosbellet, C., Forget-Caubel, V., and Charpentier, S.: Modelling long-term carbon dynamics in soils reconstituted with large quantities of organic matter, Eur. J. Soil Sci., 63, 787–797, 2012.
Yokozawa, M., Shirato, Y., Sakamoto, T., Yonemura, S., Nakai, M., and Ohkura, T.: Use of the RothC model to estimate the carbon sequestration potential of organic matter application in Japanese arable soils, Soil Sci. Plant Nutr., 56, 168–176, 2010.
Short summary
Current soil C models do not adequately describe the quality of the amendments added to fields. In this study, we propose a modification of the soil C model "RothC" that was found to be effective in simulating the response of laboratory-incubated soils treated with contrasting amendments. We think that these findings could help to develop better soil C models and improve predictions of the effects of different amendments on soil organic matter dynamics on agricultural and managed land.
Current soil C models do not adequately describe the quality of the amendments added to fields....
Altmetrics
Final-revised paper
Preprint