Articles | Volume 15, issue 11
https://doi.org/10.5194/bg-15-3293-2018
https://doi.org/10.5194/bg-15-3293-2018
Research article
 | 
04 Jun 2018
Research article |  | 04 Jun 2018

Interannual sedimentary effluxes of alkalinity in the southern North Sea: model results compared with summer observations

Johannes Pätsch, Wilfried Kühn, and Katharina Dorothea Six

Related authors

Metabolic alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022,https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
The impact of intertidal areas on the carbonate system of the southern North Sea
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020,https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
Looking beyond stratification: a model-based analysis of the biological drivers of oxygen deficiency in the North Sea
Fabian Große, Naomi Greenwood, Markus Kreus, Hermann-Josef Lenhart, Detlev Machoczek, Johannes Pätsch, Lesley Salt, and Helmuth Thomas
Biogeosciences, 13, 2511–2535, https://doi.org/10.5194/bg-13-2511-2016,https://doi.org/10.5194/bg-13-2511-2016, 2016
Short summary
The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: a regional-scale biogeochemical ocean model study
A. Lindenthal, B. Langmann, J. Pätsch, I. Lorkowski, and M. Hort
Biogeosciences, 10, 3715–3729, https://doi.org/10.5194/bg-10-3715-2013,https://doi.org/10.5194/bg-10-3715-2013, 2013

Related subject area

Biogeochemistry: Coastal Ocean
Insights into carbonate environmental conditions in the Chukchi Sea
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024,https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland
William Hiles, Lucy C. Miller, Craig Smeaton, and William E. N. Austin
Biogeosciences, 21, 929–948, https://doi.org/10.5194/bg-21-929-2024,https://doi.org/10.5194/bg-21-929-2024, 2024
Short summary
Iron “ore” nothing: benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024,https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Marine anoxia initiates giant sulfur-oxidizing bacterial mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024,https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024,https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary

Cited articles

Arakawa, A. and Lamb, V.: omputational design of the basic dynamical processes of the UCLA general circulation model, in: General Circulation Models of the Atmosphere, 17, Methods in Computational Physics: Advances in Research and Applications, London, Elsevier, edited by: Chang, J., 173–265, 1977.
Backhaus, J.: A three-dimensional model for the simulation of shelf sea dynamics, Ocean Dynam., 38, 165–187, https://doi.org/10.1007/BF02328975, 1985.
Bockelmann, F.-D., Puls, W., Kleeberg, U., Müller, D., and Emeis, K.-C.: Mapping mud content and median grain-size of North Sea sediments – A geostatistical approach, Mar. Geol., 397, 60–71, 2018.
Bozec, Y., Thomas, H., Schiettecatte, L.-S., Borges, A. V., De Elkalay, K., and Baar, H. J. W.: Assessment of processes controlling seasonal variations of dissolved inorganic carbon in the North Sea, Limnol. Oceanogr., 51, 2746–2762, 2006.
Brenner, H., Braeckman, U., Le Guitton, M., and Meysman, F. J. R.: The impact of sedimentary alkalinity release on the water column CO2 system in the North Sea, Biogeosciences, 13, 841–863, https://doi.org/10.5194/bg-13-841-2016, 2016.
Download
Short summary
Biogeochemical shelf sea modelling has a long tradition. Most models include early diagenesis sediment modules for remineralization of organic matter. The model presented here also simulates alkalinity, which is exported into the pelagic system. There the produced alkalinity joins in the carbonate system and is able to buffer invading atmospheric CO2. The input of nitrate via rivers stimulates alkalinity generation within the sediment, which in turn reduces the acidification of coastal areas.
Altmetrics
Final-revised paper
Preprint