Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
BG | Articles | Volume 15, issue 21
Biogeosciences, 15, 6685–6711, 2018
https://doi.org/10.5194/bg-15-6685-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 6685–6711, 2018
https://doi.org/10.5194/bg-15-6685-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Nov 2018

Research article | 12 Nov 2018

A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations

Prima Anugerahanti et al.

Related authors

Can the boundary profiles at 26° N be used to extract buoyancy-forced Atlantic Meridional Overturning Circulation signals?
Irene Polo, Keith Haines, Jon Robson, and Christopher Thomas
Ocean Sci., 16, 1067–1088, https://doi.org/10.5194/os-16-1067-2020,https://doi.org/10.5194/os-16-1067-2020, 2020
Short summary
South Atlantic meridional transports from NEMO-based simulations and reanalyses
Davi Mignac, David Ferreira, and Keith Haines
Ocean Sci., 14, 53–68, https://doi.org/10.5194/os-14-53-2018,https://doi.org/10.5194/os-14-53-2018, 2018
Short summary
Improved Arctic sea ice thickness projections using bias-corrected CMIP5 simulations
N. Melia, K. Haines, and E. Hawkins
The Cryosphere, 9, 2237–2251, https://doi.org/10.5194/tc-9-2237-2015,https://doi.org/10.5194/tc-9-2237-2015, 2015
Short summary
Mechanisms of Atlantic Meridional Overturning Circulation variability simulated by the NEMO model
V. N. Stepanov and K. Haines
Ocean Sci., 10, 645–656, https://doi.org/10.5194/os-10-645-2014,https://doi.org/10.5194/os-10-645-2014, 2014

Related subject area

Biogeochemistry: Modelling, Aquatic
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020,https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020,https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020,https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary
The Role of Sediment-induced Light Attenuation on Primary Production during Hurricane Gustav (2008)
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-58,https://doi.org/10.5194/bg-2020-58, 2020
Revised manuscript accepted for BG

Cited articles

Adamson, M. W. and Morozov, A. Y.: When can we trust our model predictions? Unearthing structural sensitivity in biological systems, P. Roy. Soc. Lond. A Mat., 469, 20120500, https://doi.org/10.1098/rspa.2012.0500, 2013. a, b, c, d
Aldebert, C., Nerini, D., Gauduchon, M., and Poggiale, J. C.: Does structural sensitivity alter complexity–stability relationships?, Ecol. Complex., 28, 104–112, https://doi.org/10.1016/j.ecocom.2016.07.004, 2016. a, b, c
Aldebert, C., Kooi, B. W., Nerini, D., and Poggiale, J. C.: Is structural sensitivity a problem of oversimplified biological models? Insights from nested Dynamic Energy Budget models, J. Theor. Biol., 448, 1–8, https://doi.org/10.1016/j.jtbi.2018.03.019,2018. a
Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001. a
Anderson, T. R.: Plankton functional type modelling: Running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005. a, b, c
Publications Copernicus
Download
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed...
Citation
Altmetrics
Final-revised paper
Preprint