Articles | Volume 15, issue 24
https://doi.org/10.5194/bg-15-7435-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-7435-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fluvial organic carbon fluxes from oil palm plantations on tropical peatland
Sarah Cook
CORRESPONDING AUTHOR
Department of Engineering, University of Warwick, Coventry, CV4
7AL, UK
Centre for Landscape & Climate Research, School of Geography,
Geology and the Environment, University of Leicester, LE1 7RH, UK
Mick J. Whelan
Centre for Landscape & Climate Research, School of Geography,
Geology and the Environment, University of Leicester, LE1 7RH, UK
Chris D. Evans
Environment Centre Wales, Centre for Ecology and Hydrology, Bangor,
LL57 2UW, UK
Vincent Gauci
Faculty of STEM, School of Environment Earth and Ecosystems, The
Open University, Milton Keynes, MK7 6AA, UK
Mike Peacock
Department of Aquatic Sciences and Assessment, Swedish University
of Agricultural Sciences, 750 07, Uppsala, Sweden
Mark H. Garnett
Natural Environment Research Council Radiocarbon Facility, Rankine
Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK
Lip Khoon Kho
Tropical Peat Research Institute, Biological Research Division,
Malaysian Palm Oil Board, Bandar Baru Bangi 43000, Kajang, Selangor,
Malaysia
Yit Arn Teh
Institute of Biological and Environmental Sciences, University of
Aberdeen, Aberdeen AB24 3UU, UK
Susan E. Page
Centre for Landscape & Climate Research, School of Geography,
Geology and the Environment, University of Leicester, LE1 7RH, UK
Related authors
No articles found.
Thomas C. Parker, Chris Evans, Martin G. Evans, Miriam Glendell, Richard Grayson, Joseph Holden, Changjia Li, Pengfei Li, and Rebekka R. E. Artz
Biogeosciences, 22, 6057–6066, https://doi.org/10.5194/bg-22-6057-2025, https://doi.org/10.5194/bg-22-6057-2025, 2025
Short summary
Short summary
Many peatlands around the world are eroding and causing carbon losses to the atmosphere and to freshwater systems. To accurately report emissions from peatlands we need to understand how much of the eroded peat is converted to CO2 once exposed to the atmosphere. We need more direct measurements of this process and a better understanding of the environmental conditions that peat is exposed to after it erodes. This information will help quantify the emissions savings from peatland restoration.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Alex Houston, Mark H. Garnett, and William E. N. Austin
Biogeosciences, 22, 4851–4864, https://doi.org/10.5194/bg-22-4851-2025, https://doi.org/10.5194/bg-22-4851-2025, 2025
Short summary
Short summary
Saltmarshes accumulate carbon through plant growth and older material deposited during tidal inundation. We found that more energy was required to decompose old carbon than younger carbon, and the youngest carbon was also the most susceptible to decomposition in a degradation scenario. Protecting saltmarshes can help prevent carbon losses and reduce CO2 emissions. Including this vulnerable stored carbon in climate policies and carbon credit systems could make them more accurate and effective.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023, https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Renée Hermans, Rebecca McKenzie, Roxane Andersen, Yit Arn Teh, Neil Cowie, and Jens-Arne Subke
Biogeosciences, 19, 313–327, https://doi.org/10.5194/bg-19-313-2022, https://doi.org/10.5194/bg-19-313-2022, 2022
Short summary
Short summary
Peatlands are a significant global carbon store, which can be compromised by drainage and afforestation. We measured the peat decomposition under a 30-year-old drained forest plantation: 115 ± 16 g C m−2 yr−1, ca. 40 % of total soil respiration. Considering input of litter from trees, our results indicate that the soils in these 30-year-old drained and afforested peatlands are a net sink for C, since substantially more C enters the soil as organic matter than is decomposed heterotrophically.
Gustaf Granath, Christopher D. Evans, Joachim Strengbom, Jens Fölster, Achim Grelle, Johan Strömqvist, and Stephan J. Köhler
Biogeosciences, 18, 3243–3261, https://doi.org/10.5194/bg-18-3243-2021, https://doi.org/10.5194/bg-18-3243-2021, 2021
Short summary
Short summary
We measured element losses and impacts on water quality following a wildfire in Sweden. We observed the largest carbon and nitrogen losses during the fire and a strong pulse of elements 1–3 months after the fire that showed a fast (weeks) and a slow (months) release from the catchments. Total carbon export through water did not increase post-fire. Overall, we observed a rapid recovery of the biogeochemical cycling of elements within 3 years but still an annual net release of carbon dioxide.
Cited articles
Bjorkvald, L., Buffan, I., Laudon, H., and Morth, C.-M.: Hydrogeochemistry of Fe
and Mn in small boreal streams: The role of seasonality, landscape type and
scale, Geochim. Cosmochim. Ac., 72, 2789–2804, 2008
Campeau, A., Bishop, K., Billett, M. F., Garnett, M. H., Laudon, H., Leach,
J. A., Nilsson, M. B., Öquist, M. G., and Wallin, M. B.: Aquatic export
of young dissolved and gaseous carbon from a pristine boreal fen:
implications for peat carbon stock stability, Global Change Biol., 23,
5523–5536, https://doi.org/10.1111/gcb.13815, 2017.
Carr, M. K. V.: The Water Relations and Irrigation Requirements of Oil Palm
(Elaeis Guineensis): A Review, Exp. Agricult., 47, 629–652,
https://doi.org/10.1017/s0014479711000494, 2011.
Catalan, N., Marce, R., Kothawala, D. N., and Tranvik, L. J.: Organic carbon
decomposition rates controlled by water retention time across inland waters,
Nat. Geosci., 9, 501–504, 2016.
Clark, J. M., Lane, S. N., Chapman, P. J., and Adamson, J. K.: Export of dissolved
organic carbon from an upland peatland during storm events: Implications for
flux estimates, J. Hydrol., 347, 438–447, 2007.
Cole, L. E. S., Bhagwat, S. A., and Willis, K. J.: Long-term disturbance dynamics
and resilience of tropical peat swamp forests, J. Ecol., 103, 16–30, https://doi.org/10.1111/1365-2745.12329, 2015.
Cook, S., Peacock, M., Evans, C. D., Page, S. E., Whelan, M., Gauci, V.,
and Khoon, K. L.: Cold storage as a method for the long-term preservation of
tropical dissolved organic carbon (DOC), Mires and Peat., 18, 1–8, https://doi.org/10.19189/MaP.2016.OMB.249,
2016.
Cook, S.: Fluvial organic carbon losses from oil palm plantations on peat,
https://doi.org/10.25392/leicester.data.7479575.v1, 2018.
Cory, R. M., Ward, C. P., Crump, B. C., and Kling, G. W.: Sunlight controls water
column processing of carbon in arctic fresh waters, Science, 345, 925–928,
https://doi.org/10.1126/science.1253119, 2014.
Couwenberg, J., Dommain, R., and Joosten, H.: Greenhouse gas fluxes from
tropical peatlands in south-east Asia, Glob. Change Biol., 16, 1715–1732,
https://doi.org/10.1111/j.1365-2486.2009.02016.x, 2010.
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E.,
Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central Congo
Basin peatland complex, Nature, 542, 86–90, 2017
Dommain, R., Couwenberg, J., and Joosten, H.: Development and carbon
sequestration of tropical peat domes in south-east Asia: links to
post-glacial sea-level changes and Holocene climate variability, Quat. Sci. Rev., 30, 999–1010, https://doi.org/10.1016/j.quascirev.2011.01.018, 2011.
Durako, M. J., Kowalczuk, P., Mallin, M. A., Cooper, W. J., Souza, J. J.,
and Wells, D. H.: Interannual Variation in Photosynthetically Significant
Optical Properties and Water Quality in a Coastal Blackwater River Plume,
Estuar. Coasts, 33, 1430–1441, https://doi.org/10.1007/s12237-010-9302-5, 2010.
Evans, C. D., Freeman, C., Cork, L. G., Thomas, D. N., Reynolds, B., Billett,
M. F., Garnett, M. H., and Norris, D.: Evidence against recent climate-induced
destabilisation of soil carbon from C14 analysis of riverine dissolved
organic matter, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2007GL029431, 2007.
Evans, C. D., Futter, M. N., Moldan, F., Valinia, S., Frogbrook, Z.,
and Kothawala, D. N.: Variability in organic carbon reactivity across lake
residence time and trophic gradients, Nat. Geosci., 10, 832–835, https://doi.org/10.1038/ngeo3051, 2017.
Evans, C. D., Renou-Wilson, F., and Strack, M.: The role of waterborne carbon in
the greenhouse gas balance of drained and re-wetted peatlands, Aquat Sci.,
78, 573–590, 2016.
Evans, C. D., Page, S. E., Jones, T., Moore, S., Gauci, V., Laiho, R.,
Hruška, J., Allott, T. E. H., Billett, M. F., Tipping, E., Freeman, C.,
and Garnett, M. H.: Contrasting vulnerability of drained tropical and
high-latitude peatlands to fluvial loss of stored carbon, Glob. Biogeochem. Cy., 28, 1215–1234, https://doi.org/10.1002/2013GB004782, 2014.
Farrar, D., Allen, B., Crump, K., and Shipp, A.: Evaluation of Uncertainty in
Input Parameters to Pharmacokinetic Models and the Resulting Uncertainty in
Output, Toxicol Lett., 49, 371–385, 1989.
Frigstad, H., Andersen, T., Hessen, D. O., Jeansson, E., Skogen, M.,
Naustvoll, L.-J., Miles, M. W., Johannessen, T., and Bellerby, R. G. J.: Long term
trends in carbon, nutrients and stoichiometry in Norwegian costal waters:
Evidence of regime shift, Prog. Oceanogr., 111, 113–124, 2013.
Gandaseca, S., Salimin, M. I., and Ahmed, O. H.: Effect of cultivation in
different age's oil palm plantation on selected chemical properties of peat
swamp soils, Agr. Forest. Fish., 3, 6–9, 2014.
Gandois, L., Cobb, A. R., Hei, I. C., Lim, L. B. L., Abu Salim, K., and Harvey,
C. F.: Impact of deforestation on solid and dissolved organic matter
characteristics of tropical peat forests: implications for carbon release,
Biogeochemistry, 114, 183–199, https://doi.org/10.1007/s10533-012-9799-8, 2013.
Graneli, W., Lindell, M., and Tranvik, L.: Photo-oxidative production of
dissolved inorganic carbon in lakes of different humic content, Limnol
Oceanogr., 41, 698–706, 1996.
Gulliver, P., Waldron, S., Scott, E. M., and Bryant, C. L.: The Effect of Storage
on the Radiocarbon, Stable Carbon and Nitrogen Isotopic Signatures and
Concentrations of Riverine Dom., Radiocarbon, 52, 1113-01122, 2010.
Hirano, T., Segah, H., Kusin, K., Limin, S., Takahashi, H., and Osaki, M.:
Effects of disturbances on the carbon balance of tropical peat swamp
forests, Global Change Biol., 18, 3410–3422, https://doi.org/10.1111/j.1365-2486.2012.02793.x, 2012.
Hongve, D.: A Revised Procedure for Discharge Measurement by Means of the
Salt Dilution Method, Hydrol. Proc., 1, 267–270, 1987.
Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., and
Jauhiainen, J.: Current and future CO2 emissions from drained peatlands in Southeast
Asia, Biogeosciences, 7, 1505–1514, https://doi.org/10.5194/bg-7-1505-2010, 2010.
Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., and Anshari, G.:
Subsidence and carbon loss in drained tropical peatlands, Biogeosciences, 9, 1053–1071,
https://doi.org/10.5194/bg-9-1053-2012, 2012.
Hope, D., Billett, M. F., and Cresser, M. S.: A Review of the Export of Carbon in
River Water – Fluxes and Processes, Environ. Pollut., 84, 301–324, 1994.
Hribljan, J. A., Kane, E. S., Pypker, T. G., and Chimner, R. A.: The effect of
long-term water table manipulations on dissolved organic carbon dynamics in
a poor fen peatland, J. Geophys. Res-Biogeo., 119, 577–595, https://doi.org/10.1002/2013JG002527, 2014.
Hudson, R. and Fraser, J.: Introduction to Salt Dilution Gauging for
Streamflow Measurement Part IV: The Mass Balance (or Dry Injection) Method,
Streamline Watershed Management Bulletin, 9, 6–12, 2002.
Husnain, H., Wigena, I. G. P., Dariah, A., Marwanto, S., Setyanto, P., and Agus,
F.: CO2 emissions from tropical drained peat in Sumatra, Indonesia, Mitig
Adapt. Strat. Gl., 19, 845–862, 2014.
Iman, R. L. and Conover, W. J.: Small Sample Sensitivity Analysis
Techniques for Computer Models, with an Application to Risk Assessment,
Commun. Stat. Part A, Theory Meth., 1749–1842, 1980.
Jones, T. G., Evans, C. D., Jones, D. L., Hill, P. W., and Freeman, C.:
Transformations in DOC along a source to sea continuum; impacts of
photo-degradation, biological processes and mixing, Aquat. Sci., 78, 433–446,
2016.
Koehler, B., Landelius, T., Weyhenmeyer, G. A., Machida, N., and Tranvik, L. J.:
Sunlight-induced carbon dioxide emissions from inland waters, Glob. Biogeochem. Cy., 28, 696–711, 2014.
Könönen, M., Jauhiainen, J., Laiho, R., Spetz, P., Kusin, K., Limin, S.,
and Vasander, H.: Land use increases the recalcitrance of tropical peat,
Wetl. Ecol. Manage., 24, 717–731, 2016.
Logue, J. B., Stedmon, C. A., Kellerman, A. M., Nielsen, N. J., Andersson, A. F.,
Laudon, H., Lindstom, E. S., and Kriberg, E. S.: Experimental insights into the
importance of aquatic bacterial community composition to the degradation of
dissolved organic matter, Isme J., 10, 533–545, 2016.
Matysek, M., Evers, S., Samuel, M. K., and Sjogersten, S.: High heterotrophic
CO2 emissions from a Malaysian oil palm plantations during dry-season, Wetl. Ecol. Manage., 26, 415–424, 2017.
Melling, L. and Henson, I. E.: Greenhouse Gas Exchange of Tropical Peatlands
– a Review, J. Oil Palm., 23, 1087–1095, 2011.
Miettinen, J., Hooijer, A., Shi, C., Tollenaar, D., Vernimmen, R., Liew,
S. C., Malins, C., and Page, S. E.: Extent of industrial plantations on Southeast
Asian peatlands in 2010 with analysis of historical expansion and future
projections, GCB Bioenergy., 4, 908–918, 2012a.
Miettinen, J., Hooijer, A., Tollenaar, D., Page, S., Malins, C., Vernimmen,
R., Chi, C., and Liew, S. C.: Historical Analysis and Projection of Oil Palm
Plantation Expansion on Peatland in Southeast Asia, Washington DC,
International Council on Clean Transportation, 2012b.
Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C., and Page, S. E.: From
carbon sink to carbon source: extensive peat oxidation in insular Southeast
Asia since 1990, Environ Res Lett., 12, 024014, 2017.
Miettinen, J., Shi, C. H., and Liew, S. C.: Deforestation rates in insular
Southeast Asia between 2000 and 2010, Global Change Biol., 17, 2261–2270,
https://doi.org/10.1111/j.1365-2486.2011.02398.x, 2011.
Miettinen, J., Shi, C. H., and Liew, S. C.: Land cover distribution in the
peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes
since 1990, Glob. Ecol. Conserv., 6, 67–78, https://doi.org/10.1016/j.gecco.2016.02.004,
2016.
Monteith, J. L.: Evaporation and environment, P. Symp. Environ. Biol., 19, 205–234, 1965.
Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. H., Freeman, C.,
Hooijer, A., Wiltshire, A., Limin, S., and Gauci, V.: Deep instability of
deforested tropical peatlands revealed by fluvial organic carbon fluxes,
Nature, 493, 660–664, 2013.
Moore, S., Gauci, V., Evans, C. D., and Page, S. E.: Fluvial organic carbon losses from
a Bornean blackwater river, Biogeosciences, 8, 901–909, https://doi.org/10.5194/bg-8-901-2011, 2011.
Müller, D., Warneke, T., Rixen, T., Müller, M., Jamahari, S., Denis, N., Mujahid, A.,
and Notholt, J.: Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining
river, Biogeosciences, 12, 5967–5979, https://doi.org/10.5194/bg-12-5967-2015, 2015.
Olefeldt, D., Roulet, N., Giesler, R., and Persson, A.: Total waterborne carbon
export and DOC composition from ten nested subarctic peatland
catchments – importance of peatland cover, groundwater influence, and
inter-annual variability of precipitation patterns, Hydrol Proc., 27,
2280–2294, 2013.
Othman, H., Mohammed, A. T., Harun, M. H., Darus, F. M., and Mos, H.: Best
management practises for oil palm planting on peat: optimum groundwater
table, MPOB Information Series, 528, 1–7, 2010.
Page, S. E., Rieley, J. O., and Banks, C. J.: Global and regional importance of the
tropical peatland carbon pool, Global Change Biol., 17, 798–818, 2011a.
Page, S. E., Morrison, R., Malins, C., Hooijer, A., Rieley, J. O., and Jauhiainen, J.: Review of peat surface greenhouse gas emissions from oil
palm plantations in Southeast Asia (ICCT White Paper 15), International
Council on Clean Transportation, Washington, 2011b.
Rixen, T., Baum, A., Wit, F., and Samiaji, J.: Carbon Leaching from Tropical
Peat Soils and Consequences for Carbon Balances, Front Earth Sci., 4, https://doi.org/10.3389/feart.2016.00074, 2016.
Shafer, M. M., Perkins, D. A., Antkiewicz, D. S., Stone, E. A., Qurasishi, T. A.,
and Schauer, J. J.: Reactive oxygen species activity and chemical speciation of
size-fractionated atmospheric particulate matter from Lahore, Pakistan: an
important role for transition metals, J. Environ. Monitor., 12, 704–715, 2010.
Tiemeyer, B., Borraz, E. A., Augustin, J., Bechtold, M., Beetz, S., Beyer,
C., Drosler, M., Elbi, M., Eickenscheidt, T., Fiedler, S., Forster, C.,
Freibauer, A., Giebels, M., Glatzel, S., Heinichen, J., Hoffman, M., Hoper,
H., Jursinki, G., Leiber-Sauheitl, K., Peichl-Brak, M., Robkof, R., Sommer,
M., and Zeitz, J.: High emissions of greenhouse gases from grasslands on peat
and other organic soils., Global Change Biol., 22, 4134–4149, 2016.
Tipping, E., Corbishley, H. T., Koprivnjak, J. F., Lapworth, D. J., Miller,
M. P., Vincent, C. D., and Hamilton-Taylor, J.: Quantification of natural DOM from
UV absorption at two wavelengths, Environ. Chem., 6, 472–476, 2016.
Tonks, A. J., Aplin, P., Beriro, D. J., Cooper, H., Evers, S., Vane, C. H.,
and Sjogersten, S.: Impacts of conversion of tropical peat swamp forest to oil
palm plantation on peat organic chemistry, physical properties and carbon
stocks, Geoderma, 289, 36–45, 2017.
Traving, S. J., Rowe, O., Jakobsen, N. M., Sorensen, H., Dinasquet, J.,
Stedmon, C. A., Andersson, A., and Riemann, L.: The effect of increased loads of
dissolved organic matter on estuarine microbial community composition and
function, Front. Microbiol., 8, 351, https://doi.org/10.3389/fmicb.2017.00351, 2017.
Veloo, R., van Ranst, E., and Selliah, P.: Peat characteristics and its impact
on oil palm yield, NJAS – Wagen J. Life Sc., 72–73, 33–40, 2015.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of specific ultraviolet absorbance as an indicator of
the chemical composition and reactivity of dissolved organic carbon, Environ
Sci. Tech., 37, 4702–4708, 2003.
Whelan, M. J. and Gandolfi, C.: Modelling of spatial controls on
denitrification at the landscape scale, Hydrol. Proc. 16, 1437–1450,
2002.
Wicke, B., Dornburg, V., Junginger, M., and Faaij, A.: Different palm oil
production systems for energy purposes and their greenhouse gas
implications, Biomass Bioenerg., 32, 1322–1337, 2008.
Wijedasa, L. S., Page, S. E., Evans, C. D., and Osaki, M.: Time for responsible
peatland agriculture, Science., 354, 562–562, 2016.
Wijedasa, L. S., Jauhiainen, J., Könönen, M., Lampela, M., Vasander, H., LeBlanc, M. C.,
Evers, S., Smith, T. E., Yule, C. M., and Varkkey, H.: Denial of long-term
issues with agriculture on tropical peatlands will have devastating
consequences, Global Change Biol., 23, 977–982, 2017.
Wijedasa, L. S., Sloan, S., Page, S. E., Clements, G. R., Lupascu, M., and Evans,
T. A: Carbon emissions from Southeast Asia peatlands will increases despite
emission-reduction schemes, Global Change Biol., 24, 4598–4613, https://doi.org/10.1111/gcb.14340,
2018.
Wit, F., Müller, D., Baum, A., Warneke, T., Pranowo, W. S., Müller, M.,
and Rixen, T.: The impact of disturbed peatlands on river outgassing in
Southeast Asia, Nat. Com., 6, 10155, doi:10.1038/ncomms10155, 2015.
Yule, C. M.: Loss of biodiversity and ecosystem functioning in Indo-Malayan
peat swamp forests, Biodivers. Conserv., 19, 393–409, 2010.
Yupi, H. M., Inoue, T., Bathgate, J., and Putra, R.: Concentrations, loads and
yields of organic carbon from two tropical peat swamp forest streams in Riau
Province, Sumatra, Indonesia, Mires and Peat, 18, doi:10.19189/MaP.2015.OMB.181, 2016.
Short summary
This paper presents the first comprehensive assessment of fluvial organic carbon loss from oil palm plantations on tropical peat: a carbon loss pathway previously unaccounted for from carbon budgets. Carbon in the water draining four plantations in Sarawak was monitored across a 1-year period. Greater fluvial carbon losses were linked to sites with lower water tables. These data will be used to complete the carbon budget from these ecosystems and assess the full impact of this land conversion.
This paper presents the first comprehensive assessment of fluvial organic carbon loss from oil...
Altmetrics
Final-revised paper
Preprint