Articles | Volume 16, issue 10
https://doi.org/10.5194/bg-16-2147-2019
https://doi.org/10.5194/bg-16-2147-2019
Research article
 | 
23 May 2019
Research article |  | 23 May 2019

Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions

Andrew C. Mitchell, Erika J. Espinosa-Ortiz, Stacy L. Parks, Adrienne J. Phillips, Alfred B. Cunningham, and Robin Gerlach

Related subject area

Biogeochemistry: Biomineralization
The calcitic test growth rate of Spirillina vivipara (Foraminifera)
Yukiko Nagai, Katsuyuki Uematsu, Briony Mamo, and Takashi Toyofuku
Biogeosciences, 21, 1675–1684, https://doi.org/10.5194/bg-21-1675-2024,https://doi.org/10.5194/bg-21-1675-2024, 2024
Short summary
Impact of seawater sulfate concentration on sulfur concentration and isotopic composition in calcite of two cultured benthic foraminifera
Caroline Thaler, Guillaume Paris, Marc Dellinger, Delphine Dissard, Sophie Berland, Arul Marie, Amandine Labat, and Annachiara Bartolini
Biogeosciences, 20, 5177–5198, https://doi.org/10.5194/bg-20-5177-2023,https://doi.org/10.5194/bg-20-5177-2023, 2023
Short summary
Marked recent declines in boron in Baltic Sea cod otoliths – a bellwether of incipient acidification in a vast hypoxic system?
Karin E. Limburg, Yvette Heimbrand, and Karol Kuliński
Biogeosciences, 20, 4751–4760, https://doi.org/10.5194/bg-20-4751-2023,https://doi.org/10.5194/bg-20-4751-2023, 2023
Short summary
Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools
Narimane Dorey, Sophie Martin, and Lester Kwiatkowski
Biogeosciences, 20, 4289–4306, https://doi.org/10.5194/bg-20-4289-2023,https://doi.org/10.5194/bg-20-4289-2023, 2023
Short summary
Biomineralization of amorphous Fe-, Mn- and Si-rich mineral phases by cyanobacteria under oxic and alkaline conditions
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023,https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary

Cited articles

Anbu, P., Kang, C.-H., Shin, Y.-J., and So, J.-S.: Formations of calcium carbonate minerals by bacteria and its multiple applications, SpringerPlus, 5, 250, https://doi.org/10.1186/s40064-016-1869-2, 2016. 
Carslaw, H. S. and Jaeger, J. C.: Conduction of heat in solids, Oxford University Press, Oxford, 1959. 
Connolly, J. M., Jackson, B., Rothman, A. P., Klapper, I., and Gerlach, R.: Estimation of a biofilm-specific reaction rate: kinetics of bacterial urea hydrolysis in a biofilm, Biofilms and Microbiomes, 1, 15014, https://doi.org/10.1038/npjbiofilms.2015.14, 2015. 
Cuthbert, M. O., Riley, M. S., Handley-Sidhu, S., Renshaw, J. C., Tobler, D. J., Phoenix, V. R., and Mackay, R.: Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. pasteurii biofilms and limits due to bacterial encapsulation, Ecol. Eng., 41, 32–40, https://doi.org/10.1016/j.ecoleng.2012.01.008, 2012. 
Cuthbert, M. O., McMillan, L. A., Handley-Sidhu, S., Riley, M. S., Tobler, D. J., and Phoenix, V. R.: A Field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation, Environ. Sci. Technol., 47, 13637–13643, https://doi.org/10.1021/es402601g, 2013. 
Download
Short summary
Microbially induced carbonate mineral precipitation (MICP) is a natural process that is also being investigated for subsurface engineering applications including radionuclide immobilization and microfracture plugging. We demonstrate that rates of MICP from microbial urea hydrolysis (ureolysis) vary with different bacterial strains, but rates are similar in both oxygenated and oxygen-free conditions. Ureolysis MICP is therefore a viable biotechnology in the predominately oxygen-free subsurface.
Altmetrics
Final-revised paper
Preprint