Articles | Volume 16, issue 18
https://doi.org/10.5194/bg-16-3637-2019
https://doi.org/10.5194/bg-16-3637-2019
Research article
 | 
26 Sep 2019
Research article |  | 26 Sep 2019

Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2

Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling

Related authors

Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023,https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022,https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale
Roger D. Finlay, Shahid Mahmood, Nicholas Rosenstock, Emile B. Bolou-Bi, Stephan J. Köhler, Zaenab Fahad, Anna Rosling, Håkan Wallander, Salim Belyazid, Kevin Bishop, and Bin Lian
Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020,https://doi.org/10.5194/bg-17-1507-2020, 2020
Short summary
Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019,https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary

Related subject area

Biogeochemistry: Soils
Effect of straw retention and mineral fertilization on P speciation and P-transformation microorganisms in water- extractable colloids of a Vertisol
Shanshan Bai, Yifei Ge, Dongtan Yao, Yifan Wang, Jinfang Tan, Shuai Zhang, Yutao Peng, and Xiaoqian Jiang
Biogeosciences, 22, 135–151, https://doi.org/10.5194/bg-22-135-2025,https://doi.org/10.5194/bg-22-135-2025, 2025
Short summary
A new approach to continuous monitoring of carbon use efficiency and biosynthesis in soil microbes from measurement of CO2 and O2
Kyle E. Smart, Daniel O. Breecker, Christopher B. Blackwood, and Timothy M. Gallagher
Biogeosciences, 22, 87–101, https://doi.org/10.5194/bg-22-87-2025,https://doi.org/10.5194/bg-22-87-2025, 2025
Short summary
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024,https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
The effects of land use on soil carbon stocks in the UK
Peter Levy, Laura Bentley, Peter Danks, Bridget Emmett, Angus Garbutt, Stephen Heming, Peter Henrys, Aidan Keith, Inma Lebron, Niall McNamara, Richard Pywell, John Redhead, David Robinson, and Alexander Wickenden
Biogeosciences, 21, 4301–4315, https://doi.org/10.5194/bg-21-4301-2024,https://doi.org/10.5194/bg-21-4301-2024, 2024
Short summary
Technical note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024,https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary

Cited articles

Ahonen-Jonarth, U., van Hees, P. A. W., Lundstrom, U., and Finlay, R. D.: Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations, New Phytol., 146, 557–567, 2000. 
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, 2005. 
Alberton, O., Kuyper, T. W., and Gorissen, A.: Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2, New Phytol., 167, 859–868, 2005. 
Alberton, O., Kuyper, T. W., and Gorissen, A.: Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2, Plant Soil, 296, 159–172, 2007.  
Almeida, J. P., Rosenstock, N. P., Forsmark, B., Bergh, J., and Wallander, H.: Ectomycorrhizal community composition and function in a spruce forest transitioning between nitrogen and phosphorus limitation, Fungal Ecol., 40, 20–31, https://doi.org/10.1016/j.funeco.2018.05.008, 2018. 
Download
Short summary
We examined the effects of elevated CO2, pine seedlings, and ectomycorrhizal fungi on mineral weathering. Seedlings significantly increased mineral weathering, while elevated CO2 increased plant growth and organic acid concentrations but had no effect on weathering. Ectomycorrhial fungi showed some tendency to increase weathering. We conclude that nutrient uptake, which reduces transport limitation to weathering, is the primary mechanism by which plants enhanced weathering in this system.
Altmetrics
Final-revised paper
Preprint