Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Download
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Altmetrics
Final-revised paper
Preprint
BG | Articles | Volume 16, issue 22
Biogeosciences, 16, 4497–4516, 2019
https://doi.org/10.5194/bg-16-4497-2019
Biogeosciences, 16, 4497–4516, 2019
https://doi.org/10.5194/bg-16-4497-2019

Research article 28 Nov 2019

Research article | 28 Nov 2019

High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment

Benedikt J. Werner et al.

Related authors

Bending of the concentration discharge relationship can inform about in-stream nitrate removal
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-16,https://doi.org/10.5194/hess-2021-16, 2021
Preprint under review for HESS
Short summary
Sigmoidal Water Retention Function with Improved Behavior in Dry and Wet Soils
Gerrit H. de Rooij, Juliane Mai, and Raneem Madi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-380,https://doi.org/10.5194/hess-2020-380, 2020
Revised manuscript accepted for HESS
Short summary
On the shape of forward transit time distributions in low-order catchments
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020,https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Soil moisture and matric potential – an open field comparison of sensor systems
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020,https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Wells, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019,https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary

Related subject area

Biogeochemistry: Rivers & Streams
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021,https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020,https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Soil organic carbon decomposition rates in river systems: effect of experimental conditions
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-267,https://doi.org/10.5194/bg-2020-267, 2020
Preprint under review for BG
Short summary
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020,https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020,https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary

Cited articles

Ågren, A., Jansson, M., Ivarsson, H., Bishop, K., and Seibert, J.: Seasonal and runoff-related changes in total organic carbon concentrations in the River Öre, Northern Sweden, Aquat. Sci., 70, 21–29, https://doi.org/10.1007/s00027-007-0943-9, 2007. 
Ågren, A., Berggren, M., Laudon, H., and Jansson, M.: Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods, Freshwater Biol., 53, 964–972, https://doi.org/10.1111/j.1365-2427.2008.01955.x, 2008. 
Alarcon-Herrera, M. T., Bewtra, J. K., and Biswas, N.: Seasonal variations in humic substances and their reduction through water treatment processes, Can. J. Civil Eng., 21, 173–179, https://doi.org/10.1139/l94-020, 1994. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome,Italy, 300 pp., 1998. 
Barrow, C. J.: World atlas of desertification (United nations environment programme), edited by: Middleton, N.,Thomas, D. S. G., and Arnold, E., Land Degrad. Dev., 3, 249–249, https://doi.org/10.1002/ldr.3400030407, 1992. 
Publications Copernicus
Download
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Citation
Altmetrics
Final-revised paper
Preprint