Articles | Volume 16, issue 23
https://doi.org/10.5194/bg-16-4705-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-4705-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Direct O2 control on the partitioning between denitrification and dissimilatory nitrate reduction to ammonium in lake sediments
Adeline N. Y. Cojean
CORRESPONDING AUTHOR
Aquatic and Stable Isotope Biogeochemistry, University of Basel,
Bernoullistrasse 30, 4056 Basel, Switzerland
now at: Centre for Hydrogeology and Geothermics (CHYN), University of
Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland
Jakob Zopfi
Aquatic and Stable Isotope Biogeochemistry, University of Basel,
Bernoullistrasse 30, 4056 Basel, Switzerland
Alan Gerster
Aquatic and Stable Isotope Biogeochemistry, University of Basel,
Bernoullistrasse 30, 4056 Basel, Switzerland
Claudia Frey
Aquatic and Stable Isotope Biogeochemistry, University of Basel,
Bernoullistrasse 30, 4056 Basel, Switzerland
Fabio Lepori
Institute of Earth Science, Scuola Universitaria Professionale della
Svizzera Italiana (SUPSI), Trevano, 6952 Canobbio, Switzerland
Moritz F. Lehmann
Aquatic and Stable Isotope Biogeochemistry, University of Basel,
Bernoullistrasse 30, 4056 Basel, Switzerland
Related authors
No articles found.
Alessandra Mazzoli, Peter Reichert, Claudia Frey, Cameron M. Callbeck, Tim J. Paulus, Jakob Zopfi, and Moritz F. Lehmann
Biogeosciences, 23, 283–314, https://doi.org/10.5194/bg-23-283-2026, https://doi.org/10.5194/bg-23-283-2026, 2026
Short summary
Short summary
Nitrogen (re-)cycling in sediments plays a key role in aquatic environments, but involves many overlapping biogeochemical processes that are hard to separate. We developed a new comprehensive sedimentary nitrogen isotope model to disentangle these reactions. Using field data from a Swiss lake and statistical tools, we demonstrated the robustness and validity of our modelling framework for a broad range of applications.
Elizabeth Leon-Palmero, Claudia Frey, Bess B. Ward, Rafael Morales-Baquero, and Isabel Reche
EGUsphere, https://doi.org/10.5194/egusphere-2025-5003, https://doi.org/10.5194/egusphere-2025-5003, 2025
Short summary
Short summary
Reservoirs act as nitrogen sinks and emit nitrous oxide, a potent greenhouse gas and major ozone-depleting substance. We studied two reservoirs and found that nitrification and denitrification produce nitrous oxide in the water column, but denitrification is the main source, fueled by fresh organic matter from phytoplankton. Our results also suggest that nitrous oxide is actively consumed. This study highlights the need to include reservoirs in global nitrous oxide budgets.
Carolina F. M. de Carvalho, Moritz F. Lehmann, and Sarah G. Pati
Biogeosciences, 22, 4579–4600, https://doi.org/10.5194/bg-22-4579-2025, https://doi.org/10.5194/bg-22-4579-2025, 2025
Short summary
Short summary
Using O2 stable isotope analysis, we determined the isotopic fractionation of biological O2 consumption by 10 flavin-dependent enzymes and 6 metalloenzymes. Metalloenzymes displayed a narrower range and lower values of isotopic fractionation than flavin-dependent enzymes. This work expands our understanding of the variability of oxygen isotopic fractionation at the enzyme level, improving the ability to study O2 dynamics from molecular to ecosystem scales.
Guangyi Su, Julie Tolu, Clemens Glombitza, Jakob Zopfi, Moritz F. Lehmann, Mark A. Lever, and Carsten J. Schubert
Biogeosciences, 22, 4449–4466, https://doi.org/10.5194/bg-22-4449-2025, https://doi.org/10.5194/bg-22-4449-2025, 2025
Short summary
Short summary
In Lake Geneva, we studied how different types of organic matter affect methane production. Despite varying sources, like algae and land-based materials, both deep and delta areas are significant methane sources, and methane was mainly produced through CO2 reduction. Surprisingly, the origin of organic matter did not strongly influence methane production rates or pathways. Our findings highlight the need to better understand microbial processes to predict methane emissions from lakes.
Pratirupa Bardhan, Claudia Frey, Gregor Rehder, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2025-2518, https://doi.org/10.5194/egusphere-2025-2518, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is released from coastal seas & estuaries, yet we don't fully understand how it is formed and consumed. In this study we collected water from several sites in the central Baltic Sea. N2O came from ammonia in oxic waters. Deep waters with low to no oxygen noted more active N2O cycling. The seafloor was a source in some areas. Typically N2O is produced by bacteria, but our results indicate possibility of other players like fungi or chemical reactions.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
D. Strigaro, M. Cannata, C. Capelli, and F. Lepori
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 457–463, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-457-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-457-2022, 2022
M. Cannata, D. Strigaro, F. Lepori, C. Capelli, M. Rogora, and D. Manca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W2-2021, 25–29, https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-25-2021, https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-25-2021, 2021
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert
Biogeosciences, 18, 3087–3101, https://doi.org/10.5194/bg-18-3087-2021, https://doi.org/10.5194/bg-18-3087-2021, 2021
Short summary
Short summary
Lake Lovojärvi is a nutrient-rich lake with high amounts of methane at the bottom, but little near the top. Methane comes from the sediment and rises up through the water but is consumed by microorganisms along the way. They use oxygen if available, but in deeper water layers, no oxygen was present. There, nitrite, iron and humic substances were used, besides a collaboration between photosynthetic organisms and methane consumers, in which the first produced oxygen for the latter.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
Cited articles
An, S. and Gardner, W. S.: Dissimilatory nitrate reduction to ammonium
(DNRA) as a nitrogen link, versus denitrification as a sink in a shallow
estuary (Laguna Madre/Baffin Bay, Texas), Mar. Ecol. Prog. Ser., 237,
41–50, https://doi.org/10.3354/meps237041, 2002.
Babbin, A. R., Keil, R. G., Devol, A. H., and Ward, B. B.: Organic matter
stoichiometry, flux, and oxygen control nitrogen loss in the ocean,
Science, 344, 406–408, https://doi.org/10.1126/science.1248364, 2014.
Bateman, E. J. and Baggs, E. M.: Contributions of nitrification and
denitrification to N2O emissions from soils at different water-filled
pore space, Biol. Fertil. Soils, 41, 379–388,
https://doi.org/10.1007/s00374-005-0858-3, 2005.
Baumann, B., Snozzi, M., Zehnder, A. J. B., and van der Meer, J. R.: Dynamics
of denitrification activity of Paracoccus denitrificans in continuous culture during
aerobic-anaerobic changes, J. Bacteriol., 178, 4367–4374,
https://doi.org/10.1128/jb.178.15.4367-4374.1996, 1996.
Baumann, B., Snozzi, M., van der Meer, J. R., and Zehnder, A. J. B.:
Development of stable denitrifying cultures during repeated
aerobic-anaerobic transient periods, Water Res., 31, 1947–1954,
https://doi.org/10.1016/S0043-1354(97)00053-5, 1997.
Blees, J., Niemann, H., Wenk, C. B., Zopfi, J., Schubert, C. J., Jenzer, J.
S., Veronesi, M., and Lehmann, M. F.: Bacterial methanotrophs drive the
formation of a seasonal anoxic benthic nepheloid layer in an alpine lake,
Limnol. Oceanogr., 59, 1410–1420, https://doi.org/10.4319/lo.2014.59.4.1410, 2014.
Bowles, M. W., Nigro, L. M., Teske, A. P., and Joye, S. B.: Denitrification
and environmental factors influencing nitrate removal in Guaymas Basin
hydrothermally altered sediments, Front. Microbiol., 3, 1–11,
https://doi.org/10.3389/fmicb.2012.00377, 2012.
Braman, R. S. and Hendrix, S. A.: Nanogram nitrite and nitrate determination
in environmental and biological materials by vanadium(III) reduction with
chemiluminescence detection, Anal. Chem., 61, 2715–2718,
https://doi.org/10.1021/ac00199a007, 1989.
Brunet, R. C. and Garcia-Gil, L. J.: Sulfide-induced dissimilatory nitrate
reduction to ammonia in anaerobic freshwater sediments, FEMS Microbiol.
Ecol., 21, 131–138, https://doi.org/10.1016/0168-6496(96)00051-7, 1996.
Burgin, A. J. and Hamilton, S. K.: Have we overemphasized the role of
denitrification in aquatic ecosystems? A review of nitrate removal pathways,
Front. Ecol. Environ., 5, 89–96, 2007.
Carter, J. P., Hsiao Y.A., Spiro, S., and Richardson, D. J.: Soil and
sediment bacteria capable of aerobic nitrate respiration, Appl. Environ.
Microbiol., 61, 2852–2858, 1995.
Cojean, A. N. Y., Lehmann, M. F., Robertson, E. K., Thamdrup, B., and Zopfi, J.:
Controls of inorganic substrates (H2S, Fe2+, Mn2+) on
-reducing processes in surface sediments of an eutrophic lake,
in preparation, 2019.
Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N.
P., Ulloa, O., Canfield, D. E., and DeLong, E. F.: Oxygen at nanomolar levels
reversibly suppresses process rates and gene expression in anammox and
denitrification in the oxygen miminum zone off northern Chile, mBio, 5,
e01966, https://doi.org/10.1128/mBio.01966-14, 2014.
Dong, L. F., Sobey, M. N., Smith, C. J., Rusmana, I., Phillips, W., Stott,
A., Osborn, A. M., and Nedwell, D. B.: Dissimilatory reduction of nitrate to
ammonium, not denitrification or anammox, dominates benthic nitrate
reduction in tropical estuaries, Limnol. Oceanogr., 56, 279–291, 2011.
Fazzolari, É., Nicolardot, B., and Germon, J. C.: Simultaneous effects of
increasing levels of glucose and oxygen partial pressures on denitrification
and dissimilatory nitrate reduction to ammonium in repacked soil cores, Eur.
J. Soil Biol., 34, 47–52, https://doi.org/10.1016/S1164-5563(99)80006-5, 1998.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedke, N. A., Heath, G.
R., Gullen, D., Dauphin, P., Hammond, D., and Hartman, B.: Early oxidation of
organic matter in pelagic sediments of the eastern equatorial Atlantic:
suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, 1979.
Gao, H., Schreiber, F., Collins, G., Jensen, M. M., Kostka, J. E., Lavik,
G., De Beer, D., Zhou, H. Y., and Kuypers, M. M. M.: Aerobic denitrification
in permeable Wadden Sea sediments, ISME J., 4, 417–426,
https://doi.org/10.1038/ismej.2009.127, 2010.
Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better fitting
equations, Limnol. Oceanogr., 37, 1307–1312, 1992.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4,
243–289, https://doi.org/10.1080/17451000801888726, 2008.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global
nitrogen cycle, Nature, 451, 293–296, https://doi.org/10.1038/nature06592, 2008.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in Methods of
Seawater Analysis, 3rd Edn., Verlag Chemie, Weinheim,
Wiley-VCH, 159–228, 1999.
Hietanen, S. and Lukkari, K.: Effects of short-term anoxia on benthic
denitrification, nutrient fluxes and phosphorus forms in coastal Baltic
sediment, Aquat. Microb. Ecol., 49, 293–302, https://doi.org/10.3354/ame01146, 2007.
Jäntti, H. and Hietanen, S.: The effects of hypoxia on sediment nitrogen
cycling in the Baltic Sea, Ambio, 41, 161–169,
https://doi.org/10.1007/s13280-011-0233-6, 2012.
Jensen, M. M., Kuypers, M. M. M., Lavik, G., and Thamdrup, B.: Rates and
regulation of anaerobic ammonium oxidation and denitrification in the Black
Sea, Limnol. Oceanogr., 53, 23–36, https://doi.org/10.4319/lo.2008.53.1.0023, 2008.
Jensen, M. M., Petersen, J., Dalsgaard, T., and Thamdrup, B.: Pathways,
rates, and regulation of N2 production in the chemocline of an anoxic
basin, Mariager Fjord, Denmark, Mar. Chem., 113, 102–113,
https://doi.org/10.1016/j.marchem.2009.01.002, 2009.
Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P.,
Günter, M., LaRoche, J., Lavik, G., and Kuypers, M. M. M.: Oxygen
sensitivity of anammox and coupled N-cycle processes in oxygen minimum
zones, PLoS One, 6, 1–12, https://doi.org/10.1371/journal.pone.0029299, 2011.
Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G., and Stief, P.: Diatoms
respire nitrate to survive dark and anoxic conditions, P. Natl. Acad. Sci. USA, 108,
5649–54, https://doi.org/10.1073/pnas.1015744108, 2011.
Kaspar, H. F.: Denitrification, nitrate reduction to ammonium, and inorganic
nitrogen pools in intertidal sediments, Mar. Biol., 74, 133–139, 1983.
Körner H. and Zumft, W. G.: Response to the dissolved oxygen level and
respiratory substrate in continuous culture of Pseudomonas stutzeri, 55, 1670–1676, 1989.
Kraft B., Tegetmeyer, H. E., Sharma, R., Klotz, M. G., Ferdelman, T. G.,
Hettich, R. L., Geelhoed, J. S., and Strous, M.: The environmental controls that
govern the end product of bacterial nitrate respiration, Sciences,
345, 676–679, 2014.
Lazzaretti, M. A. and Hanselmann K. W., Brandl, H.,
Span, D., and Bachofen, R.: The role of sediments in the phosphorous cycle in
Lake Lugano, Seasonal and spatial variability of microbiological processes
at the sediment-water surface, Aquat. Sci., 54, 285–299,
https://doi.org/10.1007/BF00878141, 1992.
Lehmann, M. F., Bernasconi, S. M., McKenzie, J. A., Barbieri, A., Simona, M.,
and Veronesi, M.: Seasonal variation of the δ13C and δ15N of particulate and dissolved carbon and nitrogen in Lake Lugano:
Constraints on biogeochemical cycling of eutrophic lake, Limnol. Oceanogr.,
49, 415–429, 2004.
Lehmann, M. F., Barnett, B., Gélinas, Y., Gilbert, D., Maranger, R. J.,
Mucci, A., Sundby, B., and Thibodean, B.: Aerobic respiration and hypoxia in
the Lower St. Lawrence Estuary?: Stable isotope ratios of dissolved oxygen
constrain oxygen sink partitioning, Limnol. Oceanogr., 54, 2157–2169,
https://doi.org/10.4319/lo.2009.54.6.2157, 2009.
Lehmann, M. F., Simona, M., Wyss, S., Blees, J., Frame, C. H., Niemann, H.,
Veronesi, M., and Zopfi, J.: Powering up the “biogeochemical engine”: the
impact of exceptional ventilation of a deep meromictic lake on the
lacustrine redox, nutrient, and methane balances, Front. Earth Sci., 3,
1–13, https://doi.org/10.3389/feart.2015.00045, 2015.
Mohan, S. B. and Cole, J. A.: The dissimilatory reduction of nitrate to
ammonia by anaerobic bacteria, in: Biology of the Nitrogen Cycle, edited by:
Bothe H., Ferguson S., and Newton W. E., Elsevier B.V., 93–106, 2007.
Moir, J. W. B. and Wood, N. J.: Nitrate and nitrite transport in bacteria,
Cell. Mol. Life Sci., 58, 215–224, 2001.
Morley, N. and Baggs, E. M.: Carbon and oxygen controls on N2O and
N2 production during nitrate reduction, Soil Biol. Biochem., 42,
1864–1871, https://doi.org/10.1016/j.soilbio.2010.07.008, 2010.
Morley, N., Baggs, E. M., Peter, D., and Bakken, L.: Production of NO,
N2O and N2 by extracted soil bacteria, regulation by
and O2 concentrations, FEMS Microbiol. Ecol., 65,
102–112, https://doi.org/10.1111/j.1574-6941.2008.00495.x, 2008.
Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope
pairing, FEMS Microbiol. Ecol., 86, 357–362,
https://doi.org/10.1016/0378-1097(92)90800-4, 1992.
Otte, S., Grobben, N. G., Robertson, L. A., Jetten, M. S. M., and Kuenen, J.
G.: Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and
anaerobic conditions, Appl. Environ. Microbiol., 62, 2421–2426, 1996.
Papaspyrou, S., Smith, C. J., Dong, L. F., Whitby, C., Dumbrell, A. J., and
Nedwell, D. B.: Nitrate reduction functional genes and nitrate reduction
potentials persist in deeper estuarine sediments. Why ?, PLoS One, 9,
e94111, https://doi.org/10.1371/journal.pone.0094111, 2014.
Patureau, D., Zumstein, E., Delgenes, J. P., and Moletta, R.: Aerobic
denitrifiers isolated from diverse natural and managed ecosystems, Microb.
Ecol., 39, 145–152, https://doi.org/10.1007/s002480000009, 2000.
Paulmier, A. and Ruiz-Pino, D.: Oxygen minimum zones (OMZs) in the modern
ocean, Prog. Oceanogr., 80, 113–128, https://doi.org/10.1016/j.pocean.2008.08.001,
2009.
Payne, E. K., Burgin, A. J., and Hamilton, S. K.: Sediment nitrate
manipulation using porewater equilibrators reveals potential for N and S
coupling in freshwaters, Aquat. Microb. Ecol., 54, 233–241,
https://doi.org/10.3354/ame01272, 2009.
Poock, S. R., Leach, E. R., Moir, J. W. B., Cole, J. A., and Richardson, D.
J.: Respiratory detoxification of nitric oxide by the cytochrome c nitrite
reductase of Escherichia coli, J. Biol. Chem., 277, 23664–23669,
https://doi.org/10.1074/jbc.M200731200, 2002.
Prokopenko, M. G., Hirst, M. B., De Brabandere, L., Lawrence, D. J.,
Berelson, W. M., Granger, J., Chang, B. X., Dawson, S., Crane 3rd, E. J.,
Chong, L., Thamdrup, B., Townsend-Small, A., and Sigman, D. M.: Nitrogen
losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia,
Nature, 500, 194–198, https://doi.org/10.1038/nature12365, 2013.
Rao, A. M. F., McCarthy, M. J., Gardner, W. S., and Jahnke, R. A.:
Respiration and denitrification in permeable continental shelf deposits on
the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment
column experiments, Cont. Shelf Res., 27, 1801–1819,
https://doi.org/10.1016/j.csr.2007.03.001, 2007.
Richardson, D. J., van Spanning R. J. M., and Ferguson S. J.: The prokaryotic
nitrate reductases, in: Biology of the nitrogen cycle, edited by: Bothe, H.,
Ferguson, S. J., and Newton, W. E., Elsevier B.V., 21–35, 2007.
Risgaard-Petersen, N., Rysgaard, S., and Revsbech, N. P.: Combined
microdiffusion-hypobromite oxidation method for determining nitrogen-15
isotope in ammonium, Soil Sci. Soc. Am., 59, 1077–1080, 1995.
Roberts, K. L., Eate, V. M., Eyre, B. D., Holland, D. P., and Cook, P. L. M.:
Hypoxic events stimulate nitrogen recycling in a shallow salt-wedge estuary:
The Yarra River estuary, Australia, Limnol. Oceanogr., 57, 1427–1442,
https://doi.org/10.4319/lo.2012.57.5.1427, 2012.
Roberts, K. L., Kessler, A. J., Grace, M. R., and Cook, P. L. M.: Increased
rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic
conditions in a periodically hypoxic estuary, Geochim. Cosmochim. Ac., 133,
313–324, https://doi.org/10.1016/j.gca.2014.02.042, 2014.
Robertson, E. K., Roberts, K. L., Burdorf, L. D. W., Cook, P., and Thamdrup,
B.: Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation
in sediments of a periodically hypoxic estuary, Limnol. Oceanogr., 61,
365–381, https://doi.org/10.1002/lno.10220, 2016.
Robertson, L. A., Dalsgaard, T., Revsbech, N., and Kuenen, J. G.:
Confirmation of `aerobic denitrification' in batch cultures, using gas
chromatography and 15N mass spectrometry, FEMS Micriobiology Ecol., 18,
113–120, 1995.
Rysgaard, S., Risgaard-petersen, N., and Sloth, N. P.: Nitrification,
denitrification, and nitrate ammonification in sediments of two coastal
lagoons in Southern France, Hydrobiologia, 329, 133–141, 1996.
Seitzinger, S. P.: Denitrification in freshwater and coastal marine
ecosystems: Ecological and geochemical significance, Limnol. Oceanogr., 33,
702–724, 1988.
Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F.,
Lowrance, R., Peterson, B., Tobias, C., and van Drecht, G.: Denitrification
across landscapes and waterscapes: A synthesis, Ecol. Appl., 16,
2064–2090, 2006.
Simon, J. and Klotz, M. G.: Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations, Biochim. Biophys. Ac., 1827, 114–135, 2013.
Thamdrup, B. and Dalsgaard, T.: Production of N2 through anaerobic
ammonium oxidation coupled to nitrate reduction in marine sediments, Appl.
Environ. Microbiol., 68, 1312–1318, 2002.
Smith, E. J., Davison, W., and Hamilton-Taylor, J.: Methods for preparing
synthetic freshwaters, Water Res., 36, 1286–1296, 2002.
Thauer, R. K., Jungermann, K., and Decker, K.: Energy conservation in
chemotrophic anaerobic bacteria, Bacteriol. Rev., 41, 100–180,
https://doi.org/10.1073/pnas.0803850105, 1977.
Tiedje, J. M.: Ecology of denitrification and dissimilatory nitrate reduction
to ammonium, in: Environmental microbiology of anaerobes, edited by: Zehnder,
A. J. B., John Wiley and Sons, New-York, 179–244, 1988.
Wenk, C. B., Zopfi, J., Gardner, W. S., McCarthy, M. J., Niemann, H.,
Veronesi, M., and Lehmann, M. F.: Partitioning between benthic and pelagic
nitrate reduction in the Lake Lugano south basin, Limnol. Oceanogr., 59,
1421–1433, https://doi.org/10.4319/lo.2014.59.4.1421, 2014.
Zehr, J. P. and Ward, B. B.: Nitrogen Cycling in the Ocean?: New
perspectives on processes and paradigms, Appl. Environ. Microbiol., 68,
1015–1024, 2002.
Zopfi, J., Kjær, T., Nielsen, L. P., and Jørgensen, B. B.: Ecology of
Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and
influence of Thioploca spp. on the sedimentary nitrogen cycle, Appl. Environ.
Microbiol., 67, 5530–5537, https://doi.org/10.1128/AEM.67.12.5530-5537.2001, 2001.
Short summary
Our results demonstrate the importance of oxygen in regulating the fate of nitrogen (N) in the sediments of Lake Lugano south basin, Switzerland. Hence, our study suggests that, by changing oxygen concentration in bottom waters, the seasonal water column turnover may significantly regulate the partitioning between N removal and N recycling in surface sediments, and it is likely that a similar pattern can be expected in a wide range of environments.
Our results demonstrate the importance of oxygen in regulating the fate of nitrogen (N) in the...
Altmetrics
Final-revised paper
Preprint