Articles | Volume 17, issue 21
Biogeosciences, 17, 5223–5242, 2020
https://doi.org/10.5194/bg-17-5223-2020
Biogeosciences, 17, 5223–5242, 2020
https://doi.org/10.5194/bg-17-5223-2020
Reviews and syntheses
 | Highlight paper
30 Oct 2020
Reviews and syntheses  | Highlight paper | 30 Oct 2020

Reviews and syntheses: The mechanisms underlying carbon storage in soil

Isabelle Basile-Doelsch et al.

Related authors

Dynamics of carbon loss from an arenosol by a forest/vineyard land use change on a centennial scale
Solène Quéro, Christine Hatté, Sophie Cornu, Adrien Duvivier, Nithavong Cam, Floriane Jamoteau, Daniel Borschneck, and Isabelle Basile-Doelsch
SOIL Discuss., https://doi.org/10.5194/soil-2021-115,https://doi.org/10.5194/soil-2021-115, 2021
Revised manuscript accepted for SOIL
Short summary
Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?
Pierre Barré, Denis A. Angers, Isabelle Basile-Doelsch, Antonio Bispo, Lauric Cécillon, Claire Chenu, Tiphaine Chevallier, Delphine Derrien, Thomas K. Eglin, and Sylvain Pellerin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-395,https://doi.org/10.5194/bg-2017-395, 2017
Manuscript not accepted for further review
Short summary

Related subject area

Biogeochemistry: Soils
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022,https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022,https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022,https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022,https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022,https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary

Cited articles

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/NGEO846, 2010. 
Amelung, W., Brodowski, S., Sandhage-Hofmann, A., and Bol, R.: Combining Biomarker with Stable Isotope Analyses for Assessing the Transformation and Turnover of Soil Organic Matter, Adv. Ag., 100, 155–250, 2008. 
Amundson, R. and Biardeau, L.: Soil carbon sequestration is an elusive climate mitigation tool, P. Natl. Acad. Sci. USA, 115, 11652–11656, https://doi.org/10.1073/pnas.1815901115, 2018. 
Amundson, R. and Biardeau, L.: Opinion: Soil carbon sequestration is an elusive climate mitigation tool, P. Natl. Acad. Sci. USA, 116, 13143–13143, https://doi.org/10.1073/pnas.1908917116, 2019. 
Andriulo, A., Mary, B., and Guerif, J.: Modelling soil carbon dynamics with various cropping sequences on the rolling pampas, Agronomie, 19, 365–377, https://doi.org/10.1051/agro:19990504, 1999. 
Short summary
The 4 per 1000 initiative aims to restore carbon storage in soils to both mitigate climate change and contribute to food security. The French National Institute for Agricultural Research conducted a study to determine the carbon storage potential in French soils and associated costs. This paper is a part of that study. It reviews recent advances concerning the mechanisms that controls C stabilization in soils. Synthetic figures integrating new concepts should be of pedagogical interest.
Altmetrics
Final-revised paper
Preprint