Articles | Volume 17, issue 2
https://doi.org/10.5194/bg-17-529-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-529-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical drivers of the nitrate seasonal variability in the Atlantic cold tongue
Marie-Hélène Radenac
CORRESPONDING AUTHOR
LEGOS, IRD-Université Paul Sabatier-Observatoire
Midi-Pyrénées, Toulouse, 31400, France
Julien Jouanno
LEGOS, IRD-Université Paul Sabatier-Observatoire
Midi-Pyrénées, Toulouse, 31400, France
Christine Carine Tchamabi
LEGOS, IRD-Université Paul Sabatier-Observatoire
Midi-Pyrénées, Toulouse, 31400, France
deceased
Mesmin Awo
LEGOS, IRD-Université Paul Sabatier-Observatoire
Midi-Pyrénées, Toulouse, 31400, France
Nansen-Tutu Centre for Marine Environmental Research, Department of
Oceanography, University of Cape Town, Cape Town, South Africa
LHMC, IRHOB, IRD, Cotonou, Benin
Bernard Bourlès
IRD, US191 “Instrumentation, Moyens Analytiques, Observatoires en
Géophysique et Océanographie” (IMAGO), Technopole Pointe du Diable,
Plouzané, France
Sabine Arnault
LOCEAN, CNRS, IRD, Sorbonne Universités, MNHN, Paris, 75005,
France
Olivier Aumont
LOCEAN, CNRS, IRD, Sorbonne Universités, MNHN, Paris, 75005,
France
Related authors
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2294, https://doi.org/10.5194/egusphere-2024-2294, 2024
Short summary
Short summary
Our study assesses the capability of CMIP6 models to reproduce satellite observations of sub-seasonal chlorophyll variability. Models struggle to reproduce the sub-seasonal variance and its contribution across timescales. Some models overestimate sub-seasonal variance and exaggerate its role in annual fluctuations, while others underestimate it. Underestimation is likely due to the coarse resolution of models, while overestimation may result from intrinsic oscillations in biogeochemical models.
Peter Brandt, Gaël Alory, Founi Mesmin Awo, Marcus Dengler, Sandrine Djakouré, Rodrigue Anicet Imbol Koungue, Julien Jouanno, Mareike Körner, Marisa Roch, and Mathieu Rouault
Ocean Sci., 19, 581–601, https://doi.org/10.5194/os-19-581-2023, https://doi.org/10.5194/os-19-581-2023, 2023
Short summary
Short summary
Tropical upwelling systems are among the most productive ecosystems globally. The tropical Atlantic upwelling undergoes a strong seasonal cycle that is forced by the wind. Local wind-driven upwelling and remote effects, particularly via the propagation of equatorial and coastal trapped waves, lead to an upward and downward movement of the nitracline. Turbulent mixing results in upward supply of nutrients. Here, we review the different physical processes responsible for biological productivity.
Roy Dorgeless Ngakala, Gaël Alory, Casimir Yélognissè Da-Allada, Olivia Estelle Kom, Julien Jouanno, Willi Rath, and Ezinvi Baloïtcha
Ocean Sci., 19, 535–558, https://doi.org/10.5194/os-19-535-2023, https://doi.org/10.5194/os-19-535-2023, 2023
Short summary
Short summary
Surface heat flux is the main driver of the heat budget in the Senegal, Angola, and Benguela regions but not in the equatorial region. In the Senegal and Benguela regions, freshwater flux governs the salt budget, while in equatorial and Angola regions, oceanic processes are the main drivers. Results from numerical simulation show the important role of mesoscale advection for temperature and salinity variations in the mixed layer. Nonlinear processes unresolved by observations play a key role.
Sarah Berthet, Julien Jouanno, Roland Séférian, Marion Gehlen, and William Llovel
Earth Syst. Dynam., 14, 399–412, https://doi.org/10.5194/esd-14-399-2023, https://doi.org/10.5194/esd-14-399-2023, 2023
Short summary
Short summary
Phytoplankton absorbs the solar radiation entering the ocean surface and contributes to keeping the associated energy in surface waters. This natural effect is either not represented in the ocean component of climate models or its representation is simplified. An incomplete representation of this biophysical interaction affects the way climate models simulate ocean warming, which leads to uncertainties in projections of oceanic emissions of an important greenhouse gas (nitrous oxide).
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Michel Tchilibou, Ariane Koch-Larrouy, Simon Barbot, Florent Lyard, Yves Morel, Julien Jouanno, and Rosemary Morrow
Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, https://doi.org/10.5194/os-18-1591-2022, 2022
Short summary
Short summary
This high-resolution model-based study investigates the variability in the generation, propagation, and sea height signature (SSH) of the internal tide off the Amazon shelf during two contrasted seasons. ITs propagate further north during the season characterized by weak currents and mesoscale eddies and a shallow and strong pycnocline. IT imprints on SSH dominate those of the geostrophic motion for horizontal scales below 200 km; moreover, the SSH is mainly incoherent below 70 km.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Ramilla Vieira Assunção, Anne Lebourges-Dhaussy, Alex Costa da Silva, Bernard Bourlès, Gary Vargas, Gildas Roudaut, and Arnaud Bertrand
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-101, https://doi.org/10.5194/os-2021-101, 2021
Publication in OS not foreseen
Short summary
Short summary
Active acoustics has been used to characterize physical structures and processes in the ocean, typically attributed to biological dispersion or turbulent structures. We take advantage of acoustic data from the Southwest Atlantic to test the feasibility of this approach in an oligotrophic region. The results show that the thermohaline structure impacts the vertical distribution of acoustic scatterers, however the methods tested did not allow a robust estimate of the thermohaline limits.
Pierre Damien, Julio Sheinbaum, Orens Pasqueron de Fommervault, Julien Jouanno, Lorena Linacre, and Olaf Duteil
Biogeosciences, 18, 4281–4303, https://doi.org/10.5194/bg-18-4281-2021, https://doi.org/10.5194/bg-18-4281-2021, 2021
Short summary
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Julien Jouanno and Xavier Capet
Ocean Sci., 16, 1207–1223, https://doi.org/10.5194/os-16-1207-2020, https://doi.org/10.5194/os-16-1207-2020, 2020
Short summary
Short summary
The dynamical balance of the Antarctic Circumpolar Current and its implications on the functioning of the world ocean are not fully understood and poorly represented in global circulation models. In this study, the sensitivities of an idealized Southern Ocean (SO) storm track are explored with a set of eddy-rich numerical simulations. We show that the classical partition between barotropic and baroclinic modes is sensitive to current–topography interactions in the mesoscale range of 10–100 km.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Vincent Echevin, Manon Gévaudan, Dante Espinoza-Morriberón, Jorge Tam, Olivier Aumont, Dimitri Gutierrez, and François Colas
Biogeosciences, 17, 3317–3341, https://doi.org/10.5194/bg-17-3317-2020, https://doi.org/10.5194/bg-17-3317-2020, 2020
Short summary
Short summary
The coasts of Peru encompass the richest fisheries in the entire ocean. It is therefore very important for this country to understand how the nearshore marine ecosystem may evolve under climate change. Fine-scale numerical models are very useful because they can represent precisely the evolution of key parameters such as temperature, water oxygenation, and plankton biomass. Here we study the evolution of the Peruvian marine ecosystem in the 21st century under the worst-case climate scenario.
Renaud Person, Olivier Aumont, Gurvan Madec, Martin Vancoppenolle, Laurent Bopp, and Nacho Merino
Biogeosciences, 16, 3583–3603, https://doi.org/10.5194/bg-16-3583-2019, https://doi.org/10.5194/bg-16-3583-2019, 2019
Short summary
Short summary
The Antarctic Ice Sheet is considered a possibly important but largely overlooked source of iron (Fe). Here we explore its fertilization capacity by evaluating the response of marine biogeochemistry to Fe release from icebergs and ice shelves in a global ocean model. Large regional impacts are simulated, leading to only modest primary production and carbon export increases at the scale of the Southern Ocean. Large uncertainties are due to low observational constraints on modeling choices.
Mélodie Trolliet, Jakub P. Walawender, Bernard Bourlès, Alexandre Boilley, Jörg Trentmann, Philippe Blanc, Mireille Lefèvre, and Lucien Wald
Ocean Sci., 14, 1021–1056, https://doi.org/10.5194/os-14-1021-2018, https://doi.org/10.5194/os-14-1021-2018, 2018
Lala Kounta, Xavier Capet, Julien Jouanno, Nicolas Kolodziejczyk, Bamol Sow, and Amadou Thierno Gaye
Ocean Sci., 14, 971–997, https://doi.org/10.5194/os-14-971-2018, https://doi.org/10.5194/os-14-971-2018, 2018
Short summary
Short summary
The currents along the West African seaboard are poorly known. Based on a carefully evaluated numerical simulation the present study describes these currents in the sector 8–20°N and the physical processes that drive them. Prevailing northward flow with two intensification periods per year is identified. Both local and distant coastal winds (blowing as far as thousands of kilometers away in the Gulf of Guinea) contribute to the circulation in this sector.
Gaëlle Herbert and Bernard Bourlès
Ocean Sci., 14, 849–869, https://doi.org/10.5194/os-14-849-2018, https://doi.org/10.5194/os-14-849-2018, 2018
Short summary
Short summary
The impact of boreal spring intraseasonal wind bursts on sea surface temperature variability in the eastern tropical Atlantic in 2005 and 2006 is investigated. The cooling events induced by southerly wind bursts are modulated by local and remote forcing. A particularly strong wind event and a strong cooling occurred in mid-May 2005. It appears as a decisive event in the West African monsoon onset. This study emphasizes the need to further document and monitor the South Atlantic region.
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Short summary
N2 fixation is recognized as one of the major sources of nitrogen in the ocean. Thus, N2 fixation sustains a significant part of the primary production (PP) by supplying the most common limiting nutrient for phytoplankton growth. From numerical simulations, the local maximums of Trichodesmium biomass in the Pacific are found around islands, explained by the iron fluxes from island sediments. We assessed that 15 % of the PP may be due to Trichodesmium in the low-nutrient, low-chlorophyll areas.
Julien Jouanno, Olga Hernandez, and Emilia Sanchez-Gomez
Earth Syst. Dynam., 8, 1061–1069, https://doi.org/10.5194/esd-8-1061-2017, https://doi.org/10.5194/esd-8-1061-2017, 2017
Sandrine Djakouré, Moacyr Araujo, Aubains Hounsou-Gbo, Carlos Noriega, and Bernard Bourlès
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-346, https://doi.org/10.5194/bg-2017-346, 2017
Revised manuscript has not been submitted
Madhavan Girijakumari Keerthi, Matthieu Lengaigne, Marina Levy, Jerome Vialard, Vallivattathillam Parvathi, Clément de Boyer Montégut, Christian Ethé, Olivier Aumont, Iyyappan Suresh, Valiya Parambil Akhil, and Pillathu Moolayil Muraleedharan
Biogeosciences, 14, 3615–3632, https://doi.org/10.5194/bg-14-3615-2017, https://doi.org/10.5194/bg-14-3615-2017, 2017
Short summary
Short summary
The northern Arabian Sea hosts a winter chlorophyll bloom, which exhibits strong interannual variability. The processes responsible for this interannual variation of the bloom are investigated using observations and a model. The interannual fluctuations of the winter bloom are largely related to the interannual mixed-layer depth (MLD) anomalies, which are driven by net heat flux anomalies. MLD controls the bloom amplitude through a modulation of nutrient turbulent fluxes into the mixed layer.
Guillaume Le Gland, Laurent Mémery, Olivier Aumont, and Laure Resplandy
Biogeosciences, 14, 3171–3189, https://doi.org/10.5194/bg-14-3171-2017, https://doi.org/10.5194/bg-14-3171-2017, 2017
Short summary
Short summary
In this study, we computed the fluxes of radium-228 from the continental shelf to the open ocean by fitting a numerical model to observations. After determining appropriate model parameters (cost function and number of source regions), we found a lower and more precise global flux than previous estimates: 8.01–8.49×1023 atoms yr−1. This result can be used to assess nutrient and trace element fluxes to the open ocean, but we cannot identify specific pathways like submarine groundwater discharge.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Olivier Aumont, Marco van Hulten, Matthieu Roy-Barman, Jean-Claude Dutay, Christian Éthé, and Marion Gehlen
Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017, https://doi.org/10.5194/bg-14-2321-2017, 2017
Short summary
Short summary
The marine biological carbon pump is dominated by the vertical transfer of particulate organic carbon (POC) from the surface ocean to its interior. In this study, we explore the impacts of a variable composition of this organic matter using a global ocean biogeochemical model. We show that accounting for a variable lability of POC increases POC concentrations by up to 2 orders of magnitude in the ocean's interior. Furthermore, the amount of carbon that reaches the sediments is twice as large.
Parvathi Vallivattathillam, Suresh Iyyappan, Matthieu Lengaigne, Christian Ethé, Jérôme Vialard, Marina Levy, Neetu Suresh, Olivier Aumont, Laure Resplandy, Hema Naik, and Wajih Naqvi
Biogeosciences, 14, 1541–1559, https://doi.org/10.5194/bg-14-1541-2017, https://doi.org/10.5194/bg-14-1541-2017, 2017
Short summary
Short summary
During late boreal summer and fall, the west coast of India (WCI) experiences hypoxia, which turns into anoxia during some years. We analyze a coupled physical–biogeochemical simulation over the 1960–2012 period to investigate the physical processes influencing oxycline interannual variability off the WCI. We show that fall WCI oxycline fluctuations are strongly related to Indian Ocean Dipole (IOD), with positive IODs preventing anoxia, while negative IODs do not necessarily result in anoxia.
Pierre-Amaël Auger, Thomas Gorgues, Eric Machu, Olivier Aumont, and Patrice Brehmer
Biogeosciences, 13, 6419–6440, https://doi.org/10.5194/bg-13-6419-2016, https://doi.org/10.5194/bg-13-6419-2016, 2016
Short summary
Short summary
A box modeling approach reveals that horizontal currents drive the spatial distribution of phytoplankton biomass and primary production in the north-west African upwelling system. Alongshore (cross-shore) currents limit (enhance) cross-shore exchanges north (south) of Cape Blanc. Off Cape Blanc, a meridional convergence makes ambiguous the response of coastal nutrient upwelling to wind forcings, and high production is based upon nutrients and remineralized matter injected by horizontal currents.
Corinne Le Quéré, Erik T. Buitenhuis, Róisín Moriarty, Séverine Alvain, Olivier Aumont, Laurent Bopp, Sophie Chollet, Clare Enright, Daniel J. Franklin, Richard J. Geider, Sandy P. Harrison, Andrew G. Hirst, Stuart Larsen, Louis Legendre, Trevor Platt, I. Colin Prentice, Richard B. Rivkin, Sévrine Sailley, Shubha Sathyendranath, Nick Stephens, Meike Vogt, and Sergio M. Vallina
Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, https://doi.org/10.5194/bg-13-4111-2016, 2016
Short summary
Short summary
We present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types, and use the model to assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean. Our results suggest that observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton growth.
Julien Jouanno, Xavier Capet, Gurvan Madec, Guillaume Roullet, and Patrice Klein
Ocean Sci., 12, 743–769, https://doi.org/10.5194/os-12-743-2016, https://doi.org/10.5194/os-12-743-2016, 2016
Short summary
Short summary
The aim of this study is to clarify the role of the Southern Ocean storms on interior mixing and meridional overturning circulation. A periodic and idealized configuration of the NEMO model has been designed to represent the key physical processes of a zonal portion of the Southern Ocean. Challenging issues concerning how numerical models are able to represent interior mixing forced by high-frequency winds are exposed and discussed, particularly in the context of the overturning circulation.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
Roland Séférian, Christine Delire, Bertrand Decharme, Aurore Voldoire, David Salas y Melia, Matthieu Chevallier, David Saint-Martin, Olivier Aumont, Jean-Christophe Calvet, Dominique Carrer, Hervé Douville, Laurent Franchistéguy, Emilie Joetzjer, and Séphane Sénési
Geosci. Model Dev., 9, 1423–1453, https://doi.org/10.5194/gmd-9-1423-2016, https://doi.org/10.5194/gmd-9-1423-2016, 2016
Short summary
Short summary
This paper presents the first IPCC-class Earth system model developed at Centre National de Recherches Météorologiques (CNRM-ESM1). We detail how the various carbon reservoirs were initialized and analyze the behavior of the carbon cycle and its prominent physical drivers, comparing model results to the most up-to-date climate and carbon cycle dataset over the latest decades.
O. Aumont, C. Ethé, A. Tagliabue, L. Bopp, and M. Gehlen
Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, https://doi.org/10.5194/gmd-8-2465-2015, 2015
K. B. Rodgers, O. Aumont, S. E. Mikaloff Fletcher, Y. Plancherel, L. Bopp, C. de Boyer Montégut, D. Iudicone, R. F. Keeling, G. Madec, and R. Wanninkhof
Biogeosciences, 11, 4077–4098, https://doi.org/10.5194/bg-11-4077-2014, https://doi.org/10.5194/bg-11-4077-2014, 2014
I. Borrione, O. Aumont, M. C. Nielsdóttir, and R. Schlitzer
Biogeosciences, 11, 1981–2001, https://doi.org/10.5194/bg-11-1981-2014, https://doi.org/10.5194/bg-11-1981-2014, 2014
M. Ishii, R. A. Feely, K. B. Rodgers, G.-H. Park, R. Wanninkhof, D. Sasano, H. Sugimoto, C. E. Cosca, S. Nakaoka, M. Telszewski, Y. Nojiri, S. E. Mikaloff Fletcher, Y. Niwa, P. K. Patra, V. Valsala, H. Nakano, I. Lima, S. C. Doney, E. T. Buitenhuis, O. Aumont, J. P. Dunne, A. Lenton, and T. Takahashi
Biogeosciences, 11, 709–734, https://doi.org/10.5194/bg-11-709-2014, https://doi.org/10.5194/bg-11-709-2014, 2014
J. C. Currie, M. Lengaigne, J. Vialard, D. M. Kaplan, O. Aumont, S. W. A. Naqvi, and O. Maury
Biogeosciences, 10, 6677–6698, https://doi.org/10.5194/bg-10-6677-2013, https://doi.org/10.5194/bg-10-6677-2013, 2013
Related subject area
Biogeochemistry: Open Ocean
Sedimentary organic matter signature hints at the phytoplankton-driven biological carbon pump in the central Arabian Sea
Hydrological cycle amplification imposes spatial patterns on the climate change response of ocean pH and carbonate chemistry
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models
Evaluation of CMIP6 model performance in simulating historical biogeochemistry across the southern South China Sea
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Ocean alkalinity enhancement impacts: regrowth of marine microalgae in alkaline mineral concentrations simulating the initial concentrations after ship-based dispersions
Climatic controls on metabolic constraints in the ocean
Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Short-term response of Emiliania huxleyi growth and morphology to abrupt salinity stress
Assessing the impact of CO2-equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system
Ocean Acidification trends and Carbonate System dynamics in the North Atlantic Subpolar Gyre during 2009–2019
Phosphomonoesterase and phosphodiesterase activities in the eastern Mediterranean in two contrasting seasonal situations
Net primary production annual maxima in the North Atlantic projected to shift in the 21st century
Testing the influence of light on nitrite cycling in the eastern tropical North Pacific
Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary
Technical note: Assessment of float pH data quality control methods – a case study in the subpolar northwest Atlantic Ocean
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
All about nitrite: exploring nitrite sources and sinks in the eastern tropical North Pacific oxygen minimum zone
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Global nutrient cycling by commercially targeted marine fish
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024, https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
Allison Hogikyan and Laure Resplandy
Biogeosciences, 21, 4621–4636, https://doi.org/10.5194/bg-21-4621-2024, https://doi.org/10.5194/bg-21-4621-2024, 2024
Short summary
Short summary
Rising atmospheric CO2 influences ocean carbon chemistry, leading to ocean acidification. Global warming introduces spatial patterns in the intensity of ocean acidification. We show that the most prominent spatial patterns are controlled by warming-driven changes in rainfall and evaporation, not by the direct effect of warming on carbon chemistry and pH. These evaporation and rainfall patterns oppose acidification in saltier parts of the ocean and enhance acidification in fresher regions.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Lyuba Novi, Annalisa Bracco, Takamitsu Ito, and Yohei Takano
Biogeosciences, 21, 3985–4005, https://doi.org/10.5194/bg-21-3985-2024, https://doi.org/10.5194/bg-21-3985-2024, 2024
Short summary
Short summary
We explored the relationship between oxygen and stratification in the North Pacific Ocean using a combination of data mining and machine learning. We used isopycnic potential vorticity (IPV) as an indicator to quantify ocean ventilation and analyzed its predictability, a strong O2–IPV connection, and predictability for IPV in the tropical Pacific. This opens new routes for monitoring ocean O2 through few observational sites co-located with more abundant IPV measurements in the tropical Pacific.
Winfred Marshal, Jing Xiang Chung, Nur Hidayah Roseli, Roswati Md Amin, and Mohd Fadzil Bin Mohd Akhir
Biogeosciences, 21, 4007–4035, https://doi.org/10.5194/bg-21-4007-2024, https://doi.org/10.5194/bg-21-4007-2024, 2024
Short summary
Short summary
This study stands out for thoroughly examining CMIP6 ESMs' ability to simulate biogeochemical variables in the southern South China Sea, an economically important region. It assesses variables like chlorophyll, phytoplankton, nitrate, and oxygen on annual and seasonal scales. While global assessments exist, this study addresses a gap by objectively ranking 13 CMIP6 ocean biogeochemistry models' performance at a regional level, focusing on replicating specific observed biogeochemical variables.
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024, https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Short summary
Despite the ocean’s importance in the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 models to understand drivers of decadal trends of the past, present, and future ocean carbon sink. I show that 80 % of the decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends in atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024, https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary
Short summary
We calculate the amount of anthropogenic carbon (Cant) in the Atlantic for the years 1990, 2000, 2010 and 2020. Cant is the carbon that is taken up by the ocean as a result of humanmade CO2 emissions. To determine the amount of Cant, we apply a technique that is based on the observations of other humanmade gases (e.g., chlorofluorocarbons). Regionally, changes in ocean ventilation have an impact on the storage of Cant. Overall, the increase in Cant is driven by the rising CO2 in the atmosphere.
Stephanie Delacroix, Tor Jensen Nystuen, August E. Dessen Tobiesen, Andrew L. King, and Erik Höglund
Biogeosciences, 21, 3677–3690, https://doi.org/10.5194/bg-21-3677-2024, https://doi.org/10.5194/bg-21-3677-2024, 2024
Short summary
Short summary
The addition of alkaline minerals into the ocean might reduce excessive anthropogenic CO2 emissions. Magnesium hydroxide can be added in large amounts because of its low seawater solubility without reaching harmful pH levels. The toxicity effect results of magnesium hydroxide, by simulating the expected concentrations from a ship's dispersion scenario, demonstrated low impacts on both sensitive and local assemblages of marine microalgae when compared to calcium hydroxide.
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024, https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary
Short summary
How quickly do marine microorganisms respond to salinity stress? Our experiments with the calcifying marine plankton Emiliania huxleyi show that growth and cell morphology responded to salinity stress within as little as 24–48 hours, demonstrating that morphology and calcification are sensitive to salinity over a range of timescales. Our results have implications for understanding the short-term role of E. huxleyi in biogeochemical cycles and in size-based paleoproxies for salinity.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1388, https://doi.org/10.5194/egusphere-2024-1388, 2024
Short summary
Short summary
The study evaluated CO2-carbonate system dynamics in the North Atlantic Subpolar Gyre from 2009 to 2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of Ocean Acidification and improve our knowledge about its impact on marine ecosystems.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024, https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Short summary
The marine CO2 system can be measured independently and continuously by BGC-Argo floats since numerous pH sensors have been developed to suit these autonomous measurements platforms. By applying the Argo correction routines to float pH data acquired in the subpolar North Atlantic Ocean, we report the uncertainty and lack of objective criteria associated with the choice of the reference method as well the reference depth for the pH correction.
Sabine Mecking and Kyla Drushka
Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024, https://doi.org/10.5194/bg-21-1117-2024, 2024
Short summary
Short summary
This study investigates whether northeastern North Pacific oxygen changes may be caused by surface density changes in the northwest as water moves along density horizons from the surface into the subsurface ocean. A correlation is found with a lag that about matches the travel time of water from the northwest to the northeast. Salinity is the main driver causing decadal changes in surface density, whereas salinity and temperature contribute about equally to long-term declining density trends.
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024, https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
Short summary
This study aims to estimate how much oceanic oxygen has been lost and its uncertainties. One major source of uncertainty comes from the statistical gap-filling methods. Outputs from Earth system models are used to generate synthetic observations where oxygen data are extracted from the model output at the location and time of historical oceanographic cruises. Reconstructed oxygen trend is approximately two-thirds of the true trend.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023, https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Short summary
In the Southern Ocean, abundant eddies behave opposite to our expectations. That is, anticyclonic (cyclonic) eddies are cold (warm). By investigating the variations of physical and biochemical parameters in eddies, we find that abnormal eddies have unique and significant effects on modulating the parameters. This study fills a gap in understanding the effects of abnormal eddies on physical and biochemical parameters in the Southern Ocean.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Daniela König and Alessandro Tagliabue
Biogeosciences, 20, 4197–4212, https://doi.org/10.5194/bg-20-4197-2023, https://doi.org/10.5194/bg-20-4197-2023, 2023
Short summary
Short summary
Using model simulations, we show that natural and anthropogenic changes in the global climate leave a distinct fingerprint in the isotopic signatures of iron in the surface ocean. We find that these climate effects on iron isotopes are often caused by the redistribution of iron from different external sources to the ocean, due to changes in ocean currents, and by changes in algal growth, which take up iron. Thus, isotopes may help detect climate-induced changes in iron supply and algal uptake.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023, https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Short summary
The oceans play a crucial role in the uptake of atmospheric carbon dioxide, particularly the Southern Ocean. The biological pumping of carbon from the surface to the deep ocean is key to this. Using sediment trap samples from the Scotia Sea, we examine biogeochemical fluxes of carbon, nitrogen, and biogenic silica and their stable isotope compositions. We find phytoplankton community structure and physically mediated processes are important controls on particulate fluxes to the deep ocean.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023, https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Short summary
This study shows that atmospheric deposition is the most important source of iron to the upper northern Indian Ocean for phytoplankton growth. This is followed by iron from continental-shelf sediment. Phytoplankton increase following iron addition is possible only with high background levels of nitrate. Vertical mixing is the most important physical process supplying iron to the upper ocean in this region throughout the year. The importance of ocean currents in supplying iron varies seasonally.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Cited articles
Aiken, J., Brewin, R. J. W., Dufois, F., Polimene, L., Hardman-Mountford, N.
J., Jackson, T., Loveday, B., Mallor Hoya, S., Dall'Olmo, G., Stephens, J.,
and Hirata, T.: A synthesis of the environmental response of the North and
South Atlantic Sub-Tropical Gyres during two decades of AMT, Prog.
Oceanogr., 158, 236–254, 2017.
Athié, G. and Marin, F.: Cross-equatorial structure and temporal
modulation of intraseasonal variability at the surface of the Tropical
Atlantic Ocean, J. Geophys. Res., 113, C08020, https://doi.org/10.1029/2007JC004332,
2008.
Athié, G., Marin, F., Treguier, A.-M., Bourlès, B., and Guiavarc'h,
C.: Sensitivity of near-surface Tropical Instability Waves to submonthly
wind forcing in the tropical Atlantic, Ocean Model., 30, 241–255, 2009.
Aumont, O. and Bopp, L.: Globalizing results from ocean in-situ iron
fertilization experiments, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Blanke, B., Arhan M., Lazar, A., and Prévost, G.: A Lagrangian numerical
investigation of the origins and fates of the salinity maximum water in the
Atlantic, J. Geophys. Res., 107, 3163, https://doi.org/10.1029/2002JC001318, 2002.
Bourlès, B.: PIRATA, https://doi.org/10.18142/14, 1997.
Bourlès, B., Gouriou, Y., and Chuchla, R.: On the circulation in the
upper layer of the western equatorial Atlantic. J. Geophys. Res., 104,
21151–21170, 1999.
Bourlès, B., Brandt, P., Caniaux,G., Dengler, M., Gouriou, Y., Key, E.,
Lumpkin, R., Marin, F., Molinari, R. L., and Schmid, C.: African monsoon
multidisciplinary analysis (AMMA): special measurements in the tropical
Atlantic, CLIVAR Exchanges, 41, 7–9, 2007.
Bourlès, B., Lumpkin, R., McPhaden, M. J., Hernandez, F., Nobre, P.,
Campos, E., Yu, L., Planton, S., Busalacchi, A., Moura, A. D., Servain, J.,
and Trotte, J.: The PIRATA program: History, accomplishments, and future
directions, B. Am. Meteorol. Soc., 89, 1111–1125, https://doi.org/10.1175/2008BAMS2462.1, 2008.
Bourlès, B., Baurand, F., Hillion, S., Rousselot, P., Grelet, J.,
Bachelier, C., Roubaud, F., Gouriou, Y., and Chuchla, R.: French PIRATA
cruises: Chemical analysis data, SEANOE, https://doi.org/10.17882/58141,
2018a.
Bourlès, B., Habasque, J., Rousselot, P., Grelet, J., Roubaud, F.,
Bachelier, C., and Gouriou, Y.: French PIRATA cruises: Mooring ADCP data,
SEANOE, https://doi.org/10.17882/51557, 2018b.
Bourlès, B., Herbert, G., Rousselot, P., and Grelet, J.: French PIRATA
cruises: S-ADCP data, SEANOE, https://doi.org/10.17882/44635, 2018c.
Bourlès, B., Araujo, M., McPhaden, M. J., Brandt, P., Foltz, G. R.,
Lumpkin, R., Giordani, H., Hernandez, F., Lefèvre, N., Nobre, P.,
Campos, E., Saravanan, R., Trotte-Duhà, J., Dengler, M., Hahn, J.,
Hummels, R., Lübbecke, J. F., Rouault, M., Cotrim, L., Sutton, A.,
Jochum, M., and Perez, R. C.: PIRATA: A Sustained Observing System for
Tropical Atlantic Climate Research and Forecasting, Earth and Space Science,
6, 577–616, https://doi.org/10.1029/2018EA000428, 2019.
Caltabiano, A. C. V., Robinson, I. S., and Pezzi, L. P.: Multi-year satellite observations of instability waves in the Tropical Atlantic Ocean, Ocean Sci., 1, 97–112, https://doi.org/10.5194/os-1-97-2005, 2005.
Caniaux, G., Giordani, H., Redelsperger, J.-L., Guichard, F., Key, E., and
Wade, M.: Coupling between the Atlantic cold tongue and the West African
monsoon in boreal spring and summer, J. Geophys. Res., 116, C04003,
https://doi.org/10.1029/2010JC006570, 2011.
Carton, J. A. and Zhou, Z. X.: Annual cycle of sea surface temperature in
the tropical Atlantic Ocean, J. Geophys. Res., 102, 27813–27824, 1997.
Christian, J. R. and Murtugudde, R.: Tropical Atlantic variability in a
coupled physical–biogeochemical ocean model, Deep-Sea Res. Pt. II, 50,
2947–2969, 2003.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys. Res., 109, C12003,
https://doi.org/10.1029/2004JC002378, 2004.
de Coëtlogon, G., Janicot, S., and Lazar, A.: Intraseasonal variability
of the ocean-atmosphere coupling in the Gulf of Guinea during boreal spring
and summer, Q. J. Roy. Meteor. Soc., 136, 426–441, https://doi.org/10.1002/qj.554, 2010.
Ding, H., Keenlyside, N. S., and Latif, M.: Seasonal cycle in the upper
Equatorial Atlantic Ocean, J. Geophys. Res., 114, C09016,
https://doi.org/10.1029/2009JC005418, 2009.
Dussin, R., Barnier, B., and Brodeau, L.: The making of Drakkar forcing set
DFS5, DRAKKAR/MyOcean Report 01-04-16, LGGE, Grenoble, France, 2016.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M.,
Baranova, O. K., and Johnson, D. R.: World Ocean Atlas 2009, Volume 4:
Nutrients (phosphate, nitrate, silicate), S. Levitus, Ed. NOAA Atlas NESDIS
71, U.S. Government Printing Office, Washington, D.C., 398 pp., 2010.
Gorgues, T., Menkes, C., Aumont, O., Vialard, J., Dandonneau, Y., and Bopp,
L.: Biogeochemical impact of tropical instability waves in the equatorial
Pacific, Geophys. Res. Lett., 32, L24615, https://doi.org/10.1029/2005GL024110, 2005.
Grodsky, S. A., Carton, J. A., and McClain, C. R.: Variability of upwelling
and chlorophyll in the equatorial Atlantic, Geophys. Res. Lett., 35, L03610,
https://doi.org/10.1029/2007GL032466, 2008.
Habasque, J. and Herbert, G.: Intercomparaison des mesures de courant dans
l'Atlantique tropical, Rapport Coriolis, 65 pp.,
https://doi.org/10.13155/55134, 2018.
Hazeleger, W., de Vries, P., and Friocourt, Y.: Sources of the Equatorial
Undercurrent in the Atlantic in a high resolution ocean model, J. Phys.
Oceanogr., 33, 677–693, 2003.
Herbert, G. and Bourlès, B.: Impact of intraseasonal wind bursts on sea
surface temperature variability in the far Eastern tropical Atlantic Ocean
during boreal spring 2005 and 2006: focus on the mid-May 2005 event, Ocean
Sci., 14, 849–869, https://doi.org/10.5194/os-14-849-2018, 2018.
Hernandez, O., Jouanno, J., and Durand, F.: Do the Amazon and Orinoco
freshwater plumes really matter for hurricane-induced ocean surface cooling?
J. Geophys. Res.-Oceans, 121, 2119–2141, https://doi.org/10.1002/2015JC011021, 2016.
Hernandez, O., Jouanno, J., Echevin, V., and Aumont, O.: Modification
of sea surface temperature by chlorophyll concentration in the Atlantic
upwelling systems, J. Geophys. Res.-Oceans, 122, 5367–5389,
https://doi.org/10.1002/2016JC012330, 2017.
Hisard, P.: Variations saisonnières à l'équateur dans le Golfe
de Guinée, Cahiers O.R.S.T.O.M., 11, 349–358, 1973.
Houghton, R. W. and Colin, C.: Wind-driven meridional heat flux in the Gulf
of Guinea, J. Geophys. Res., 92, 10777–10786, 1987.
Jochum, M., Malanotte-Rizzoli, P., and Busalacchi, A.: Tropical instability
waves in the Atlantic Ocean, Ocean Model., 7, 145–163,
https://doi.org/10.1016/S1463-5003(03)00042-8, 2004.
Jouanno, J., Marin, F., du Penhoat, Y., Molines, J.-M., and Sheinbaum, J.:
Seasonal modes of surface cooling in the Gulf of Guinea, J. Phys. Oceanogr.,
41, 1408–1416, 2011a.
Jouanno, J., Marin, F., du Penhoat, Y., Sheinbaum, J., and Molines, J.-M.:
Seasonal heat balance in the upper 100 m of the equatorial Atlantic Ocean,
J. Geophys. Res., 116, C09003, https://doi.org/10.1029/2010JC006912, 2011b.
Jouanno, J., Marin, F., du Penhoat, Y., and Molines, J.-M.: Intraseasonal
Modulation of the Surface Cooling in the Gulf of Guinea, J. Phys. Oceanogr.,
43, 382–401, https://doi.org/10.1175/JPO-D-12-053.1, 2013.
Large, W. G. and Yeager, S.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lefèvre, N.: Low CO2 concentrations in the Gulf of Guinea during the
upwelling season in 2006, Mar. Chem., 113, 93–101, 2009.
Loukos, H. and Mémery, L.: Simulation of the nitrate seasonal cycle in
the equatorial Atlantic ocean during 1983 and 1984, J. Geophys. Res., 104,
15549–15573, 1999.
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pôle de
modélisation No 27, Institut Pierre-Simon Laplace (IPSL), France, No 27,
ISSN 1288-1619, 2016.
Marin, F., Caniaux, G., Bourlès, B., Giordani, H., Gouriou, Y., and Key,
E.: Why were sea surface temperatures so different in the eastern equatorial
Atlantic in June 2005 and 2006?, J. Phys. Oceanogr., 39, 1416–1431, 2009.
Maritorena, S., Hembise Fanton d'Andon, O., Mangin, A., and Siegel, D. A.:
Merged satellite ocean color data products using a bio-optical model:
characteristics, benefits and issues, Remote Sens. Environ., 114, 1791–1804,
https://doi.org/10.1016/j.rse.2010.04.002, 2010.
Ménard, F., Fonteneau, A., Gaertner, D., Nordstrom, V., Stéquert,
B., and Marchal, E.: Exploitation of small tunas by a purse-seine fishery
with fish aggregating devices and their feeding ecology in an eastern
tropical Atlantic ecosystem, ICES J. Mar. Sci., 57, 525–530, 2000.
Menkes, C., Kennan, S. C., Flament, P., Dandonneau, Y., Masson, S., Biessy,
B., Marchal, E., Eldin, G., Grelet, J., Montel, Y., Morlière, A.,
Lebourges-Dhaussy, A., Moulin, C., Champalbert, G., and Herbland, A.: A
whirling ecosystem in the Equatorial Atlantic, Geophys. Res. Lett., 11,
1553, https://doi.org/10.1029/2001GL014576, 2002.
Menkes, C., Vialard, J., Kennan, S. C., Boulanger, J.-P., and Madec, G.: A
modeling study of the impact of tropical instability waves on the heat
budget of the eastern equatorial Pacific, J. Phys. Oceanogr., 36,
847–865, 2006.
Merle, J.: Seasonal heat budget in the equatorial Atlantic Ocean, J. Phys.
Oceanogr., 10, 464–469, 1980.
Monger, B., McClain, C., and Murtugudde, R.: Seasonal phytoplankton dynamics
in the eastern tropical Pacific, J. Geophys. Res., 102, 12389–12411, 1997.
Morel, A. and Berthon, J.-F.: Surface pigments, algal biomass profiles, and
potential production of the euphotic layer: relationships investigated in
view of remote-sensing applications, Limnol. Oceanogr., 34, 1545–1562, 1989.
Morlière, A., le Bouteiller, A., and Citeau, J.: Tropical instability
waves in the Atlantic Ocean: a contributor to biological processes, Oceanol.
Acta, 17, 585–596, 1994.
Nubi, O. A., Bourlès, B., Edokpayi, C. A., and Hounkonnou, M. N.:. On
the nutrient distribution and phytoplankton biomass in the Gulf of Guinea
equatorial band as inferred from in-situ measurements, J. Oceanogr. Mar.
Sci., 7, 1–11, https://doi.org/10.5897/JOMS2016.0124, 2016.
Okumura, Y. and Xie, S.-P.: Some overlooked features of tropical Atlantic
climate leading to a new Nino-like phenomenon, J. Climate, 19, 5859–5874,
https://doi.org/10.1175/JCLI3928.1, 2006.
Oudot, C.: La distribution des sels nutritifs (NO3-NO2-NH4-PO4-SiO3) dans l'Océan Atlantique intertropical
oriental (région du golfe de Guinée), Océanographie Tropicale,
18, 223–248, 1983.
Oudot, C. and Morin, P.: The distribution of nutrients in the equatorial
Atlantic: relation to physical processes and phytoplankton biomass, Oceanol.
Acta, Proceedings International Symposium on Equatorial Vertical Motion,
6–10 May 1985, Paris, 121–130, 1987.
Perez, R. C., Hormann, V., Lumpkin, R., Brandt, P., Johns, W. E., Hernandez,
F., Schmid, C., and Bourlès, B.: Mean meridional currents in the central
and eastern equatorial Atlantic, Clim. Dynam., 43, 2943–2962,
https://doi.org/10.1007/s00382-013-1968-5, 2014.
Perez, R. C., Foltz, G. R., Lumpkin, R., and Schmid, C.: Direct measurements
of upper ocean horizontal velocity and vertical shear in the tropical North
Atlantic at 4∘ N, 23∘ W, J. Geophys Res.-Oceans,
124, 4133–4151, https://doi.org/10.1029/2019JC015064, 2019.
Pérez, V., Fernández, E., Marañón, E., Serret, P., and
García-Soto, C.: Seasonal and interannual variability of chlorophyll a
and primary production in the Equatorial Atlantic: in situ and remote
sensing observations, J. Plankton Res., 27, 189–197, 2005.
Peter, A.-C, le Hénaff, M., du Penhoat, Y., Menkes, C., Marin, F.,
Vialard, J., Caniaux, G., and Lazar, A.: A model study of the seasonal mixed
layer heat budget in the equatorial Atlantic, J. Geophys. Res., 111, C06014,
https://doi.org/10.1029/2005JC003157, 2006.
Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., and
McPhaden, M. J.: TropFlux: air-sea fluxes for the global tropical oceans –
Description and evaluation, Clim. Dynam., 38, 1521–1543,
https://doi.org/10.1007/s00382-011-1115-0, 2012.
Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., and Kumar, D.: Controlling factors of the oxygen balance in the Arabian Sea's OMZ, Biogeosciences, 9, 5095–5109, https://doi.org/10.5194/bg-9-5095-2012, 2012.
Servain, J., Busalacchi, A. J., McPhaden, M. J., Moura, A. D., Reverdin, G.,
Vianna, M., and Zebiak, S. E.: A Pilot Research Moored Array in the Tropical
Atlantic (PIRATA), B. Am. Meteorol. Soc., 79, 2019–2031, 1998.
Signorini, S. R., Murtugudde, R. G., McClain, C. R., Christian, J. R.,
Picaut, J., and Busalacchi, A. J.: Biological and physical signatures in the
tropical and sub-tropical Atlantic, J. Geophys. Res., 104, 18367–18382,
1999.
Storto, A., Masina, S., Simoncelli, S., Iovino, D., Cipollone, A.,
Drevillon, M., Drillet, Y., von Schuckman, K., Parent, L. Garric, G.,
Greiner, E., Desportes, C., Zuo, H., Balmaseda, M. A., and Peterson, K. A.:
The added value of the multi-system spread information for ocean heat
content and steric sea level investigations in the CMEMS GREP ensemble
reanalysis product, Clim. Dynam., 53, 287,
https://doi.org/10.1007/s00382-018-4585-5, 2018.
Strutton, P. G., Ryan, J. P., and Chavez, F. P.: Enhanced chlorophyll
associated with tropical instability waves in the equatorial Pacific,
Geophys. Res. Lett., 28, 2005–2008, 2001.
Vialard, J. and Delecluse, P.: An OGCM study for the TOGA decade. Part I:
Role of salinity in the physics of the western Pacific fresh pool, J. Phys.
Oceanogr., 28, 1071–1088, 1998.
Vialard, J., Menkes, C., Boulanger, J.-P., Delecluse, P., Guilyardi, E.,
McPhaden, M. J., and Madec, G.: A model study of oceanic mechanisms
affecting equatorial Pacific sea surface temperature during the 1997–98 El
Niño, J. Phys. Oceanogr., 31, 1649–1675, 2001.
Voituriez, B.: Les variations saisonnières des courants équatoriaux
à 4∘ W et l'upwelling équatorial du golfe de Guinée:
1. Le sous-courant équatorial, Océanographie Tropicale, 18, 163–183,
1983.
Voituriez, B. and Herbland, A.: Etude de la production pélagique de la
zone équatoriale de l'Atlantique à 4∘ W: 1. Relations
entre la structure hydrologique et la production primaire, Cahiers
ORSTOM.Série Océanographie, 15, 313–331, 1977.
Voituriez, B. and Herbland, A.: Signification de la relation
nitrate/température dans l'upwelling équatorial du Golfe de
Guinée, Oceanol. Acta, 7, 169–174, 1984.
White, R. H.: Using multiple passive tracers to identify the importance of
the North Brazil undercurrent for Atlantic cold tongue variability, Q. J.
Roy. Meteor. Soc., 141, 2505–2517, https://doi.org/10.1002/qj.2536, 2015.
Short summary
Satellite data and a remarkable set of in situ measurements show a main bloom of microscopic seaweed, the phytoplankton, in summer and a secondary bloom in December in the central equatorial Atlantic. They are driven by a strong vertical supply of nitrate in May–July and a shorter and moderate supply in November. In between, transport of low-nitrate water from the west explains most nitrate losses in the sunlit layer. Horizontal eddy-induced processes also contribute to seasonal nitrate removal.
Satellite data and a remarkable set of in situ measurements show a main bloom of microscopic...
Altmetrics
Final-revised paper
Preprint