Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-6081-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6081-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microbial functional signature in the atmospheric boundary layer
Romie Tignat-Perrier
CORRESPONDING AUTHOR
Institut des Géosciences de l'Environnement, CNRS, IRD, Grenoble INP, Université Grenoble Alpes, Grenoble, France
Environmental Microbial Genomics, Laboratoire Ampère, École
Centrale de Lyon,
Université de Lyon, Écully, France
Aurélien Dommergue
Institut des Géosciences de l'Environnement, CNRS, IRD, Grenoble INP, Université Grenoble Alpes, Grenoble, France
Alban Thollot
Institut des Géosciences de l'Environnement, CNRS, IRD, Grenoble INP, Université Grenoble Alpes, Grenoble, France
Olivier Magand
Institut des Géosciences de l'Environnement, CNRS, IRD, Grenoble INP, Université Grenoble Alpes, Grenoble, France
Timothy M. Vogel
Environmental Microbial Genomics, Laboratoire Ampère, École
Centrale de Lyon,
Université de Lyon, Écully, France
Catherine Larose
Environmental Microbial Genomics, Laboratoire Ampère, École
Centrale de Lyon,
Université de Lyon, Écully, France
Related authors
No articles found.
Koketso M. Molepo, Johannes Bieser, Alkuin M. Koenig, Ian M. Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand
Atmos. Chem. Phys., 25, 9645–9668, https://doi.org/10.5194/acp-25-9645-2025, https://doi.org/10.5194/acp-25-9645-2025, 2025
Short summary
Short summary
Mercury exchange between the ocean and atmosphere is poorly understood due to limited in situ data. Here, using atmospheric mercury observations from ground-based monitoring stations along with air mass trajectories, we found that atmospheric Hg levels increase with air mass ocean exposure time, matching predictions for ocean Hg emissions. This finding indicates that ocean emissions directly influence atmospheric Hg levels and enables us to estimate these emissions on a global scale.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Alkuin M. Koenig, Olivier Magand, Bert Verreyken, Jerome Brioude, Crist Amelynck, Niels Schoon, Aurélie Colomb, Beatriz Ferreira Araujo, Michel Ramonet, Mahesh K. Sha, Jean-Pierre Cammas, Jeroen E. Sonke, and Aurélien Dommergue
Atmos. Chem. Phys., 23, 1309–1328, https://doi.org/10.5194/acp-23-1309-2023, https://doi.org/10.5194/acp-23-1309-2023, 2023
Short summary
Short summary
The global distribution of mercury, a potent neurotoxin, depends on atmospheric transport, chemistry, and interactions between the Earth’s surface and the air. Our understanding of these processes is still hampered by insufficient observations. Here, we present new data from a mountain observatory in the Southern Hemisphere. We give insights into mercury concentrations in air masses coming from aloft, and we show that tropical mountain vegetation may be a daytime source of mercury to the air.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Sharmine Akter Simu, Yuzo Miyazaki, Eri Tachibana, Henning Finkenzeller, Jérôme Brioude, Aurélie Colomb, Olivier Magand, Bert Verreyken, Stephanie Evan, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 17017–17029, https://doi.org/10.5194/acp-21-17017-2021, https://doi.org/10.5194/acp-21-17017-2021, 2021
Short summary
Short summary
The tropical Indian Ocean (IO) is expected to be a significant source of water-soluble organic carbon (WSOC), which is relevant to cloud formation. Our study showed that marine secondary organic formation dominantly contributed to the aerosol WSOC mass at the high-altitude observatory in the southwest IO in the wet season in both marine boundary layer and free troposphere (FT). This suggests that the effect of marine secondary sources is important up to FT, a process missing in climate models.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, and Andrea Spolaor
Atmos. Chem. Phys., 21, 3163–3180, https://doi.org/10.5194/acp-21-3163-2021, https://doi.org/10.5194/acp-21-3163-2021, 2021
Short summary
Short summary
This paper shows the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on 7 glaciers across Svalbard. The dataset consists of the concentration, mass loading, spatial and altitudinal distribution of major ion species (Ca2+, K+,
Na2+, Mg2+,
NH4+, SO42−,
Br−, Cl− and
NO3−), together with its stable oxygen and hydrogen isotope composition (δ18O and
δ2H) in the snowpack. This study was part of the larger Community Coordinated Snow Study in Svalbard.
Christian Zdanowicz, Jean-Charles Gallet, Mats P. Björkman, Catherine Larose, Thomas Schuler, Bartłomiej Luks, Krystyna Koziol, Andrea Spolaor, Elena Barbaro, Tõnu Martma, Ward van Pelt, Ulla Wideqvist, and Johan Ström
Atmos. Chem. Phys., 21, 3035–3057, https://doi.org/10.5194/acp-21-3035-2021, https://doi.org/10.5194/acp-21-3035-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken snow surfaces, thus indirectly affecting climate. Information on BC in Arctic snow is needed to measure their impact and monitor the efficacy of pollution-reduction policies. This paper presents a large new set of BC measurements in snow in Svalbard collected between 2007 and 2018. It describes how BC in snow varies across the archipelago and explores some factors controlling these variations.
Cited articles
Aalismail, N. A., Ngugi, D. K., Díaz-Rúa, R., Alam, I., Cusack, M.,
and Duarte, C. M.: Functional metagenomic analysis of dust-associated
microbiomes above the Red Sea, Sci. Rep.-UK, 9, 1–12,
https://doi.org/10.1038/s41598-019-50194-0, 2019.
Allary, M., Lu, J. Z., Zhu, L., and Prigge, S. T.: Scavenging of the cofactor
lipoate is essential for the survival of the malaria parasite Plasmodium
falciparum, Mol. Microbiol., 63, 1331–1344,
https://doi.org/10.1111/j.1365-2958.2007.05592.x, 2007.
Alsved, M., Holm, S., Christiansen, S., Smidt, M., Ling, M., Boesen, T.,
Finster, K., Bilde, M., Löndahl, J., and Šantl-Temkiv, T.: Effect of
Aerosolization and Drying on the Viability of Pseudomonas syringae Cells,
Front. Microbiol., 9, 3086, https://doi.org/10.3389/fmicb.2018.03086, 2018.
Amato, P., Demeer, F., Melaouhi, A., Fontanella, S., Martin-Biesse, A.-S., Sancelme, M., Laj, P., and Delort, A.-M.: A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms, Atmos. Chem. Phys., 7, 4159–4169, https://doi.org/10.5194/acp-7-4159-2007, 2007.
Amato, P., Besaury, L., Joly, M., Penaud, B., Deguillaume, L., and Delort,
A.-M.: Metatranscriptomic exploration of microbial functioning in clouds,
Sci. Rep.-UK, 9, 1–12, https://doi.org/10.1038/s41598-019-41032-4, 2019.
Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological
degradation of atmospheric organic compounds, Geophys. Res. Lett.,
29, 2077, https://doi.org/10.1029/2002GL015637, 2002.
Ariya, P. A., Sun, J., Eltouny, N., Hudson, E., Hayes, C., and Kos, G.: Physical
and chemical characterization of bioaerosols – Implications for nucleation
processes, Int. Rev. Phys. Chem., 28, 1–32,
https://doi.org/10.1080/01442350802597438, 2009.
Aylor, D. E.: Spread of Plant Disease on a Continental Scale: Role of Aerial
Dispersal of Pathogens, Ecology, 84, 1989–1997, 2003.
Brown, J. K. M. and Hovmøller, M. S.: Aerial dispersal of pathogens on
the global and continental scales and its impact on plant disease, Science,
297, 537–541, https://doi.org/10.1126/science.1072678, 2002.
Brune, A., Frenzel, P., and Cypionka, H.: Life at the oxic-anoxic interface:
microbial activities and adaptations, FEMS Microbiol. Rev., 24, 691–710,
https://doi.org/10.1111/j.1574-6976.2000.tb00567.x, 2000.
Buchfink, B., Xie, C., and Huson, D. H.: Fast and sensitive protein alignment
using DIAMOND, Nat. Methods, 12, 59–60, https://doi.org/10.1038/nmeth.3176, 2015.
Bunik, V. I.: 2-Oxo acid dehydrogenase complexes in redox regulation, Eur.
J. Biochem., 270, 1036–1042, https://doi.org/10.1046/j.1432-1033.2003.03470.x, 2003.
Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., and
Zhu, T. F.: Inhalable Microorganisms in Beijing's PM2.5 and PM10 Pollutants
during a Severe Smog Event, Environ. Sci. Technol., 48, 1499–1507,
https://doi.org/10.1021/es4048472, 2014.
Delmont, T. O., Malandain, C., Prestat, E., Larose, C., Monier, J.-M.,
Simonet, P., and Vogel, T. M.: Metagenomic mining for microbiologists, ISME
J., 5, 1837–1843, https://doi.org/10.1038/ismej.2011.61, 2011.
Delort, A.-M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M.,
Mailhot, G., Laj, P., and Deguillaume, L.: A short overview of the microbial
population in clouds: Potential roles in atmospheric chemistry and
nucleation processes, Atmos. Res., 98, 249–260,
https://doi.org/10.1016/j.atmosres.2010.07.004, 2010.
Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A.,
Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl,
U., and Jaenicke, R.: Primary biological aerosol particles in the atmosphere:
a review, Tellus B, 64, 15598,
https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Dommergue, A., Amato, P., Tignat-Perrier, R., Magand, O., Thollot, A., Joly,
M., Bouvier, L., Sellegri, K., Vogel, T., Sonke, J. E., Jaffrezo, J.-L.,
Andrade, M., Moreno, I., Labuschagne, C., Martin, L., Zhang, Q., and Larose,
C.: Methods to investigate the global atmospheric microbiome, Front.
Microbiol., 10, 243, https://doi.org/10.3389/fmicb.2019.00243, 2019.
Donovan, P. D., Gonzalez, G., Higgins, D. G., Butler, G., and Ito, K.:
Identification of fungi in shotgun metagenomics datasets, PLOS ONE, 13,
e0192898, https://doi.org/10.1371/journal.pone.0192898, 2018.
Els, N., Larose, C., Baumann-Stanzer, K., Tignat-Perrier, R., Keuschnig, C.,
Vogel, T. M., and Sattler, B.: Microbial composition in seasonal time series
of free tropospheric air and precipitation reveals community separation,
Aerobiologia, 35, 671–701, https://doi.org/10.1007/s10453-019-09606-x, 2019.
Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D.,
Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A.,
Baccini, A., Gao, F., and Schaaf, C.: Global land cover mapping from MODIS:
algorithms and early results, Remote Sens. Environ., 83,
287–302, https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Griffin, D. W.: Atmospheric Movement of Microorganisms in Clouds of Desert
Dust and Implications for Human Health, Clin. Microbiol. Rev., 20, 459–477,
https://doi.org/10.1128/CMR.00039-06, 2007.
Gusareva, E. S., Acerbi, E., Lau, K. J. X., Luhung, I., Premkrishnan, B. N.
V., Kolundžija, S., Purbojati, R. W., Wong, A., Houghton, J. N. I.,
Miller, D., Gaultier, N. E., Heinle, C. E., Clare, M. E., Vettath, V. K.,
Kee, C., Lim, S. B. Y., Chénard, C., Phung, W. J., Kushwaha, K. K., Nee,
A. P., Putra, A., Panicker, D., Yanqing, K., Hwee, Y. Z., Lohar, S. R.,
Kuwata, M., Kim, H. L., Yang, L., Uchida, A., Drautz-Moses, D. I.,
Junqueira, A. C. M., and Schuster, S. C.: Microbial communities in the
tropical air ecosystem follow a precise diel cycle, P. Natl. Acad. Sci. USA, 116, 23299–23308, https://doi.org/10.1073/pnas.1908493116, 2019.
Hadley, W. and Winston, C.: Create Elegant Data Visualisations Using the
Grammar of Graphics, available at:
https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf (last access: April 2020), 2019.
Hill, K. A., Shepson, P. B., Galbavy, E. S., Anastasio, C., Kourtev, P. S.,
Konopka, A., and Stirm, B. H.: Processing of atmospheric nitrogen by clouds
above a forest environment, J. Geophys. Res.-Atmos.,
112, D11301, https://doi.org/10.1029/2006JD008002, 2007.
Hindré, T., Knibbe, C., Beslon, G., and Schneider, D.: New insights into
bacterial adaptation through in vivo and in silico experimental evolution, Nat. Rev. Microbiol., 10, 352–365, https://doi.org/10.1038/nrmicro2750, 2012.
Huang, M. and Hull, C. M.: Sporulation: How to survive on planet Earth (and
beyond), Curr. Genet., 63, 831–838, https://doi.org/10.1007/s00294-017-0694-7, 2017.
Huerta-Cepas, J., Forslund, K., Coelho, L. P., Szklarczyk, D., Jensen, L.
J., von Mering, C., and Bork, P.: Fast Genome-Wide Functional Annotation
through Orthology Assignment by eggNOG-Mapper, Mol. Biol. Evol., 34,
2115–2122, https://doi.org/10.1093/molbev/msx148, 2017.
Huson, D. H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra,
S., Ruscheweyh, H.-J., and Tappu, R.: MEGAN Community Edition – Interactive
Exploration and Analysis of Large-Scale Microbiome Sequencing Data, PLoS
Comput. Biol., 12, e1004957, https://doi.org/10.1371/journal.pcbi.1004957, 2016.
Imlay, J. A.: The molecular mechanisms and physiological consequences of
oxidative stress: lessons from a model bacterium, Nat. Rev. Microbiol., 11,
443–454, https://doi.org/10.1038/nrmicro3032, 2013.
Innocente, E., Squizzato, S., Visin, F., Facca, C., Rampazzo, G., Bertolini,
V., Gandolfi, I., Franzetti, A., Ambrosini, R., and Bestetti, G.: Influence
of seasonality, air mass origin and particulate matter chemical composition
on airborne bacterial community structure in the Po Valley, Italy, Sci.
Total Environ., 593/594, 677–687, https://doi.org/10.1016/j.scitotenv.2017.03.199, 2017.
Jaenicke, R.: Atmospheric aerosols and global climate, J. Aerosol Sci., 11, 577–588, https://doi.org/10.1016/0021-8502(80)90131-7, 1980.
Joly, M., Amato, P., Sancelme, M., Vinatier, V., Abrantes, M., Deguillaume,
L., and Delort, A.-M.: Survival of microbial isolates from clouds toward
simulated atmospheric stress factors, Atmos. Environ., 117, 92–98,
https://doi.org/10.1016/j.atmosenv.2015.07.009, 2015.
Keegan, K. P., Glass, E. M., Meyer, F.: MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function, edited by: Martin, F. and Uroz, S., Microbial Environmental Genomics (MEG), Methods in Molecular Biology, Humana Press, New York, 1399, 207–233, https://doi.org/10.1007/978-1-4939-3369-3_13, 2016.
Leinonen, R., Sugawara, H., and Shumway, M.: The Sequence Read Archive,
Nucleic Acids Res., 39, D19–D21, https://doi.org/10.1093/nar/gkq1019, 2011.
Li, Y., Zheng, L., Zhang, Y., Liu, H., and Jing, H.: Comparative metagenomics
study reveals pollution induced changes of microbial genes in mangrove
sediments, Sci. Rep., 9, 5739, https://doi.org/10.1038/s41598-019-42260-4,
2019.
Malik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J.,
Vazquez, P. G. M., Jehmlich, N., von Bergen, M., Griffiths, R. I., and
Gleixner, G.: Soil Fungal:Bacterial Ratios Are Linked to Altered Carbon
Cycling, Front. Microbiol., 7, 1247, https://doi.org/10.3389/fmicb.2016.01247, 2016.
NCBI Resource Coordinators: Database resources of the National Center for
Biotechnology Information, Nucleic Acids Res., 46, D8–D13,
https://doi.org/10.1093/nar/gkx1095, 2018.
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., and Wagner, H.: Community Ecology Package,
available at: https://github.com/vegandevs/vegan (last access: April 2020), 2019.
Rey, O., Danchin, E., Mirouze, M., Loot, C., and Blanchet, S.: Adaptation to
Global Change: A Transposable Element – Epigenetics Perspective, Trends Ecol. Evol., 31, 514–526, https://doi.org/10.1016/j.tree.2016.03.013, 2016.
Shannan, S., Collins, K., and Emanuel, W. R.: Global mosaics of the standard
MODIS land cover type data, University of Maryland and the Pacific Northwest National Laboratory, College
Park, Maryland, USA, 2014.
Shoeb, E., Badar, U., Akhter, J., Shams, H., Sultana, M., and Ansari, M. A.:
Horizontal gene transfer of stress resistance genes through plasmid
transport, World J. Microbiol. Biotechnol., 28, 1021–1025,
https://doi.org/10.1007/s11274-011-0900-6, 2012.
The Gene Ontology Consortium: The Gene Ontology Resource: 20 years and still
GOing strong, Nucleic Acids Res., 47, D330–D338, https://doi.org/10.1093/nar/gky1055, 2019.
Thomas, R. J., Webber, D., Hopkins, R., Frost, A., Laws, T., Jayasekera, P.
N., and Atkins, T.: The Cell Membrane as a Major Site of Damage during
Aerosolization of Escherichia coli, Appl. Environ. Microbiol., 77,
920–925, https://doi.org/10.1128/AEM.01116-10, 2011.
Tignat-Perrier, R., Dommergue, A., Thollot, A., Keuschnig, C., Magand, O.,
Vogel, T. M., and Larose, C.: Global airborne microbial communities
controlled by surrounding landscapes and wind conditions, Sci. Rep.-UK, 9,
1–11, https://doi.org/10.1038/s41598-019-51073-4, 2019.
Tignat-Perrier, R., Dommergue, A., Thollot, A., Magand, O., Amato, P., Joly, M., Sellegri, K., Vogel,
T. M., and Larose, C.: Seasonal shift in airborne microbial communities, Sci. Total
Environ., 716, 137129, https://doi.org/10.1016/j.scitotenv.2020.137129, 2020.
Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K.,
Chang, H. W., Podar, M., Short, J. M., Mathur, E. J., Detter, J. C., Bork,
P., Hugenholtz, P., and Rubin, E. M.: Comparative metagenomics of microbial
communities, Science, 308, 554–557, https://doi.org/10.1126/science.1107851,
2005.
Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., and
Delort, A.-M.: Contribution of Microbial Activity to Carbon Chemistry in
Clouds, Appl. Environ. Microbiol., 76, 23–29, https://doi.org/10.1128/AEM.01127-09,
2010.
Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato,
P., Chaumerliac, N., and Delort, A.-M.: Potential impact of microbial
activity on the oxidant capacity and organic carbon budget in clouds, P. Natl. Acad. Sci. USA,
110, 559–564, https://doi.org/10.1073/pnas.1205743110, 2013.
Vartoukian, S. R., Palmer, R. M., and Wade, W. G.: Strategies for culture of
“unculturable” bacteria, FEMS Microbiol. Lett., 309, 1–7,
https://doi.org/10.1111/j.1574-6968.2010.02000.x, 2010.
Wickham, H.: Flexibly Reshape Data: A Reboot of the Reshape Packa, available at: https://cran.r-project.org/web/packages/reshape2/reshape2.pdf, 2017.
Wood, D. E. and Salzberg, S. L.: Kraken: ultrafast metagenomic sequence
classification using exact alignments, Genome Biol., 15, R46,
https://doi.org/10.1186/gb-2014-15-3-r46, 2014.
Xie, W., Wang, F., Guo, L., Chen, Z., Sievert, S. M., Meng, J., Huang, G.,
Li, Y., Yan, Q., Wu, S., Wang, X., Chen, S., He, G., Xiao, X., and Xu, A.:
Comparative metagenomics of microbial communities inhabiting deep-sea
hydrothermal vent chimneys with contrasting chemistries, ISME J.,
5, 414–426, https://doi.org/10.1038/ismej.2010.144, 2011.
Yang, Y., Yokobori, S., and Yamagishi, A.: UV-resistant bacteria isolated
from upper troposphere and lower stratosphere, Biol. Sci. Space, 22, 18–25,
https://doi.org/10.2187/bss.22.18, 2008.
Yooseph, S., Nealson, K. H., Rusch, D. B., McCrow, J. P., Dupont, C. L.,
Kim, M., Johnson, J., Montgomery, R., Ferriera, S., Beeson, K., Williamson,
S. J., Tovchigrechko, A., Allen, A. E., Zeigler, L. A., Sutton, G.,
Eisenstadt, E., Rogers, Y.-H., Friedman, R., Frazier, M., and Venter, J. C.:
Genomic and functional adaptation in surface ocean planktonic prokaryotes,
Nature, 468, 60–66, https://doi.org/10.1038/nature09530, 2010.
Yooseph, S., Andrews-Pfannkoch, C., Tenney, A., McQuaid, J., Williamson, S.,
Thiagarajan, M., Brami, D., Zeigler-Allen, L., Hoffman, J., Goll, J. B.,
Fadrosh, D., Glass, J., Adams, M. D., Friedman, R., and Venter, J. C.: A
Metagenomic Framework for the Study of Airborne Microbial Communities, PLOS
ONE, 8, e81862, https://doi.org/10.1371/journal.pone.0081862, 2013.
Zhang, H., Hu, Y., Zhou, C., Yang, Z., Wu, L., Zhu, M., Bao, H., Zhou, Y.,
Pang, M., Wang, R., and Zhou, X.: Stress resistance, motility and biofilm
formation mediated by a 25kb plasmid pLMSZ08 in Listeria monocytogenes, Food
Control, 94, 345–352, https://doi.org/10.1016/j.foodcont.2018.07.002, 2018.
Short summary
The adverse atmospheric environmental conditions do not appear suited for microbial life. We conducted the first global comparative metagenomic analysis to find out if airborne microbial communities might be selected by their ability to resist these adverse conditions. The relatively higher concentration of fungi led to the observation of higher proportions of stress-related functions in air. Fungi might likely resist and survive atmospheric physical stress better than bacteria.
The adverse atmospheric environmental conditions do not appear suited for microbial life. We...
Altmetrics
Final-revised paper
Preprint