Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1689-2021
https://doi.org/10.5194/bg-18-1689-2021
Research article
 | 
10 Mar 2021
Research article |  | 10 Mar 2021

Enhancement of the North Atlantic CO2 sink by Arctic Waters

Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson

Related authors

Fluxes of carbon and nutrients to the Iceland Sea surface layer and inferred primary productivity and stoichiometry
E. Jeansson, R. G. J. Bellerby, I. Skjelvan, H. Frigstad, S. R. Ólafsdóttir, and J. Olafsson
Biogeosciences, 12, 875–885, https://doi.org/10.5194/bg-12-875-2015,https://doi.org/10.5194/bg-12-875-2015, 2015
Short summary
The circulation of Icelandic waters – a modelling study
K. Logemann, J. Ólafsson, Á. Snorrason, H. Valdimarsson, and G. Marteinsdóttir
Ocean Sci., 9, 931–955, https://doi.org/10.5194/os-9-931-2013,https://doi.org/10.5194/os-9-931-2013, 2013

Related subject area

Biogeochemistry: Air - Sea Exchange
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 1: Differences between seawater DMS estimations
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024,https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 2: Sea–air fluxes
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024,https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
High-frequency continuous measurements reveal strong diel and seasonal cycling of pCO2 and CO2 flux in a mesohaline reach of the Chesapeake Bay
A. Whitman Miller, Jim R. Muirhead, Amanda C. Reynolds, Mark S. Minton, and Karl J. Klug
Biogeosciences, 21, 3717–3734, https://doi.org/10.5194/bg-21-3717-2024,https://doi.org/10.5194/bg-21-3717-2024, 2024
Short summary
Significant role of physical transport in the marine carbon monoxide (CO) cycle: observations in the East Sea (Sea of Japan), the western North Pacific, and the Bering Sea in summer
Young Shin Kwon, Tae Siek Rhee, Hyun-Cheol Kim, and Hyoun-Woo Kang
Biogeosciences, 21, 1847–1865, https://doi.org/10.5194/bg-21-1847-2024,https://doi.org/10.5194/bg-21-1847-2024, 2024
Short summary
Central Arctic Ocean surface–atmosphere exchange of CO2 and CH4 constrained by direct measurements
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024,https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary

Cited articles

Anderson, L. G., Jutterström, S., Kaltin, S., and Jones, E. P.: Variability in river runoff distribution in the Eurasian Basin of the Arctic Ocean, J. Geophys. Res., 109, C01016, https://doi.org/10.1029/2003JC001733, 2004. 
Anderson, L. G., Ek, J., Ericson, Y., Humborg, C., Semiletov, I., Sundbom, M., and Ulfsbo, A.: Export of calcium carbonate corrosive waters from the East Siberian Sea, Biogeosciences, 14, 1811–1823, https://doi.org/10.5194/bg-14-1811-2017, 2017. 
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A cross-calibrated multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, 157–174, https://doi.org/10.1109/IGARSS.2008.4778804, 2011. 
Bates, N. R.: Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean, J. Geophys. Res.-Oceans, 111, C10013, https://doi.org/10.1029/2005jc003083, 2006. 
Download
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
Altmetrics
Final-revised paper
Preprint