Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1689-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1689-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancement of the North Atlantic CO2 sink by Arctic Waters
Institute of Earth Sciences, Sturlugata 7 Askja, University of
Iceland, IS 101 Reykjavik, Iceland
Solveig R. Olafsdottir
Marine and Freshwater Research Institute, Fornubúðir 5, IS
220 Hafnafjörður, Iceland
Taro Takahashi
Lamont-Doherty Earth Observatory of Columbia University, Palisades,
NY 10964, USA
deceased
Magnus Danielsen
Marine and Freshwater Research Institute, Fornubúðir 5, IS
220 Hafnafjörður, Iceland
Thorarinn S. Arnarson
National Energy Authority, Grensásvegur 9, IS 108
Reykjavík, Iceland
deceased
Related authors
No articles found.
Angel Ruiz-Angulo, Esther Portela, Charly de Marez, Andreas Macrander, Sólveig Rósa Ólafsdóttir, Thomas Meunier, Steingrímur Jónsson, and M. Dolores Pérez-Hernández
EGUsphere, https://doi.org/10.5194/egusphere-2025-2102, https://doi.org/10.5194/egusphere-2025-2102, 2025
Short summary
Short summary
The ocean around Iceland is a key region for water mass transformation that drives global ocean circulation. We use 29 years of hydrographic data to examine the spatial and temporal variability of mixed layer depth and stratification, identifying three distinct regions: South, North, and Northeast. We present a comprehensive view of seasonal to multi-decadal variability in upper ocean structure and its link to a changing North Atlantic under global warming.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023, https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Cited articles
Anderson, L. G., Jutterström, S., Kaltin, S., and Jones, E. P.:
Variability in river runoff distribution in the Eurasian Basin of the Arctic
Ocean, J. Geophys. Res., 109, C01016, https://doi.org/10.1029/2003JC001733, 2004.
Anderson, L. G., Ek, J., Ericson, Y., Humborg, C., Semiletov, I., Sundbom, M., and Ulfsbo, A.: Export of calcium carbonate corrosive waters from the East Siberian Sea, Biogeosciences, 14, 1811–1823, https://doi.org/10.5194/bg-14-1811-2017, 2017.
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C.,
Smith, D. K., and Gombos, D.: A cross-calibrated multiplatform ocean surface
wind velocity product for meteorological and oceanographic applications,
B. Am. Meteorol. Soc., 92, 157–174, https://doi.org/10.1109/IGARSS.2008.4778804, 2011.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bates, N. R.: Air-sea CO2 fluxes and the continental shelf pump of
carbon in the Chukchi Sea adjacent to the Arctic Ocean, J.
Geophys. Res.-Oceans, 111, C10013, https://doi.org/10.1029/2005jc003083, 2006.
Bates, N. R., Takahashi, T., Chipman, D. W., and Knap, A. H.: Variability of
pCO2 on diel to seasonal timescales in the Sargasso Sea near Bermuda,
J. Geophys. Res.-Oceans, 103, 15567–15585,
https://doi.org/10.1029/98jc00247, 1998.
Berner, E. K. and Berner, R. A.: The Global Water Cycle, Geochemistry and
Environment, Prentice-Hall, Englewood Cliffs, USA, 1987.
Broecker, W. S.: The Great Ocean Conveyor, Oceanography, 4, 79–89, 1991.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M., Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.: A global monthly climatology of total alkalinity: a neural network approach, Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, 2019.
Carmack, E. C., Yamamoto-Kawai, M., Haine, T. W. N., Bacon, S., Bluhm, B.
A., Lique, C., Melling, H., Polyakov, I. V., Straneo, F., Timmermans, M.-L.,
and Williams, W. J.: Freshwater and its role in the Arctic Marine System:
Sources, disposition, storage, export, and physical and biogeochemical
consequences in the Arctic and global oceans, J. Geophys. Res.-Biogeosci.,
121, 675–717, https://doi.org/10.1002/2015JG003140, 2016.
Chipman, D., Marra, J., and Takahashi, T.: Primary production at
47∘ N and 20∘ W in the North Atlantic Ocean: a
comparision between the 14C incubation method and the mixed layer
budget, Deep Sea Res., 40, 151–169, 1993.
Cooper, L. W., McClelland, J. W., Holmes, R. M., Raymond, P. A., Gibson, J.
J., Guay, C. K., and Peterson, B. J.: Flow-weighted values of runoff tracers
(δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers,
Geophys. Res. Lett., 35, L18606, https://doi.org/10.1029/2008GL035007, 2008.
Dickson, A. G.: Standard Potential of the Reaction –
AgCl(S) + 1/2H2(G) = Ag(S) + HCl(Aq) and the Standard Acidity Constant
of the ion HSO in Synthetic Sea-Water from 273.15-K to 318.15-K,
J. Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.
Dickson, R. P., Meincke, J., Malmberg, S. A., and Lee, A. J.: The Great
salinity Anomaly in the northern North Atlantic, Prog. Oceanogr.,
20, 103–151, 1988.
Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: mean and temporal variability, Earth Syst. Sci. Data, 6, 273–284, https://doi.org/10.5194/essd-6-273-2014, 2014.
Flatau, M. K., Talley, L., and Niiler, P. P.: The North Atlantic
Oscillation, surface current velocities, and SST changes in the subpolar
North Atlantic, J. Climate, 16, 2355–2369, 2003.
GLOBALVIEW-CO2: Cooperative Global Atmospheric Data Integration Project,
updated annually, Multi-laboratory compilation of synchronized and
gap-filled atmospheric carbon dioxide records for the period 1979–2012
obspack CO2 1 GLOBALVIEW-CO2, 2013, v1.0.4, 2013-12-23, https://doi.org/10.3334/OBSPACK/1002, 2013.
Grimm, R., Notz, D., Glud, R. N., Rysgaard, S., and Six, K. D.: Assessment
of the sea-ice carbon pump: Insights from a three-dimensional
ocean-sea-ice-biogeochemical model (MPIOM/HAMOCC), Elementa, 4, 000136, https://doi.org/10.12952/journal.elementa.000136, 2016.
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S.,
Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco,
C., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L.,
Tanhua, T., and Wanninkhof, R.: The oceanic sink for anthropogenic CO2
from 1994 to 2007, Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019.
Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C.,
Rudels, B., Spreen, G., Steur, L. D., Stewart, K. D., and Woodgate, R.:
Arctic freshwater export: Status, mechanisms, and prospects, Global
Planet. Change, 125, 13–35, 2015.
Håvik, L., Pickart, R. S., Våge, K., Torres, D., Thurnherr, A. M.,
Beszczynska-Möller, A., Walczowski, W., and Appen, W.-J. V.: Evolution
of the East Greenland Current from Fram Strait to Denmark Strait: Synoptic
measurements from summer 2012, J. Geophys. Res.-Oceans, 122, 1974–1994,
https://doi.org/10.1002/2016JC01222, 2017.
Hátún, H., Sandø, A. B., Drange, H., Hansen, B., and
Valdimarsson, H.: Influence of the Atlantic Subpolar Gyre on the
Thermohaline Circulation, Science, 309, 1841–1844, 2005.
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S.,
Florindo-López, C., Hátún, H., Johns, W., Josey, S. A., Larsen,
K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V.,
Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the largest
freshening event for 120 years in eastern subpolar North Atlantic, Nat.
Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y, 2020.
Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, 2013.
Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink, Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, 2013.
Lebehot, A. D., Halloran, P. R., Watson, A. J., McNeall, D., Ford, D. A.,
Landschützer, P., Lauvset, S. K., and Schuster, U.: Reconciling
Observation and Model Trends in North Atlantic Surface CO2, Global
Biogeochem.l Cy., 33, 1204–1222, https://doi.org/10.1029/2019gb006186, 2019.
Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu,
Y.-M.: The universal ratio of boron to chlorinity for the North Pacific and
North Atlantic oceans, Geochim. Cosmochim. Ac., 74, 1801–1811,
2010.
Lewis, E. and Wallace, D.: Programme developed for CO2 system
calculations, Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, U.S. Department of EnergyORNL/CDIAC-105, https://doi.org/10.2172/639712, 1998.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2
calculated from dissolved inorganic carbon, alkalinity, and equations for
K-1 and K-2: validation based on laboratory measurements of CO2 in gas
and seawater at equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
McClelland, J. W., Holmes, R. M., Dunton, K. H., and Macdonald, R. W.: The
Arctic Ocean Estuary, Estuar. Coast., 35, 353–368, https://doi.org/10.1007/s12237-010-9357-3, 2012.
McKinley, G. A., Fay, A. R., Lovenduski, N. S., and Pilcher, D. J.: Natural
Variability and Anthropogenic Trends in the Ocean Carbon Sink, Annu. Rev.
Mar. Sci., 9, 125–150, https://doi.org/10.1146/annurev-marine-010816-060529, 2017.
Mikaloff Fletcher, S. E., Gruber, N., Jacobson, A. R., Doney, S. C.,
Dutkiewicz, S., Gerber, M., Follows, M., Joos, F., Lindsay, K., Menemenlis,
D., Mouchet, A., ller, S. A. M., Sarmiento, J. L.: Inverse estimates of
anthropogenic CO2 uptake, transport, and storage by the ocean,
Global
Biogeochem. Cy.,
20, GB2002, https://doi.org/10.1029/2005GB002530, 2006.
Nilsen, J. E. Ø., Hátún, H., Mork, K. A., and Valdimarsson, H.:
The NISE Dataset, Faroese Fisheries Laboratory, Tórshavn,
Faroe Islands, Tech. Rep. 08-01, https://doi.org/10.13140/RG.2.1.3097.9441, 2008.
Nondal, G., Bellerby, R., Olsen, A., Johannessen, T., and Olafsson, J.:
Predicting the surface ocean CO2 system in the northern North Atlantic:
Implications for the use of Voluntary Observing Ships, Limnol.
Oceanogr.-Meth., 7, 109–118, 2009.
Ólafsson, J.: Connections between oceanic conditions off N-Iceland, Lake
Mývatn temperature, regional wind direction variability and the North
Atlantic Oscillation, Rit Fiskideildar, 16, 41–57, 1999.
Ólafsson, J.: Winter mixed layer nutrients in the Irminger and Iceland
Seas, 1990–2000, ICES Marine Science Symposia, 219, 329–332, 2003.
Ólafsson, J.: Partial pressure (or fugacity) of carbon dioxide,
dissolved inorganic carbon, temperature, salinity and other variables
collected from discrete samples, profile and time series profile
observations during the R/Vs Arni Fridriksson and Bjarni Saemundsson time
series IcelandSea (LN6) cruises in the North Atlantic Ocean from 1985-02-22
to 2013-11-26 (NCEI Accession 0100063),
NOAA National Centers for Environmental Information, https://doi.org/10.3334/cdiac/otg.carina_icelandsea, 2012.
Ólafsson, J.: Partial pressure (or fugacity) of carbon dioxide,
dissolved inorganic carbon, temperature, salinity and other variables
collected from discrete sample and profile observations using CTD, bottle
and other instruments from ARNI FRIDRIKSSON and BJARNI SAEMUNDSSON in the
North Atlantic Ocean from 1983-03-05 to 2013-11-13 (NCEI Accession 0149098), NOAA National Centers for Environmental Information, https://doi.org/10.3334/cdiac/otg.carina_irmingersea_v2, 2016.
Olafsson, J., Olafsdottir, S. R., Benoit-Cattin, A., Danielsen, M., Arnarson, T. S., and Takahashi, T.: Rate of Iceland Sea acidification from time series measurements, Biogeosciences, 6, 2661–2668, https://doi.org/10.5194/bg-6-2661-2009, 2009.
Olafsson, J., Olafsdottir, S. R., Benoit-Cattin, A., and Takahashi, T.: The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2008, Earth Syst. Sci. Data, 2, 99–104, https://doi.org/10.5194/essd-2-99-2010, 2010.
Olafsson, J., Lee, K., Olafsdottir, S. R., Benoit-Cattin, A., Lee, C.-H.,
and Kim, M.: Boron to salinity ratios for Atlantic, Arctic and Polar Waters:
A view from downstream, Mar. Chem., 224, 103809, https://doi.org/10.1016/j.marchem.2020.103809, 2020.
Olsen, A., Omar, A. M., Bellerby, R. G. J., Johannessen, T., Ninnemann, U.,
Brown, K. R., Olsson, K. A., Olafsson, J., Nondal, G., Kivimae, C.,
Kringstad, S., Neill, C., and Olafsdottir, S.: Magnitude and Origin of the
Anthropogenic CO2 Increase and 13C Suess Effect in the Nordic Seas
Since 1981, Global Biogeochem. Cy., 20, GB3027,
https://doi.org/10.1029/2005GB002669, 2006.
Ouyang, Z., Qi, D., Chen, L., Takahashi, T., Zhong, W., DeGrandpre, M. D.,
Chen, B., Gao, Z., Nishino, S., Murata, A., Sun, H., Robbins, L. L., Jin,
M., and Cai, W.-J.: Sea-ice loss amplifies summertime decadal CO2 increase
in the western Arctic Ocean, Nat. Clim. Change, 10, 678–684,
https://doi.org/10.1038/s41558-020-0784-2, 2020.
Peng, T.-H., Takahashi, T., Broecker, W. S., and Ólafsson, J.: Seasonal
variability of carbon dioxide, nutrients and oxygen in the northern North
Atlantic surface water, Tellus B, 39, 439–458, 1987.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel Program Developed
for CO2 System Calculations, ORNL/CDIAC-105a, Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, USA, https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_XLS_v2.1/ (last access: 9 March 2021), 2006.
Qi, D., Chen, L., Chen, B., Gao, Z., Zhong, W., Feely, R. A., Anderson, L.
G., Sun, H., Chen, J., Chen, M., Zhan, L., Zhang, Y., and Cai, W.-J.:
Increase in acidifying water in the western Arctic Ocean, Nat. Clim.
Change, 7, 195–199, https://doi.org/10.1038/nclimate3228,
2017.
Reverdin, G., Metzl, N., Olafsdottir, S., Racapé, V., Takahashi, T., Benetti, M., Valdimarsson, H., Benoit-Cattin, A., Danielsen, M., Fin, J., Naamar, A., Pierrot, D., Sullivan, K., Bringas, F., and Goni, G.: SURATLANT: a 1993–2017 surface sampling in the central part of the North Atlantic subpolar gyre, Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, 2018.
Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J., and Christensen, P.
B.: Inorganic carbon transport during sea ice growth and decay: A carbon
pump in polar seas, J. Geophys. Res., 112, C03016, https://doi.org/10.1029/2006JC003572, 2007.
Schlitzer, R.: Ocean Data View, available at: http://odv.awi.de (last access: 22 September 2020), 2018.
Schuster, U., McKinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R., González-Dávila, M., Gruber, N., Jones, S., Krijnen, J., Landschützer, P., Lefèvre, N., Manizza, M., Mathis, J., Metzl, N., Olsen, A., Rios, A. F., Rödenbeck, C., Santana-Casiano, J. M., Takahashi, T., Wanninkhof, R., and Watson, A. J.: An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009, Biogeosciences, 10, 607–627, https://doi.org/10.5194/bg-10-607-2013, 2013.
Serreze, M. C. and Meier, W. N.: The Arctic's sea ice cover: trends,
variability, predictability, and comparisons to the Antarctic, Ann.
NY Acad. Sci., 1436, 36–53, https://doi.org/10.1111/nyas.13856, 2019.
Stefánsson, U.: North Icelandic Waters, Rit Fiskideildar, 3, 1–269,
1962.
Sutherland, D. A., Pickart, R. S., Peter Jones, E., Azetsu-Scott, K., Jane
Eert, A., and Ólafsson, J.: Freshwater composition of the waters off
southeast Greenland and their link to the Arctic Ocean, J.
Geophys. Res.-Oceans, 114, C05020, https://doi.org/10.1029/2008jc004808, 2009.
Takahashi, T., Ólafsson, J., Broecker, W. S., Goddard, J., Chipman, D.
W., and White, J.: Seasonal variability of the carbon-nutrient chemistry in
the ocean areas west and north of Iceland, Rit Fiskideildar, 9, 20–36, 1985.
Takahashi, T., Ólafsson, J., Goddard, J. G., Chipman, D. W., and
Sutherland, S. C.: Seasonal variation of CO2 and nutrient salts over
the high latitude oceans: A comparative study, Global Biogeochem. Cy.,
7, 843–878, 1993.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, T., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson,
J., and Nojiri, Y.: Global sea-air CO2 flux based on climatological
suface ocean pCO2, and seasonal biological and temperature effects,
Deep-Sea Res., 49, 1601–1622, 2002.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and Baar, H. J. W. D.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea-air CO2 flux over the global oceans, Deep-Sea Res., 56,
554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C.,
Newberger, T., Sweeney, C., and Munro, D. R.: Climatological distributions
of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in
the global surface ocean, and temporal changes at selected locations, Mar.
Chem., 164, 95–125, https://doi.org/10.1016/j.marchem.2014.06.004, 2014.
Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global Ocean Surface Water
Partial Pressure of CO2 Database: Measurements Performed During
1957–2018 (LDEO Database Version 2018) (NCEI Accession 0160492), Version
7.7, NOAA National Centers for Environmental Information, National Centers
for Environmental Information, https://doi.org/10.3334/CDIAC/OTG.NDP088(V2015), 2019.
Tans, P., and Keeling, R.: Mauna Loa CO2 monthly mean data, NOAA/ESRL, available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (last access: 5 March 2021), 2019.
Terhaar, J., Kwiatkowski, L., and Bopp, L.: Emergent constraint on Arctic
Ocean acidification in the twenty-first century, Nature, 582, 379–383,
https://doi.org/10.1038/s41586-020-2360-3, 2020.
Våge, K., Pickart, R. S., Sarafanov, A., Knutsen, Ø., Mercier, H.,
Lherminier, P., van Aken, H. M., Meincke, J., Quadfasel, D., and Bacon, S.:
The Irminger Gyre: Circulation, convection, and interannual variability,
Deep Sea Res., 58, 590–614,
https://doi.org/10.1016/j.dsr.2011.03.001, 2011.
Våge, K., Pickart, R. S., Spall, M. A., Moore, G. W. K., Valdimarsson,
H., Torres, D. J., Erofeeva, S., and Nilsen, J. E.: Revised
circulation scheme north of the Denmark Strait, Deep-Sea Res.,
79, 20–39, 2013.
Våge, K., Moore, G. W. K., Jónsson, S., and Valdimarsson, H.: Water
mass transformation in the Iceland Sea, Deep Sea Res., 101, 98–109, https://doi.org/10.1016/j.dsr.2015.04.001, 2015.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Wanninkhof, R. and Triñanes, J.: The impact of changing wind speeds on
gas transfer and its effect on global air-sea CO2 fluxes, Global
Biogeochem. Cy., 31, 961–974, https://doi.org/10.1002/2016GB005592, 2017.
Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H., and Khatiwala, S.: Global ocean carbon uptake: magnitude, variability and trends, Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, 2013.
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C.,
Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.: Revised
estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon
inventory, Nat. Commun., 11, 4422, https://doi.org/10.1038/s41467-020-18203-3,
2020.
Weiss, R. F.: Carbon dioxide in water and seawater: The solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, 1974.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and
seawater, Mar. Chem., 8, 347–359, https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in...
Altmetrics
Final-revised paper
Preprint