Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-25-2021
https://doi.org/10.5194/bg-18-25-2021
Research article
 | Highlight paper
 | 
04 Jan 2021
Research article | Highlight paper |  | 04 Jan 2021

Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat

Mark Hague and Marcello Vichi

Related authors

A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024,https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
An indicator of sea ice variability for the Antarctic marginal ice zone
Marcello Vichi
The Cryosphere, 16, 4087–4106, https://doi.org/10.5194/tc-16-4087-2022,https://doi.org/10.5194/tc-16-4087-2022, 2022
Short summary
The sensitivity of pCO2 reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized ocean sampling simulation approach
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022,https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary
Physical and mechanical properties of winter first-year ice in the Antarctic marginal ice zone along the Good Hope Line
Sebastian Skatulla, Riesna R. Audh, Andrea Cook, Ehlke Hepworth, Siobhan Johnson, Doru C. Lupascu, Keith MacHutchon, Rutger Marquart, Tommy Mielke, Emmanuel Omatuku, Felix Paul, Tokoloho Rampai, Jörg Schröder, Carina Schwarz, and Marcello Vichi
The Cryosphere, 16, 2899–2925, https://doi.org/10.5194/tc-16-2899-2022,https://doi.org/10.5194/tc-16-2899-2022, 2022
Short summary
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022,https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary

Related subject area

Biogeochemistry: Open Ocean
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024,https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023,https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023,https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
Daniela König and Alessandro Tagliabue
Biogeosciences, 20, 4197–4212, https://doi.org/10.5194/bg-20-4197-2023,https://doi.org/10.5194/bg-20-4197-2023, 2023
Short summary
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023,https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary

Cited articles

Ardyna, M., Claustre, H., D'Ortenzio, F., van Dijken, G., Arrigo, K. R., D'Ovidio, F., Gentili, B., and Sallée, J.-B.: Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean, Geophys. Res. Lett., 44, 5016–5024, https://doi.org/10.1002/2016gl072428, 2017. a, b
Arrigo, K., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates, N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E., Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W. K., Ortega-Retuerta, E., Pal, S., Polashenski, C. M., Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M., and Swift, J. H.: Massive Phytoplankton Blooms Under Arctic Sea Ice, Science, 336, 1408, https://doi.org/10.1126/science.1215065, 2012. a
Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J., Olsen, L. M., Kauko, H. M., Bailey, A., Chierici, M., Cohen, L., Doulgeris, A. P., Ehn, J. K., Fransson, A., Gerland, S., Hop, H., Hudson, S. R., Hughes, N., Itkin, P., Johnsen, G., King, J. A., Koch, B. P., Koenig, Z., Kwasniewski, S., Laney, S. R., Nicolaus, M., Pavlov, A. K., Polashenski, C. M., Provost, C., Rösel, A., Sandbu, M., Spreen, G., Smedsrud, L. H., Sundfjord, A., Taskjelle, T., Tatarek, A., Wiktor, J., Wagner, P. M., Wold, A., Steen, H., and Granskog, M. A.: Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice, Sci. Rep., 7, 40850, https://doi.org/10.1038/srep40850, 2017. a
Behrenfeld, M. J. and Boss, E. S.: Resurrecting the Ecological Underpinnings of Ocean Plankton Blooms, Annu. Rev. Mar. Sci., 6, 167–194, https://doi.org/10.1146/annurev-marine-052913-021325, 2014. a, b
Behrenfeld, M. J., Hu, Y., O'Malley, R. T., Boss, E. S., Hostetler, C. A., Siegel, D. A., Sarmiento, J. L., Schulien, J., Hair, J. W., Lu, X., Rodier, S., and Scarino, A. J.: Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar, Nat. Geosci., 10, 118–122, https://doi.org/10.1038/ngeo2861, 2017. a
Download
Short summary
This paper examines the question of what causes the rapid spring growth of microscopic marine algae (phytoplankton) in the ice-covered ocean surrounding Antarctica. One prominent hypothesis proposes that the melting of sea ice is the primary cause, while our results suggest that this is only part of the explanation. In particular, we show that phytoplankton are able to start growing before the sea ice melts appreciably, much earlier than previously thought.
Altmetrics
Final-revised paper
Preprint