Boyce, D. G., Petrie, B., Frank, K. T., Worm, B., and Leggett, W. C.:
Environmental structuring of marine plankton phenology, Nat. Ecol.
Evol., 1, 1484–1494,
https://doi.org/10.1038/s41559-017-0287-3, 2017.
a
Briggs, E. M., Martz, T. R., Talley, L. D., Mazloff, M., and Johnson, K. S.:
Physical and Biological Drivers of Biogeochemical Tracers Within the
Seasonal Sea Ice Zone of the Southern Ocean From Profiling Floats, J. Geophys. Res.-Ocean., 123, 746–758,
https://doi.org/10.1002/2017JC012846,
2017.
a,
b,
c,
d
Carranza, M. M., Gille, S. T., Franks, P. J. S., Johnson, K. S., Pinkel, R.,
and Girton, J. B.: When Mixed Layers Are Not Mixed. Storm-Driven Mixing and
Bio-optical Vertical Gradients in Mixed Layers of the Southern Ocean,
J. Geophys. Res.-Ocean., 123, 7264–7289,
https://doi.org/10.1029/2018JC014416,
2018.
a
Carvalho, F., Kohut, J., Oliver, M. J., and Schofield, O.: Defining the
ecologically relevant mixed-layer depth for Antarctica's coastal seas,
Geophys. Res. Lett., 44, 338–345,
https://doi.org/10.1002/2016GL071205,
2017.
a
Cole, H., Henson, S., Martin, A., and Yool, A.: Mind the gap: The impact of
missing data on the calculation of phytoplankton phenology metrics, J. Geophys. Res.-Ocean., 117, C08030,
https://doi.org/10.1029/2012JC008249,
2012.
a
Fritsen, C. H., Wirthlin, E. D., Momberg, D. K., Lewis, M. J., and Ackley,
S. F.: Bio-optical properties of Antarctic pack ice in the early austral
spring, Deep-Sea Res. Pt. II, 58,
1052–1061,
https://doi.org/10.1016/J.DSR2.2010.10.028,
2011.
a
Gill, A.: Atmosphere-Ocean Dynamics, International Geophysics, 30, p. 51, 1982. a
Hague, M.: BGC-ARGO-Tools, available:
https://github.com/MarkHague/BGC-ARGO-Tools, last access:
November 2020 a
Joy-Warren, H. L., van Dijken, G. L., Alderkamp, A. C., Leventer, A., Lewis,
K. M., Selz, V., Lowry, K. E., van de Poll, W., and Arrigo, K. R.: Light Is
the Primary Driver of Early Season Phytoplankton Production Along the Western
Antarctic Peninsula, J. Geophys. Res.-Ocean., 124, 7375–7399,
https://doi.org/10.1029/2019JC015295, 2019.
a
Kohout, A. L., Williams, M. J. M., Dean, S. M., and Meylan, M. H.:
Storm-induced sea-ice breakup and the implications for ice extent, Nature,
509, 604–607,
https://doi.org/10.1038/nature13262, 2014.
a
Llort, J., Lévy, M., Sallée, J.-B., and Tagliabue, A.: Onset,
intensification, and decline of phytoplankton blooms in the Southern Ocean,
ICES J. Mar. Sci., 72, 1971–1984,
https://doi.org/10.1093/icesjms/fsv053, 2015.
a
Meylan, M. H., Bennetts, L. G., and Kohout, A. L.: In situ measurements and
analysis of ocean waves in the Antarctic marginal ice zone, Geophys.
Res. Lett., 41, 5046–5051,
https://doi.org/10.1002/2014GL060809,
2014.
a,
b
Prend, C. J., Gille, S. T., Talley, L. D., Mitchell, B. G., Rosso, I., and
Mazloff, M. R.: Physical Drivers of Phytoplankton Bloom Initiation in the
Southern Ocean's Scotia Sea, J. Geophys. Res.-Ocean., 124,
5811–5826,
https://doi.org/10.1029/2019JC015162,
2019.
a
Racault, M. F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S.,
and Platt, T.: Phytoplankton phenology in the global ocean, Ecol.
Indicat., 14, 152–163,
https://doi.org/10.1016/j.ecolind.2011.07.010, 2012.
a,
b
Riser, S. C., Swift, D., and Drucker, R.: Profiling Floats in SOCCOM:
Technical Capabilities for Studying the Southern Ocean, J.
Geophys. Res.-Ocean., 123, 4055–4073,
https://doi.org/10.1002/2017JC013419,
2018.
a,
b
Sallée, J.-B., Llort, J., Tagliabue, A., and Levy, M.: Characterization
of distinct bloom phenology regimes in the Southern Ocean, ICES J.
Mar. Sci., 72, 1985–1998,
https://doi.org/10.1038/278097a0, 2015.
a
Smetacek, V., Scharek, R., Gordon, L., Eicken, H., Fahrback, E., Rohardt, G.,
and Moore, S.: Early spring phytoplankton blooms in ice platelet layers of
the southern Weddell Sea, Antarctica, Deep-Sea Res. Pt. A, 39, 153–168, 1992. a
Smith, W. O. and Comiso, J. C.: Influence of sea ice on primary production in
the Southern Ocean : A satellite perspective, J. Geophys.
Res., 113, 1–19,
https://doi.org/10.1029/2007JC004251, 2008.
a,
b
Sokolov, S.: Chlorophyll blooms in the Antarctic Zone south of Australia and
New Zealand in reference to the Antarctic Circumpolar Current fronts and sea
ice forcing, J. Geophys. Res., 113, C03022,
https://doi.org/10.1029/2007JC004329, 2008.
a,
b
Stroeve, J. C., Jenouvrier, S., Campbell, G. G., Barbraud, C., and Delord, K.:
Mapping and assessing variability in the Antarctic marginal ice zone, pack
ice and coastal polynyas in two sea ice algorithms with implications on
breeding success of snow petrels, The Cryosphere, 10, 1823–1843,
https://doi.org/10.5194/tc-10-1823-2016, 2016.
a
Sutherland, G., Reverdin, G., Marié, L., and Ward, B.: Mixed and mixing
layer depths in the ocean surface boundary, Geophys. Res.
Lett., 41, 1–8, 2014. a
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S., Galbraith,
E., Misumi, K., Moore, K., Ridgwell, A., Sherman, E., Stock, C., Vichi, M.,
Volker, C., and Yool, A.: How well do global ocean biogeochemistry models
simulate dissolved iron distributions?, Global Biogeochem. Cy., 30,
149–174,
https://doi.org/10.1002/2015GB005289, 2014.
a
Taylor, M. H., Losch, M., and Bracher, A.: On the drivers of phytoplankton
blooms in the Antarctic marginal ice zone: A modeling approach, J.
Geophys. Res.-Ocean., 118, 63–75,
https://doi.org/10.1029/2012JC008418, 2013.
a,
b
Tedesco, L., Vichi, M., Haapala, J., and Stipa, T.: A dynamic Biologically
Active Layer for numerical studies of the sea ice ecosystem, Ocean
Model., 35, 89–104,
https://doi.org/10.1016/j.ocemod.2010.06.008,
2010.
a
Thomalla, S. J., Fauchereau, N., Swart, S., and Monteiro, P. M. S.: Regional
scale characteristics of the seasonal cycle of chlorophyll in the Southern
Ocean, Biogeosciences, 8, 2849–2866,
https://doi.org/10.5194/bg-8-2849-2011, 2011.
a
Uchida, T., Balwada, D., Abernathey, R., Prend, C. J., Boss, E., and Gille,
S. T.: Southern Ocean Phytoplankton Blooms Observed by Biogeochemical
Floats, J. Geophys. Res.-Ocean., 124, 7328–7343,
https://doi.org/10.1029/2019JC015355,
2019.
a,
b,
c
Uotila, J., Vihma, T., and Launiainen, J.: Response of the Weddell Sea pack
ice to wind forcing, J. Geophys. Res.-Ocean., 105,
1135–1151,
https://doi.org/10.1029/1999JC900265,
2000.
a
Vancoppenolle, M., Meiners, K. M., Michel, C., Bopp, L., Brabant, F., Carnat,
G., Delille, B., Lannuzel, D., Madec, G., Moreau, S., Tison, J. L., and
van der Merwe, P.: Role of sea ice in global biogeochemical cycles: Emerging
views and challenges, Quaternary Sci. Rev., 79, 207–230,
https://doi.org/10.1016/j.quascirev.2013.04.011, 2013.
a
Veth, C., Lancelot, C., and Ober, S.: On processes determining the vertical
stability of surface waters in the marginal ice zone of the north-western
Weddell Sea and their relationship with phytoplankton bloom development,
Polar Biol., 12, 237–243,
https://doi.org/10.1007/BF00238265, 1992.
a
Vichi, M., Lovato, T., Lazzari, P., Cossarini, G., and Gutierrez Mlot E.,
Mattia G., Masina S., McKiver W. J., Pinardi N., Solidoro C., and Tedesco L.,
Z. M.: The Biogeochemical Flux Model (BFM): Equation Description and User
Manual, Bologna, Italy, bfm versio Edn., available at:
http://bfm-community.eu (last access: 11 February 2019), 2015.
a,
b
Vichi, M., Eayrs, C., Alberello, A., Bekker, A., Bennetts, L., Holland, D.,
de Jong, E., Joubert, W., MacHutchon, K., Messori, G., Mojica, J. F.,
Onorato, M., Saunders, C., Skatulla, S., and Toffoli, A.: Effects of an
Explosive Polar Cyclone Crossing the Antarctic Marginal Ice Zone,
Geophys. Res. Lett., 46, 5948–5958,
https://doi.org/10.1029/2019GL082457,
2019.
a,
b