Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2627-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2627-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration
Department of Geography, University College London, Gower Street, WC1E 6BT London, UK
Department of Earth Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
Chris Brierley
Department of Geography, University College London, Gower Street, WC1E 6BT London, UK
Simon L. Lewis
Department of Geography, University College London, Gower Street, WC1E 6BT London, UK
School of Geography, University of Leeds, LS2 9JT Leeds, UK
Related authors
No articles found.
Cecilia Chavana-Bryant, Phil Wilkes, Wanxin Yang, Andrew Burt, Peter Vines, Amy C. Bennett, Georgia C. Pickavance, Declan L. M. Cooper, Simon L. Lewis, Oliver L. Phillips, Benjamin Brede, Alvaro Lau, Martin Herold, Iain McNicol, Edward T. A. Mitchard, David A. Coomes, Toby Jackson, Loic Makaga, Heddy O. Milamizokou Napo, Alfred Ngomanda, Stephan Ntie, Vincent Medjibe, Pacome Dimbonda, Luna Soenens, Virginie Daelemans, Laetitia Proux, Reuben Nilus, Nicolas Labriere, Kathryn Jeffery, David F. R. P. Burslem, Daniel Clewley, David Moffat, Lan Qie, Harm Bartholomeus, Vincent Gregoire, Nicolas Barbier, Geraldine Derroire, Katharine Abernethy, Klaus Scipal, and Mat Disney
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-67, https://doi.org/10.5194/essd-2025-67, 2025
Preprint under review for ESSD
Short summary
Short summary
The ForestScan project provides a comprehensive set of datasets of tropical forest 3D structural measurements using terrestrial, unpiloted aerial vehicle and aerial laser scanning, plus tree census data. Collected at three sites in French Guiana, Gabon, and Malaysia, these datasets are crucial for calibrating and validating earth observation-derived forest biomass estimates, therefore, expanding and enhancing their use, and aiding global conservation efforts.
Anni Zhao, Chris Brierley, Venni Arra, Xiaoxu Shi, and Yongyun Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3140, https://doi.org/10.5194/egusphere-2025-3140, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The North Atlantic Oscillation has large impacts on the European climate, whose future behaviour remains uncertain. We assess the NAO response in three past experiments (midHolocene, lig127k, lgm) and an abrupt quadrupled CO2 scenario (abrupt4xCO2). Our results show that NAO weakens (enhances) in response to cooling (warming), while it is not sensitive to orbital configurations. The associated teleconnections change consistently with the theory and are sensitive to the change in NAO amplitude.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
Clim. Past, 20, 1195–1211, https://doi.org/10.5194/cp-20-1195-2024, https://doi.org/10.5194/cp-20-1195-2024, 2024
Short summary
Short summary
We analyse simulations with idealised aerosol scenarios to examine the importance of aerosol forcing on mPWP precipitation and how aerosol uncertainty could explain the data–model mismatch. We find further warming, a narrower and stronger ITCZ, and monsoon domain rainfall change after removal of industrial emissions. Aerosols have more impacts on tropical precipitation than the mPWP boundary conditions. This highlights the importance of prescribed aerosol scenarios in simulating mPWP climate.
Tom Keel, Chris Brierley, and Tamsin Edwards
Geosci. Model Dev., 17, 1229–1247, https://doi.org/10.5194/gmd-17-1229-2024, https://doi.org/10.5194/gmd-17-1229-2024, 2024
Short summary
Short summary
Jet streams are an important control on surface weather as their speed and shape can modify the properties of weather systems. Establishing trends in the operation of jet streams may provide some indication of the future of weather in a warming world. Despite this, it has not been easy to establish trends, as many methods have been used to characterise them in data. We introduce a tool containing various implementations of jet stream statistics and algorithms that works in a standardised manner.
Chris Brierley, Kaustubh Thirumalai, Edward Grindrod, and Jonathan Barnsley
Clim. Past, 19, 681–701, https://doi.org/10.5194/cp-19-681-2023, https://doi.org/10.5194/cp-19-681-2023, 2023
Short summary
Short summary
Year-to-year variations in the weather conditions over the Indian Ocean have important consequences for the substantial fraction of the Earth's population that live near it. This work looks at how these variations respond to climate change – both past and future. The models rarely agree, suggesting a weak, uncertain response to climate change.
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023, https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
Short summary
This work looks at a series of model simulations of two past warm climates. We focus on the deep overturning circulation in the Atlantic Ocean. We show that there are no robust changes in the overall strength of the circulation. We also show that the circulation hardly plays a role in changes in the surface climate across the globe.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Short summary
We describe the way that our group have chosen to perform our recent analyses of the Palaeoclimate Modelling Intercomparison Project ensemble simulations. We document the approach used to obtain and curate the simulations, process those outputs via the Climate Variability Diagnostics Package, and then continue through to compute ensemble-wide statistics and create figures. We also provide interim data from all steps, the codes used and the ability for users to perform their own analyses.
Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas
Atmos. Meas. Tech., 14, 7103–7121, https://doi.org/10.5194/amt-14-7103-2021, https://doi.org/10.5194/amt-14-7103-2021, 2021
Short summary
Short summary
Instrumental temperature records are fundamental to climate science. There are spatial gaps in the distribution of these measurements across the globe. This lack of spatial coverage introduces coverage error. In this research, a methodology is developed and used to quantify the coverage errors. It results in a data product that, for the first time, provides a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Cited articles
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A.,
Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon
emissions towards the trillionth tonne, Nature, 458, 1163–1166,
https://doi.org/10.1038/nature08019,
2009. a
Bastin, J.-F., Finegold, Y., Garcia, C., Gellie, N., Lowe, A. J.,
Mollicone, D., Rezende, M., Routh, D., Sacande, M., Sparrow, B., Zohner,
C. M., and Crowther, T. W.: Erratum for the Report: “The global tree
restoration potential”, Science, 368, https://doi.org/10.1126/science.abc8905,
2020. a, b
Bonner, M. T. L., Schmidt, S., and Shoo, L. P.: A meta-analytical global
comparison of aboveground biomass accumulation between tropical secondary
forests and monoculture plantations, For. Ecol. Manage., 291, 73–86,
https://doi.org/10.1016/j.foreco.2012.11.024,
2013. a
Brown, S. and Lugo, A.: Aboveground biomass estimates for tropical moist
forests of the Brazilian Amazon, Interciencia, 17, 8–18, 1992. a
Busch, J., Engelmann, J., Cook-Patton, S. C., Griscom, B. W., Kroeger, T.,
Possingham, H., and Shyamsundar, P.: Potential for low-cost carbon dioxide
removal through tropical reforestation, Nat. Clim. Change, 9, 463–466,
https://doi.org/10.1038/s41558-019-0485-x,
2019. a, b, c
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011. a, b, c
Essery, R., Best, M., and Cox, P.: MOSES 2.2 Technical Documentation, Technical
Report, Met Office, London, UK, 31 pp., 2001. a
Essery, R. L. H., Best, M. J., Betts, R. A., Cox, P. M., and Taylor, C. M.:
Explicit representation of subgrid heterogeneity in a GCM land surface
scheme, J. Hydrometeorol., 4, 530–543,
https://doi.org/10.1175/1525-7541(2003)004<0530:EROSHI>2.0.CO;2,
2003. a
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd, V.,
Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E., Mercado,
L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A., Schaap, K. J.,
Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S., Zhu, Q., and
Lapola, D. M.: Amazon forest response to CO2 fertilization dependent on
plant phosphorus acquisition, Nat. Geosci., 12, 736–741,
https://doi.org/10.1038/s41561-019-0404-9,
2019. a
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 climate projections
due to carbon cycle feedbacks, J. Climate, 27, 511–526,
https://doi.org/10.1175/JCLI-D-12-00579.1, 2014. a, b, c
Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P., and Seneviratne,
S. I.: Comment on “The global tree restoration potential”, Science,
366, eaay8060, https://doi.org/10.1126/science.aay8060,
2019a. a, b
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, 2019b. a, b
Gillett, N. P., Arora, V. K., Matthews, D., and Allen, M. R.: Constraining the
ratio of global warming to cumulative CO2 emissions using CMIP5 simulations,
J. Climate, 26, 6844–6858, https://doi.org/10.1175/JCLI-D-12-00476.1, 2013. a
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva,
D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P.,
Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado,
C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J.,
Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S.,
Potapov, P., Putz, F. E., Sandermanc, J., Silvius, M., Wollenberg, E., and
Fargione, J.: Natural Climate Solutions Symposium, P. Natl. Acad. Sci. USA,
114, 1–6, https://doi.org/10.1073/pnas.1710465114, 2017. a
Haverd, V., Smith, B., Canadell, J. G., Cuntz, M., Mikaloff‐Fletcher, S.,
Farquhar, G., Woodgate, W., Briggs, P. R., and Trudinger, C. M.: Higher than
expected CO2 fertilization inferred from leaf to global observations,
Glob. Change Biol., 26, 2390–2402, https://doi.org/10.1111/gcb.14950,
2020. a
Houghton, R. A. and Nassikas, A. A.: Negative emissions from stopping
deforestation and forest degradation, globally, Glob. Change Biol., 24,
350–359, https://doi.org/10.1111/gcb.13876, 2018. a, b, c
Houghton, R. A., Byers, B., and Nassikas, A. A.: A role for tropical forests
in stabilizing atmospheric CO2, Nat. Clim. Change, 5, 1022–1023,
https://doi.org/10.1038/nclimate2869,
2015. a
Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King, A. W., Fang,
Y., Schaefer, K., Wei, Y., Cook, R. B., Fisher, J. B., Hayes, D., Huang, M.,
Ito, A., Jain, A. K., Lei, H., Lu, C., Maignan, F., Mao, J., Parazoo, N.,
Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tian, H., Wang, W., Zeng, N.,
and Zhao, F.: Uncertainty in the response of terrestrial carbon sink to
environmental drivers undermines carbon-climate feedback predictions,
Sci. Rep., 7, 1–8, https://doi.org/10.1038/s41598-017-03818-2,
2017. a
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer,
G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D.,
Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova,
E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P.,
and Wang, Y. P.: Harmonization of land-use scenarios for the period
1500–2100: 600 years of global gridded annual land-use transitions, wood
harvest, and resulting secondary lands, Clim. Change, 109, 117–161,
https://doi.org/10.1007/s10584-011-0153-2, 2011. a
IPCC: The Physical Science Basis, Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, UK and New York, USA, 1535 pp., 2013. a
Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp,
L., Brovkin, V., Hajima, T., Kato, E., Kawamiya, M., Liddicoat, S., Lindsay,
K., Reick, C. H., Roelandt, C., Segschneider, J., and Tjiputra, J.:
Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction
Simulated by CMIP5 Earth System Models under Four Representative
Concentration Pathways, J. Climate, 26, 4398–4413,
https://doi.org/10.1175/JCLI-D-12-00554.1,
2013. a, b, c
Jones, C., Ciais, P., Davis, S. J., Friedlingstein, P., Gasser, T., Peters,
G. P., Rogelj, J., van Vuuren, D. P., Canadell, J. G., Cowie, A., Jackson,
R. B., Jonas, M., Kriegler, E., Littleton, E., Lowe, J. A., Milne, J.,
Shrestha, G., Smith, P., Torvanger, A., and Wiltshire, A.: Simulating the
Earth system response to negative emissions, Environ. Res. Lett., 11,
095012, https://doi.org/10.1088/1748-9326/11/9/095012,
2016. a, b
Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, R. J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K. D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J., Lamarque, J.-F., Law, R. M., Meinshausen, M., Osprey, S., Palin, E. J., Parsons Chini, L., Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and Zerroukat, M.: The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev., 4, 543–570, https://doi.org/10.5194/gmd-4-543-2011, 2011 a, b, c, d, e
Joos, F., Meyer, R., Bruno, M., and Leuenberger, M.: The variability in the
carbon sinks as reconstructed for the last 1000 years, Geophys. Res. Lett.,
26, 1437, https://doi.org/10.1029/1999GL900250, 1999. a
Keller, D. P., Lenton, A., Scott, V., Vaughan, N. E., Bauer, N., Ji, D., Jones, C. D., Kravitz, B., Muri, H., and Zickfeld, K.: The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6, Geosci. Model Dev., 11, 1133–1160, https://doi.org/10.5194/gmd-11-1133-2018, 2018. a
Koch, A., Brierley, C., Maslin, M. M., and Lewis, S. L.: Earth system impacts
of the European arrival and Great Dying in the Americas after 1492, Quaternary
Sci. Rev., 207, 13–36, https://doi.org/10.1016/j.quascirev.2018.12.004, 2019. a
Koch, A.: Earth system feedbacks following large-scale tropical forest restoration (code & data), Mendeley Data, available at: https://data.mendeley.com/datasets/j39bw4rzsr/1, last access: 18 August 2020. a
Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, B., Holm, J., Huang, M., Kovenock, M., Kueppers, L. M., Lemieux, G., Massoud, E., McDowell, N. G., Muller-Landau, H. C., Needham, J. F., Norby, R. J., Powell, T., Rogers, A., Serbin, S. P., Shuman, J. K., Swann, A. L. S., Varadharajan, C., Walker, A. P., Wright, S. J., and Xu, C.: Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama, Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, 2020. a
Lamb, D., Erskine, P. D., and Parrotta, J. A.: Restoration of Degraded
Tropical Forest Landscapes, Science, 310, 1628–1632, 2005. a
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Cosca, C. E., Cross, J., Currie, K., Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W., Hurtt, G., Ilyina, T., Jain, A. K., Kato, E., Kautz, M., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lima, I., Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., Padin, X. A., Peregon, A., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Viovy, N., Vuichard, N., Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S., and Zhu, D.: Global Carbon Budget 2017, Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, 2018. a
Lewis, S. L. and Maslin, M. A.: The Human Planet: How we created the
Anthropocene, 1 edition, Pelican Books, London, UK, 2018. a
Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker,
T. R., Ojo, L. O., Phillips, O. L., Reitsma, J. M., White, L., Comiskey,
J. A., Djuikouo K, M. N., Ewango, C. E., Feldpausch, T. R., Hamilton,
A. C., Gloor, M., Hart, T., Hladik, A., Lloyd, J., Lovett, J. C., Makana,
J. R., Malhi, Y., Mbago, F. M., Ndangalasi, H. J., Peacock, J., Peh, K. S.,
Sheil, D., Sunderland, T., Swaine, M. D., Taplin, J., Taylor, D., Thomas,
S. C., Votere, R., and Wöll, H.: Increasing carbon storage in intact
African tropical forests, Nature, 457, 1003–1006,
https://doi.org/10.1038/nature07771, 2009. a
Lewis, S. L., Mitchard, E. T. A., Prentice, C., Maslin, M., and Poulter, B.:
Comment on “The global tree restoration potential”, Science, 366,
eaaz0388, https://doi.org/10.1126/science.aaz0388,
2019a. a, b
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A., and Koch, A.: Restoring
natural forests is the best way to remove atmospheric carbon, Nature, 568,
25–28, https://doi.org/10.1038/d41586-019-01026-8,
2019b. a, b, c
Liddicoat, S., Jones, C., and Robertson, E.: CO2 emissions determined by
HadGEM2-ES to be compatible with the representative concentration pathway
scenarios and their extensions, J. Climate, 26, 4381–4397,
https://doi.org/10.1175/JCLI-D-12-00569.1, 2013. a, b, c, d
Negrón-Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G., and
Chambers, J. Q.: Observed allocations of productivity and biomass, and
turnover times in tropical forests are not accurately represented in CMIP5
Earth system models, Environ. Res. Lett., 10, 064017,
https://doi.org/10.1088/1748-9326/10/6/064017, 2015. a
Orihuela-Belmonte, D. E., De Jong, B. H. J., Mendoza-Vega, J., Van der Wal,
J., Paz-Pellat, F., Soto-Pinto, L., and Flamenco-Sandoval, A.: Carbon stocks
and accumulation rates in tropical secondary forests at the scale of
community, landscape and forest type, Agric. Ecosyst. Environ., 171, 72–84,
https://doi.org/10.1016/j.agee.2013.03.012, 2013. a, b
Phillips, O. L., Aragao, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J.,
Lopez-Gonzalez, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A.,
van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker,
T. R., Banki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira,
A. C. A., Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas, M. A.,
Gloor, E., Higuchi, N., Jimenez, E., Lloyd, G., Meir, P., Mendoza, C., Morel,
A., Neill, D. A., Nepstad, D., Patino, S., Penuela, M. C., Prieto, A.,
Ramirez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A. S., Steege,
H. T., Stropp, J., Vasquez, R., Zelazowski, P., Davila, E. A., Andelman, S.,
Andrade, A., Chao, K.-J., Erwin, T., Di Fiore, A., Keeling, H.,
Killeen, T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C. A., Vargas,
P. N., Ramirez-Angulo, H., Rudas, A., Salamao, R., Silva, N., Terborgh, J.,
and Torres-Lezama, A.: Drought Sensitivity of the Amazon Rainforest,
Science, 323, 1344–1347, https://doi.org/10.1126/science.1164033,
2009. a
Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Effects of
anthropogenic land cover change on the carbon cycle of the last millennium,
Global Biogeochem. Cy., 23, 1–13, https://doi.org/10.1029/2009GB003488, 2009. a
Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera,
P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N.,
Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S., Cabral, G. A. L.,
de Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M.,
Durán, S. M., Espírito-Santo, M. M., Fandino, M. C., César,
R. G., Hall, J. S., Hernandez-Stefanoni, J. L., Jakovac, C. C., Junqueira,
A. B., Kennard, D., Letcher, S. G., Licona, J.-C., Lohbeck, M.,
Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P., Meave, J. A.,
Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y. R. F.,
Ochoa-Gaona, S., de Oliveira, A. A., Orihuela-Belmonte, E.,
Peña-Claros, M., Pérez-García, E. A., Piotto, D., Powers,
J. S., Rodríguez-Velázquez, J., Romero-Pérez, I. E.,
Ruíz, J., Saldarriaga, J. G., Sanchez-Azofeifa, A., Schwartz, N. B.,
Steininger, M. K., Swenson, N. G., Toledo, M., Uriarte, M., van Breugel, M.,
van der Wal, H., Veloso, M. D. M., Vester, H. F. M., Vicentini, A., Vieira,
I. C. G., Bentos, T. V., Williamson, G. B., and Rozendaal, D. M. A.: Biomass
resilience of Neotropical secondary forests, Nature, 530, 211–214,
https://doi.org/10.1038/nature16512, 2016. a, b, c
Pugh, T. A. M., Arneth, A., Olin, S., Ahlström, A., Bayer, A. D., Goldewijk,
K. K., Lindeskog, M., and Schurgers, G.: Simulated carbon emissions from
land-use change are substantially enhanced by accounting for agricultural
management, Environ. Res. Lett., 10, 124008,
https://doi.org/10.1088/1748-9326/10/12/124008, 2015. a
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L.,
Séférian, R., and Vilariño, M.:
Mitigation Pathways
Compatible with 1.5∘C in the Context of Sustainable Development, in:
Global Warming of 1.5∘C. An IPCC Special Report on the impacts of global warming of 1.5∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate pove,
edited by: Masson-Delmotte,
V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.,
Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S.,
Matthews, J., Chen, Y., Zhou, X., Gomis, M., Lonnoy, E., Maycock, T., Tignor,
M., and Waterfield, T., IPCC, Geneva, Switzerland, 3–174, 2018. a, b
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., and
Salas, W.: Benchmark map of forest carbon stocks in tropical regions across
three continents, P. Natl. Acad. Sci. USA, 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011. a
Schwinger, J. and Tjiputra, J.: Ocean carbon cycle feedbacks under negative
emissions, Geophys. Res. Lett., 45, 5062–5070, https://doi.org/10.1029/2018GL077790,
2018. a, b
Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato,
E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J.,
Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R.,
Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grubler, A., Heidug,
W. K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E., Lowe, J.,
Moreira, J. R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M.,
Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., and
Yongsung, C.: Biophysical and economic limits to negative CO2 emissions,
Nat. Clim. Change, 6, 42–50, 2016. a
Stocker, B. D., Strassmann, K., and Joos, F.: Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model, Biogeosciences, 8, 69–88, https://doi.org/10.5194/bg-8-69-2011, 2011. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: A Summary of CMIP5
Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1,
2012. a
United Nations Treaty Collection: Paris Agreement to the United Nations Framework Convention on Climate Change, Paris, Dec. 12, 2015, T.I.A.S. No. 16-1104, 2016. a
van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet, J.,
Deetman, S., Isaac, M., Goldewijk, K. K., Hof, A., Beltran, A. M.,
Oostenrijk, R., and van Ruijven, B.: RCP2.6: Exploring the possibility to
keep global mean temperature increase below 2C, Clim. Change, 109, 95–116,
https://doi.org/10.1007/s10584-011-0152-3, 2011. a, b, c, d, e
Veldman, J. W., Aleman, J. C., Alvarado, S. T., Anderson, T. M., Archibald, S.,
Bond, W. J., Boutton, T. W., Buchmann, N., Buisson, E., Canadell, J. G.,
Dechoum, M. D. S., Diaz-Toribio, M. H., Durigan, G., Ewel, J. J., Fernandes,
G. W., Fidelis, A., Fleischman, F., Good, S. P., Griffith, D. M., Hermann,
J.-M., Hoffmann, W. A., Le Stradic, S., Lehmann, C. E. R., Mahy, G.,
Nerlekar, A. N., Nippert, J. B., Noss, R. F., Osborne, C. P., Overbeck,
G. E., Parr, C. L., Pausas, J. G., Pennington, R. T., Perring, M. P., Putz,
F. E., Ratnam, J., Sankaran, M., Schmidt, I. B., Schmitt, C. B., Silveira, F.
A. O., Staver, A. C., Stevens, N., Still, C. J., Strömberg, C. A. E.,
Temperton, V. M., Varner, J. M., and Zaloumis, N. P.: Comment on “The
global tree restoration potential”, Science, 366, eaay7976,
https://doi.org/10.1126/science.aay7976,
2019. a
Short summary
Estimates of large-scale tree planting and forest restoration as a carbon sequestration tool typically miss a crucial aspect: the Earth system response to the increased land carbon sink from new vegetation. We assess the impact of tropical forest restoration using an Earth system model under a scenario that limits warming to 2 °C. Almost two-thirds of the carbon impact of forest restoration is offset by negative carbon cycle feedbacks, suggesting a more modest benefit than in previous studies.
Estimates of large-scale tree planting and forest restoration as a carbon sequestration tool...
Altmetrics
Final-revised paper
Preprint