Articles | Volume 18, issue 11
https://doi.org/10.5194/bg-18-3331-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3331-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities
Nimrod Wieler
Zuckerberg Institute for Water Research, Jacob Blaustein Institutes
for Desert Research, Ben-Gurion University of the Negev, Sede Boqer
Campus 8499000, Israel
Tali Erickson Gini
Southern Region, Israel Antiquities Authority, Omer 84965,
Israel
Osnat Gillor
CORRESPONDING AUTHOR
Zuckerberg Institute for Water Research, Jacob Blaustein Institutes
for Desert Research, Ben-Gurion University of the Negev, Sede Boqer
Campus 8499000, Israel
Soil and Water Research Infrastructure and Institute of Soil
Biology, Biology Centre CAS, České Budějovice, Czechia
Related authors
No articles found.
Jolanta Niedźwiecka, Roey Angel, Petr Čapek, Ana Catalina Lara, Stanislav Jabinski, Travis B. Meador, and Hana Šantrůčková
SOIL, 11, 735–753, https://doi.org/10.5194/soil-11-735-2025, https://doi.org/10.5194/soil-11-735-2025, 2025
Short summary
Short summary
Studies on how microbes use C in soils typically assume oxic conditions but often overlook anaerobic processes and extracellular metabolite release. We examined how O2 and Fe content affect C mineralisation in forest soils by tracking 13C flow into biomass, CO2, metabolites, and active microbes under oxic and anoxic conditions. Results showed that anoxic conditions preserved C longer, especially in high-Fe soils. We conclude that microbial exudates play a role in anoxic C stabilisation.
Talia Gabay, Eva Petrova, Osnat Gillor, Yaron Ziv, and Roey Angel
SOIL, 9, 231–242, https://doi.org/10.5194/soil-9-231-2023, https://doi.org/10.5194/soil-9-231-2023, 2023
Short summary
Short summary
This paper evaluates bacterial growth in biocrusts after a large-scale mining disturbance in a hyperarid desert, using a stable isotope probing assay.
We discovered that biocrust bacteria from both natural and post-mining plots resumed photosynthetic activity but did not grow following hydration. Our paper provides insights into the effects of a large-scale disturbance (mining) on biocrusts and their response to hydration, with implications for biocrust restoration practices in Zin mines.
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and
III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022, https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
Short summary
In this citizen science project, we combined a standardised litter bag method (Tea Bag Index) with microbiome analysis of bacteria and fungi colonising the teabags to gain a holistic understanding of the carbon degradation dynamics in temperate European soils. Our method focuses only on the active part of the soil microbiome. The results show that about one-third of the prokaryotes and one-fifth of the fungal species (ASVs) in the soil were enriched in response to the presence of fresh OM.
Capucine Baubin, Arielle M. Farrell, Adam Št'ovíček, Lusine Ghazaryan, Itamar Giladi, and Osnat Gillor
SOIL, 7, 611–637, https://doi.org/10.5194/soil-7-611-2021, https://doi.org/10.5194/soil-7-611-2021, 2021
Short summary
Short summary
In this paper, we describe changes in desert soil bacterial diversity and function when two ecosystem engineers, shrubs and ant nests, in an arid environment are present. The results show that bacterial activity increases when there are ecosystem engineers and that their impact is non-additive. This is one of a handful of studies that investigated the separate and combined effects of ecosystem engineers on soil bacterial communities investigating both composition and function.
Capucine Baubin, Noya Ran, Hagar Siebner, and Osnat Gillor
SOIL Discuss., https://doi.org/10.5194/soil-2021-88, https://doi.org/10.5194/soil-2021-88, 2021
Revised manuscript not accepted
Short summary
Short summary
In this manuscript, we describe changes in desert biocrust bacterial community during drought, rainfall, and dehydration in the Negev Desert. We followed the active bacterial community composition and their potential activity and showed that rainfall changes the bacterial community, triggers photosynthesis in soil phototrophs, and induces the production of extracellular polymeric substances that retain water during dehydration allowing bacterial cells to persist during the dehydration stage.
Cited articles
Alonso-Zarza, A. M. and Tanner, L. H. (Eds.): Paleoenvironmental record and applications of calcretes and palustrine carbonates (Vol. 416), Geological Society of America, 2006. a
Alonso-Zarza, A. M. and Wright, V. P.: Chapter 5 Calcretes, in:
Developments in Sedimentology, edited by: Alonso-Zarza, A. M. and Tanner,
L. H., vol. 61 of Carbonates in Continental Settings: Facies,
Environments, and Processes, 225–267, Elsevier, Amsterdam, the Netherlands, Oxford, UK,
https://doi.org/10.1016/S0070-4571(09)06105-6, 2010. a
Amit, R., Simhai, O., Ayalon, A., Enzel, Y., Matmon, A., Crouvi, O., Porat, N.,
and McDonald, E.: Transition from Arid to Hyper-Arid Environment in the
Southern Levant Deserts as Recorded by Early Pleistocene Cummulic
Aridisols, Quaternary Sci. Rev., 30, 312–323,
https://doi.org/10.1016/j.quascirev.2010.11.007, 2011. a
Angel, R.: Microbiome analysis code, Zenodo [code], https://doi.org/10.5281/zenodo.4747587, 2021a. a
Angel, R.: Rock metagenome (ID 381355) – BioProject – NCBI, available at: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA381355, last access: 2 June 2021b. a
Angel, R. and Conrad, R.: Elucidating the Microbial Resuscitation Cascade in
Biological Soil Crusts Following a Simulated Rain Event, Environ.
Microbiol., 15, 2799–2815, https://doi.org/10.1111/1462-2920.12140, 2013. a, b
Avni, G.: The Byzantine-Islamic Transition in Palestine: An
Archaeological Approach, Oxford University press, Oxford, UK, 2014. a
Brlek, M. and Glumac, B.: Stable Isotopic (δ13C and δ18O)
Signatures of Biogenic Calcretes Marking Discontinuity Surfaces: A Case Study
from Upper Cretaceous Carbonates of Central Dalmatia and Eastern
Istria, Croatia, Facies, 60, 773–788,
https://doi.org/10.1007/s10347-014-0403-7, 2014. a
Büdel, B. and Wessels, D. C. J.: Rock Inhabiting Blue-Green
Algae/Cyanobacteria from Hot Arid Regions, Algological Studies/Archiv für
Hydrobiologie, Supplement Volumes, 385–398, 1991. a
Cabello-Briones, C. and Viles, H. A.: Evaluating the Effects of Open
Shelters on Limestone Deterioration at Archaeological Sites in
Different Climatic Locations, Int. J. Archit.
Herit., 11, 816–828, https://doi.org/10.1080/15583058.2017.1300710, 2017. a
Chen, L., Reeve, J., Zhang, L., Huang, S., Wang, X., and Chen, J.: GMPR:
A Robust Normalization Method for Zero-Inflated Count Data with
Application to Microbiome Sequencing Data, PeerJ, 6, e4600,
https://doi.org/10.7717/peerj.4600, 2018. a
Clarke, L. J. and Jenkyns, H. C.: New Oxygen Isotope Evidence for Long-Term
Cretaceous Climatic Change in the Southern Hemisphere, Geology, 27,
699–702, https://doi.org/10.1130/0091-7613(1999)027<0699:NOIEFL>2.3.CO;2, 1999. a
Corenblit, D., Darrozes, J., Julien, F., Otto, T., Roussel, E., Steiger, J.,
and Viles, H.: The Search for a Signature of Life on Mars:
A Biogeomorphological Approach, Astrobiology, 19, 1279–1291,
https://doi.org/10.1089/ast.2018.1969, 2019. a
Crouvi, O., Amit, R., Enzel, Y., Porat, N., and Sandler, A.: Sand Dunes as a
Major Proximal Dust Source for Late Pleistocene Loess in the Negev
Desert, Israel, Quaternary Res., 70, 275–282,
https://doi.org/10.1016/j.yqres.2008.04.011, 2008. a
Dietrich, W. E. and Perron, J. T.: The Search for a Topographic Signature of
Life, Nature, 439, 411–418, https://doi.org/10.1038/nature04452, 2006. a
Dorn, R. I.: Desert Rock Coatings, in: Geomorphology of Desert
Environments, edited by: Parsons, A. J. and Abrahams, A. D., 153–186,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-1-4020-5719-9_7, 2009. a
Edgar, R. C.: UPARSE: Highly Accurate OTU Sequences from Microbial
Amplicon Reads, Nat. Methods, 10, 996–998, https://doi.org/10.1038/nmeth.2604, 2013. a
Ferreira, J. A. and Zwinderman, A. H.: On the
Benjamini–Hochberg Method, Ann. Stat., 34,
1827–1849, https://doi.org/10.1214/009053606000000425, 2006. a
Friedmann, E. I. and Kibler, A. P.: Nitrogen Economy of Endolithic Microbial
Communities in Hot and Cold Deserts, Microb. Ecol., 6, 95–108,
https://doi.org/10.1007/BF02010548, 1980. a
Garcia-Pichel, F.: Plausible Mechanisms for the Boring on Carbonates by
Microbial Phototrophs, Sediment. Geol., 185, 205–213,
https://doi.org/10.1016/j.sedgeo.2005.12.013, 2006. a
Gorbushina, A. A.: Life on the Rocks, Environ. Microbiol., 9,
1613–1631, https://doi.org/10.1111/j.1462-2920.2007.01301.x, 2007. a, b, c
Holmes, A. J., Bowyer, J., Holley, M. P., O'Donoghue, M., Montgomery, M., and
Gillings, M. R.: Diverse, yet-to-Be-Cultured Members of the Rubrobacter
Subdivision of the Actinobacteria Are Widespread in Australian Arid
Soils, FEMS Microbiol. Ecol., 33, 111–120,
https://doi.org/10.1111/j.1574-6941.2000.tb00733.x, 2000. a, b
Horn, H. S.: Measurement of “Overlap” in Comparative Ecological Studies,
Am. Nat., 100, 419–424, https://doi.org/10.1086/282436, 1966. a
Idris, H., Goodfellow, M., Sanderson, R., Asenjo, J. A., and Bull, A. T.:
Actinobacterial Rare Biospheres and Dark Matter Revealed in
Habitats of the Chilean Atacama Desert, Sci. Rep.-UK, 7, 8373,
https://doi.org/10.1038/s41598-017-08937-4, 2017. a
Ji, M., Greening, C., Vanwonterghem, I., Carere, C. R., Bay, S. K., Steen,
J. A., Montgomery, K., Lines, T., Beardall, J., van Dorst, J., Snape, I.,
Stott, M. B., Hugenholtz, P., and Ferrari, B. C.: Atmospheric Trace Gases
Support Primary Production in Antarctic Desert Surface Soil, Nature, 552, 400–403,
https://doi.org/10.1038/nature25014, 2017. a
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and
Glöckner, F. O.: Evaluation of General 16S Ribosomal RNA Gene
PCR Primers for Classical and Next-Generation Sequencing-Based Diversity
Studies, Nucleic Acids Res., 41, e1–e1, https://doi.org/10.1093/nar/gks808, 2013. a
Krumbein, W. E. and Jens, K.: Biogenic Rock Varnishes of the Negev Desert
(Israel) an Ecological Study of Iron and Manganese Transformation by
Cyanobacteria and Fungi, Oecologia, 50, 25–38, https://doi.org/10.1007/BF00378791,
1981. a
Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O., and Belnap, J.:
Response and Resilience of Soil Biocrust Bacterial Communities to Chronic
Physical Disturbance in Arid Shrublands, ISME J., 6, 886–897,
https://doi.org/10.1038/ismej.2011.153, 2012. a
Lang-Yona, N., Maier, S., Macholdt, D. S., Müller-Germann, I., Yordanova,
P., Rodriguez-Caballero, E., Jochum, K. P., Al-Amri, A., Andreae, M. O.,
Fröhlich-Nowoisky, J., and Weber, B.: Insights into Microbial Involvement
in Desert Varnish Formation Retrieved from Metagenomic Analysis,
Env. Microbiol. Rep., 10, 264–271,
https://doi.org/10.1111/1758-2229.12634, 2018. a, b
Lange, O. L.: Twenty-Three Years of Growth Measurements on the
Crustose Lichen Caloplaca Aurantia in the Central Negev Desert,
Israel J. Bot., 39, 383–394, https://doi.org/10.1080/0021213X.1990.10677162,
1990. a
Langgut, D., Tepper, Y., Benzaquen, M., Erickson-Gini, T., and Bar-Oz, G.:
Environment and Horticulture in the Byzantine Negev Desert, Israel:
Sustainability, Prosperity and Enigmatic Decline, Quaternary Int.,
https://doi.org/10.1016/j.quaint.2020.08.056, online first, 2020. a
Lebre, P. H., De Maayer, P., and Cowan, D. A.: Xerotolerant Bacteria: Surviving
through a Dry Spell, Nat. Rev. Microbiol., 15, 285–296,
https://doi.org/10.1038/nrmicro.2017.16, 2017. a
Lenth, R., Buerkner, P., Herve, M., Love, J., Riebl, H., and Singmann, H.:
Emmeans: Estimated Marginal Means, Aka Least-Squares Means, available at: https://cran.r-project.org/web/packages/emmeans/index.html (last access: 2 June 2021), 2020. a
Liu, K.: Oxygen and Carbon Isotope Analysis of the Mooreville Chalk and
Late Santonian-Early Campanian Sea Level and Sea Surface Temperature
Changes, Northeastern Gulf of Mexico, U.S.A., Cretaceous
Res., 30, 980–990, https://doi.org/10.1016/j.cretres.2009.02.008, 2009. a
Liu, T. and Broecker, W. S.: How Fast Does Rock Varnish Grow?, Geology, 28,
183–186, https://doi.org/10.1130/0091-7613(2000)28<183:HFDRVG>2.0.CO;2, 2000. a
Mabbutt, J. A.: Desert Landforms, Australian National University Press, Canberra, Australia, 1977. a
Makhalanyane, T. P., Valverde, A., Gunnigle, E., Frossard, A., Ramond, J.-B.,
and Cowan, D. A.: Microbial Ecology of Hot Desert Edaphic Systems, FEMS
Microbiol. Rev., 39, 203–221, https://doi.org/10.1093/femsre/fuu011, 2015. a, b
Martin, B. D., Witten, D., and Willis, A. D.: Modeling Microbial Abundances and
Dysbiosis with Beta-Binomial Regression, arXiv [stat], arXiv:1902.02776, 7 February 2019. a
McArdle, B. H. and Anderson, M. J.: Fitting Multivariate Models to
Community Data: A Comment on Distance-Based Redundancy
Analysis, Ecology, 82, 290–297,
https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2, 2001. a
Mcllroy de la Rosa, J. P., Warke, P. A., and Smith, B. J.: The Effects of
Lichen Cover upon the Rate of Solutional Weathering of Limestone,
Geomorphology, 220, 81–92, https://doi.org/10.1016/j.geomorph.2014.05.030, 2014. a, b
McMurdie, P. J. and Holmes, S.: Phyloseq: An R Package for Reproducible
Interactive Analysis and Graphics of Microbiome Census Data, PLOS
ONE, 8, e61217, https://doi.org/10.1371/journal.pone.0061217, 2013. a
Mummey, D., Holben, W., Six, J., and Stahl, P.: Spatial Stratification of
Soil Bacterial Populations in Aggregates of Diverse Soils,
Microb. Ecol., 51, 404–411, https://doi.org/10.1007/s00248-006-9020-5, 2006. a
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn,
D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M.
H. H., Szoecs, E., and Wagner, H.: Vegan: Community Ecology Package, available at: https://cran.r-project.org/web/packages/vegan/index.html (last access: 2 June 2021),
2018. a
Owen, J. J., Amundson, R., Dietrich, W. E., Nishiizumi, K., Sutter, B., and
Chong, G.: The Sensitivity of Hillslope Bedrock Erosion to Precipitation,
Earth Surf. Proc. Land., 36, 117–135, https://doi.org/10.1002/esp.2083,
2011. a
Pepe-Ranney, C., Koechli, C., Potrafka, R., Andam, C., Eggleston, E.,
Garcia-Pichel, F., and Buckley, D. H.: Non-Cyanobacterial Diazotrophs
Mediate Dinitrogen Fixation in Biological Soil Crusts during Early Crust
Formation, ISME J., 10, 287–298, https://doi.org/10.1038/ismej.2015.106,
2016. a
Pointing, S. B. and Belnap, J.: Microbial Colonization and Controls in Dryland
Systems, Nat. Rev. Microbiol., 10, 551–562,
https://doi.org/10.1038/nrmicro2831, 2012. a, b, c, d
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glockner, F. O.: The SILVA Ribosomal RNA Gene
Database Project: Improved Data Processing and Web-Based Tools, Nucleic Acids
Res., 41, D590–D596, https://doi.org/10.1093/nar/gks1219, 2013. a
Rainey, F. A., Ray, K., Ferreira, M., Gatz, B. Z., Nobre, M. F., Bagaley, D.,
Rash, B. A., Park, M.-J., Earl, A. M., Shank, N. C., Small, A. M., Henk,
M. C., Battista, J. R., Kämpfer, P., and da Costa, M. S.: Extensive
Diversity of Ionizing-Radiation-Resistant Bacteria Recovered
from Sonoran Desert Soil and Description of Nine New Species of
the Genus Deinococcus Obtained from a Single Soil Sample, Appl.
Environ. Microb., 71, 5225–5235, https://doi.org/10.1128/AEM.71.9.5225-5235.2005,
2005. a, b
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, available at: https://www.R-project.org/ (last access: 2 June 2021), 2020. a
Sandler, A., Meunier, A., and Velde, B.: Mineralogical and Chemical Variability
of Mountain Red/Brown Mediterranean Soils, Geoderma, 239–240, 156–167,
https://doi.org/10.1016/j.geoderma.2014.10.008, 2015. a
Scherer, G. W.: Crystallization in Pores, Cement Concrete Res., 29,
1347–1358, https://doi.org/10.1016/S0008-8846(99)00002-2, 1999. a
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson,
C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber,
C. F.: Introducing Mothur: Open Source, Platform-Independent,
Community-Supported Software for Describing and Comparing Microbial
Communities, Appl. Environ. Microb., 75, 7537–7541,
https://doi.org/10.1128/AEM.01541-09, 2009. a
Schütz, F., Norden, B., and Förster, A.: Thermal Properties of
Sediments in Southern Israel: A Comprehensive Data Set for Heat Flow and
Geothermal Energy Studies, Basin Res., 24, 357–376,
https://doi.org/10.1111/j.1365-2117.2011.00529.x, 2012. a
Searle, S. R., Speed, F. M., and Milliken, G. A.: Population Marginal Means
in the Linear Model: An Alternative to Least Squares Means,
Am. Stat., 34, 216–221, https://doi.org/10.1080/00031305.1980.10483031,
1980. a
Sneh, A., Avni, Y., Bartov, Y., Zilberman, E., Braun, M., Lasman, N., and
Weinberger, R.: The geological map of Israel, 1 : 50,000. Sheet 18-III: Shivta, available at:
https://www.gov.il/he/departments/general/shivta-map (last access: 2 June 2021), 2011. a
Tepper, Y., Erickson-Gini, T., Farhi, Y., and Bar-Oz, G.: Probing the
Byzantine/Early Islamic Transition in the Negev: The Renewed
Shivta Excavations, 2015–2016, Tel Aviv, 45, 120–152,
https://doi.org/10.1080/03344355.2018.1412058, 2018. a, b, c, d
Uemura, R., Nakamoto, M., Asami, R., Mishima, S., Gibo, M., Masaka, K.,
Jin-Ping, C., Wu, C.-C., Chang, Y.-W., and Shen, C.-C.: Precise Oxygen and
Hydrogen Isotope Determination in Nanoliter Quantities of Speleothem
Inclusion Water by Cavity Ring-down Spectroscopic Techniques, Geochim.
Cosmochim. Ac., 172, 159–176, https://doi.org/10.1016/j.gca.2015.09.017, 2016. a
Velasco Ayuso, S., Giraldo Silva, A., Nelson, C., Barger, N. N., and
Garcia-Pichel, F.: Microbial Nursery Production of High-Quality
Biological Soil Crust Biomass for Restoration of Degraded Dryland
Soils, Appl. Environ. Microb., 83, e02179-16,
https://doi.org/10.1128/AEM.02179-16, 2017.
a
Viles, H.: Biogeomorphology: Past, Present and Future, Geomorphology, 366,
106809, https://doi.org/10.1016/j.geomorph.2019.06.022, 2019. a
Viles, H. A.: Understanding Dryland Landscape Dynamics: Do Biological
Crusts Hold the Key?, Geography Compass, 2, 899–919,
https://doi.org/10.1111/j.1749-8198.2008.00099.x, 2008. a, b
Viles, H. A. and Gorbushina, A. A.: Soiling and Microbial Colonisation on Urban
Roadside Limestone: A Three Year Study in Oxford, England, Build. Environ., 38, 1217–1224, https://doi.org/10.1016/S0360-1323(03)00078-7, 2003. a, b
Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R.: Naive Bayesian
Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial
Taxonomy, Appl. Environ. Microb., 73, 5261–5267,
https://doi.org/10.1128/AEM.00062-07, 2007. a
Warscheid, T. and Braams, J.: Biodeterioration of Stone: A Review,
Int. Biodeter. Biodegr., 46, 343–368,
https://doi.org/10.1016/S0964-8305(00)00109-8, 2000. a
Weber, B., Büdel, B., and Belnap, J. (Eds.): Biological Soil Crusts:
An Organizing Principle in Drylands, Springer, New York, NY, 1st
Edn., 2016. a
Wickham, H.: Ggplot2: Elegant Graphics for Data Analysis,
Springer-Verlag, New York, USA, 2016. a
Wieler, N., Ginat, H., Gillor, O., and Angel, R.: The origin and role of biological rock crusts in rocky desert weathering, Biogeosciences, 16, 1133–1145, https://doi.org/10.5194/bg-16-1133-2019, 2019. a, b, c, d
Wierzchos, J., Davila, A. F., Artieda, O., Cámara-Gallego, B., de los
Ríos, A., Nealson, K. H., Valea, S., Teresa García-González,
M., and Ascaso, C.: Ignimbrite as a Substrate for Endolithic Life in the
Hyper-Arid Atacama Desert: Implications for the Search for Life on
Mars, Icarus, 224, 334–346, https://doi.org/10.1016/j.icarus.2012.06.009, 2013. a
Wobbrock, J. O., Findlater, L., Gergle, D., and Higgins, J. J.: The Aligned
Rank Transform for Nonparametric Factorial Analyses Using Only Anova
Procedures, in: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI '11, 143–146, Association for
Computing Machinery, New York, NY, USA, https://doi.org/10.1145/1978942.1978963,
2011. a
Zhang, Y., Duan, P., Zhang, P., and Li, M.: Variations in Cyanobacterial and
Algal Communities and Soil Characteristics under Biocrust Development under
Similar Environmental Conditions, Plant Soil, 429, 241–251,
https://doi.org/10.1007/s11104-017-3443-2, 2018. a
Short summary
Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands. BRCs play a crucial role in arid environments because of the limited activity of plants and soil. Nevertheless, BRC development rates have never been dated. Here we integrated archaeological, microbiological and geological methods to provide a first estimation of the growth rate of BRCs under natural conditions. This can serve as an affordable dating tool in archaeological sites in arid regions.
Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands....
Altmetrics
Final-revised paper
Preprint