Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3733-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3733-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean
Alfred Wegener Institute for Polar and Marine Science, Bremerhaven,
Germany
Department of Life Sciences and Chemistry, Jacobs University, Bremen,
Germany
Eric J. Raes
Ocean Frontier Institute and Department of Oceanography, Dalhousie
University, Halifax, NS, Canada
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Alfred Wegener Institute for Polar and Marine Science, Bremerhaven,
Germany
Pier Luigi Buttigieg
Helmholtz Metadata Collaboration, GEOMAR, Kiel, Germany
Claire Lo Monaco
LOCEAN-IPSL, Sorbonne Université, Paris, France
Alfred Wegener Institute for Polar and Marine Science, Bremerhaven,
Germany
Helmholtz Institute for Functional Marine Biodiversity, Oldenburg,
Germany
Anya M. Waite
Ocean Frontier Institute and Department of Oceanography, Dalhousie
University, Halifax, NS, Canada
Alfred Wegener Institute for Polar and Marine Science, Bremerhaven,
Germany
Related authors
No articles found.
Ariadna Celina Nocera, Lars Stemmann, Marcel Babin, Tristan Biard, Julie Coustenoble, François Carlotti, Laurent Coppola, Lucas Courchet, Laetitia Drago, Amanda Elineau, Lionel Guidi, Helena Hauss, Laëtitia Jalabert, Lee Karp-Boss, Rainer Kiko, Manon Laget, Fabien Lombard, Andrew McDonnell, Camille Merland, Solène Motreuil, Thelma Panaïotis, Marc Picheral, Andreas Rogge, Anya Waite, and Jean-Olivier Irisson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-522, https://doi.org/10.5194/essd-2025-522, 2025
Preprint under review for ESSD
Short summary
Short summary
Plankton and detritus play a key role in ocean health and climate regulation. We present a large global dataset of images and information collected from 2008 to 2018 using specialized underwater camera (UVP). This publicly available dataset will support more accurate ecological models and help train artificial intelligence tools, improving how scientists track ocean biodiversity and monitor environmental changes.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Elianne Egge, Stephanie Elferink, Daniel Vaulot, Uwe John, Gunnar Bratbak, Aud Larsen, and Bente Edvardsen
Earth Syst. Sci. Data, 13, 4913–4928, https://doi.org/10.5194/essd-13-4913-2021, https://doi.org/10.5194/essd-13-4913-2021, 2021
Short summary
Short summary
Here we present a dataset of DNA sequences obtained from size-fractionated seawater samples from the Arctic Ocean that are used to identify taxonomic groups of unicellular plankton. This dataset can be used to investigate the diversity and distribution of plankton groups both by season and by depth and thus increase our understanding of the factors influencing the dynamics of this important part of the Arctic marine ecosystem.
Léo Mahieu, Claire Lo Monaco, Nicolas Metzl, Jonathan Fin, and Claude Mignon
Ocean Sci., 16, 1559–1576, https://doi.org/10.5194/os-16-1559-2020, https://doi.org/10.5194/os-16-1559-2020, 2020
Short summary
Short summary
We investigated the evolution of anthropogenic CO2 (Cant) in the Antarctic Bottom Water in the southern Indian Ocean since 1978 based on observations from 16 reocupations. We found that the Cant and dissolved inorganic carbon increased at about the same rate over the 40-year period. However, the data also show large interannual variations and a surprising stability of Cant in the last decade, likely reflecting the variability of bottom water formation and circulation in the Southern Ocean.
Cited articles
Acevedo-Trejos, E., Maran, E., and Merico, A.: Phytoplankton size diversity
and ecosystem function relationships across oceanic regions, P. Roy. Soc. B-Biol. Sci., 285, 20180621, https://doi.org/10.1098/rspb.2018.0621, 2018.
Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P.,
and Hardman-mountford, N.: Phytoplankton pigments and functional types in
the Atlantic Ocean: A decadal assessment, 1995–2005, Deep-Sea Res. Pt. II, 56, 899–917,
https://doi.org/10.1016/j.dsr2.2008.09.017, 2009.
Albuquerque, R., Bode, A., González-Gordillo, J. I., Duarte, C. M., and
Queiroga, H.: Trophic Structure of Neuston Across Tropical and Subtropical
Oceanic Provinces Assessed With Stable Isotopes, Front. Mar. Sci.,
7, 606088, https://doi.org/10.3389/fmars.2020.606088, 2021.
Alderkamp, A. C., Garcon, V., de Baar, H. J. W., and Arrigo, K. R.:
Short-term photoacclimation effects on photoinhibition of phytoplankton in
the Drake Passage (Southern Ocean), Deep-Sea Res. Pt. I,
58, 943–955, https://doi.org/10.1016/j.dsr.2011.07.001, 2011.
Anderson, M. J.: A new method for non-parametric multivariate analysis of
variance, Austral Ecol., 26, 32–46,
https://doi.org/10.1046/j.1442-9993.2001.01070.x, 2001.
Armstrong, F. A. J.: The determination of silicate in sea water, J. Mar.
Biol. Assoc. UK, 30, 149–160,
https://doi.org/10.1017/S0025315400012649, 1951.
Baltar, F. and Arístegui, J.: Fronts at the Surface Ocean Can Shape
Distinct Regions of Microbial Activity and Community Assemblages Down to the
Bathypelagic Zone: The Azores Front as a Case Study, Front. Mar. Sci.,
4, 1–13, https://doi.org/10.3389/fmars.2017.00252, 2017.
Baltar, F., Currie, K., Stuck, E., Roosa, S., and Morales, S. E.: Oceanic
fronts: Transition zones for bacterioplankton community composition,
Environ. Microbiol. Rep., 8, 132–138,
https://doi.org/10.1111/1758-2229.12362, 2016.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G.,
Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean
productivity, Nature, 444, 752–755,
https://doi.org/10.1038/nature05317, 2006.
Behrenfeld, M. J., Halsey, K. H., and Milligan, A. J.: Evolved physiological
responses of phytoplankton to their integrated growth environment, Philos.
T. Roy. Soc. B, 363, 2687–2703,
https://doi.org/10.1098/rstb.2008.0019, 2008.
Belkin, I. M. and O'Reilly, J. E.: An algorithm for oceanic front detection
in chlorophyll and SST satellite imagery, J. Marine Syst., 78, 319–326,
https://doi.org/10.1016/j.jmarsys.2008.11.018, 2009.
Biers, E. J., Sun, S., and Howard, E. C.: Prokaryotic genomes and diversity
in surface ocean waters: Interrogating the global ocean sampling metagenome,
Appl. Environ. Microb., 75, 2221–2229,
https://doi.org/10.1128/AEM.02118-08, 2009.
Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp,
L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U.,
Corbière, A., Durand, I., Ebersbach, F., Fuda, J.-L., Garcia, N.,
Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel,
C., Laan, P., Lefèvre, D., Lo Monaco, C., Malits, A., Mosseri, J.,
Obernosterer, I., Park, Y.-H., Picheral, M., Pondaven, P., Remenyi, T.,
Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut, M., Thuiller,
D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M.,
Vincent, D., Viollier, E., Vong, L., and Wagener, T.: Effect of natural iron
fertilization on carbon sequestration in the Southern Ocean, Nature,
446, 1070–1074, https://doi.org/10.1038/nature05700, 2007.
Blain, S., Sarthou, G., and Laan, P.: Distribution of dissolved iron during
the natural iron-fertilization experiment KEOPS (Kerguelen Plateau, Southern
Ocean), Deep-Sea Res. Pt. II, 55, 594–605,
https://doi.org/10.1016/j.dsr2.2007.12.028, 2008.
Boatman, T. G., Davey, P. A., Lawson, T., and Geider, R. J.: The
physiological cost of diazotrophy for Trichodesmium erythraeum IMS101, PLoS
One, 3, 1–24, 2018.
Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E.,
Knight, R., Huttley, G. A., and Gregory Caporaso, J.: Optimizing taxonomic
classification of marker-gene amplicon sequences with QIIME 2's
q2-feature-classifier plugin, Microbiome, 6, 1–17,
https://doi.org/10.1186/s40168-018-0470-z, 2018.
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch,
R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette,
M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J.,
Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M.
T., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi,
K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and
Zeldis, J.: A mesoscale phytoplankton bloom in the polar Southern Ocean
stimulated by iron fertilization, Nature, 407, 695–702,
https://doi.org/10.1038/35037500, 2000.
Breitbarth, E., Oschlies, A., and LaRoche, J.: Physiological constraints on the global distribution of Trichodesmium – effect of temperature on diazotrophy, Biogeosciences, 4, 53–61, https://doi.org/10.5194/bg-4-53-2007, 2007.
Brown, S. L. and Landry, M. R.: Mesoscale variability in biological
community structure and biomass in the Antarctic Polar Front region at
170∘ W during austral spring 1997, J. Geophys. Res.-Ocean.,
106, 13917–13930, https://doi.org/10.1029/1999JC000188, 2001.
Caldeira, K. and Wickett, M.: Ocean model predictions of chemistry changes
from carbon dioxide emissions to the atmosphere and ocean, J. Geophys. Res.-Ocean., 110, 1–12, https://doi.org/10.1029/2004JC002671, 2005.
Callahan, B. J., McMurdie P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.: DADA2: High resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer,
K., and Madden, T. L.: BLAST +: architecture and applications, BMC
Bioinformatics, 9, 1–9, https://doi.org/10.1186/1471-2105-10-421, 2009.
Chalup, M. S. and Laws, E. A.: A test of the assumptions and predictions of
recent microalgal growth models with the marine phytoplankter Pavlova
lutheri, Limnol. Oceanogr., 35, 583–596,
https://doi.org/10.4319/lo.1990.35.3.0583, 1990.
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Colwell, R. K., and
Ellison, A. M.: Rarefaction and Extrapolation with Hill Numbers: A Framework
for Sampling and Estimation in Species Diversity Studies, Ecol. Monogr.,
84, 45–67, https://doi.org/10.1890/13-0133.1, 2014.
Chapman, C. C., Lea, M. A., Meyer, A., Sallée, J. B., and Hindell, M.:
Defining Southern Ocean fronts and their influence on biological and
physical processes in a changing climate, Nat. Clim. Change, 10,
209–219, https://doi.org/10.1038/s41558-020-0705-4, 2020.
Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C., Barnes, D. K. A., Bindoff, N. L., Boyd, P. W., Brandt, A., Costa, D. P., Davidson, A. T., Ducklow, H. W., Emmerson, L., Fukuchi, M., Gutt, J., Hindell, M. A., Hofmann, E. E., Hosie, G. W., Iida, T., Jacob, S., Johnston, N. M., Kawaguchi, S., Kokubun, N., Koubbi, P., Lea, M. A., Makhado, A., Massom, R. A., Meiners, K., Meredith, M. P., Murphy, E. J., Nicol, S., Reid, K., Richerson, K., Riddle, M. J., Rintoul, S. R., Smith, W. O., Southwell, C., Stark, J. S., Sumner, M., Swadling, K. M., Takahashi, K. T., Trathan, P. N., Welsford, D. C., Weimerskirch, H., Westwood, K. J., Wienecke, B. C., Wolf-Gladrow, D., Wright, S. W., Xavier, J. C. and Ziegler, P.: Climate change and Southern Ocean ecosystems I: How changes in physical habitats directly affect marine biota, Glob. Change Biol., 20, 3004–3025, https://doi.org/10.1111/gcb.12623, 2014.
Conway, J. R., Lex, A., and Gehlenborg, N.: UpSetR: An R package for the
visualization of intersecting sets and their properties, Bioinformatics,
33, 2938–2940, https://doi.org/10.1093/bioinformatics/btx364, 2017.
Crawford, D. W., Wyatt, S. N., Wrohan, I. A., Cefarelli, A. O., Giesbrecht,
K. E., Kelly, B., and Varela, D. E.: Low particulate carbon to nitrogen
ratios in marine surface waters of the Arctic, Global Biogeochem. Cy.,
29, 2021–2033, https://doi.org/10.1002/2015GB005200, 2015.
Eichner, M., Kranz, S. A., and Rost, B.: Combined effects of different CO2
levels and N sources on the diazotrophic cyanobacterium Trichodesmium,
Physiol. Plant., 152, 316–330, https://doi.org/10.1111/ppl.12172, 2014.
Evans, C., Thomson, P. G., Davidson, A. T., Bowie, A. R., van den Enden, R.,
Witte, H., and Brussaard, C. P. D.: Potential climate change impacts on
microbial distribution and carbon cycling in the Australian Southern Ocean,
Deep-Sea Res. Pt. II, 58, 2150–2161,
https://doi.org/10.1016/j.dsr2.2011.05.019, 2011.
Fernández-Méndez, M., Turk-Kubo, K. A., Buttigieg, P. L., Rapp, J.
Z., Krumpen, T., Zehr, J. P., and Boetius, A.: Diazotroph diversity in the
sea ice, melt ponds, and surface waters of the eurasian basin of the Central
Arctic Ocean, Front. Microbiol., 7, 1–18,
https://doi.org/10.3389/fmicb.2016.01884, 2016.
Fernandez, C., Farías, L., and Ulloa, O.: Nitrogen fixation in
denitrified marine waters, PLoS One, 6, 20539,
https://doi.org/10.1371/journal.pone.0020539, 2011.
Gallet, A., Koubbi, P., Léger, N., Scheifler, M., Ruiz-Rodriguez, M.,
Suzuki, M. T., Desdevises, Y., and Duperron, S.: Low-diversity bacterial
microbiota in Southern Ocean representatives of lanternfish genera
Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae), PLoS One,
14, 1–17, https://doi.org/10.1371/journal.pone.0226159, 2019.
Geider, R. J.: Light and Temperature Dependence of the Carbon to Chlorophyll
a Ratio in Microalgae and Cyanobacteria: Implications for Physiology and
Growth of Phytoplankton, New Phytol., 106, 1–34,
https://doi.org/10.1111/j.1469-8137.1987.tb04788.x, 1987.
Georgieva, M. N., Taboada, S., Riesgo, A., Díez-Vives, C., De Leo, F.
C., Jeffreys, R. M., Copley, J. T., Little, C. T. S., Ríos, P.,
Cristobo, J., Hestetun, J. T., and Glover, A. G.: Evidence of Vent-Adaptation
in Sponges Living at the Periphery of Hydrothermal Vent Environments:
Ecological and Evolutionary Implications, Front. Microbiol., 11, 1636,
https://doi.org/10.3389/fmicb.2020.01636, 2020.
Giebel, H. A., Brinkhoff, T., Zwisler, W., Selje, N., and Simon, M.:
Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial
communities from the subtropics to the Southern Ocean, Environ. Microbiol.,
11, 2164–2178, https://doi.org/10.1111/j.1462-2920.2009.01942.x, 2009.
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J.:
Microbiome datasets are compositional: And this is not optional, Front.
Microbiol., 8, 1–6, https://doi.org/10.3389/fmicb.2017.02224, 2017.
González, M. L., Molina, V., Florez-Leiva, L., Oriol, L., Cavagna, A. J., Dehairs, F., Farias, L., and Fernandez, C.: Nitrogen fixation in the Southern Ocean: a case of study of the Fe-fertilized Kerguelen region (KEOPS II cruise), Biogeosciences Discuss., 11, 17151–17185, https://doi.org/10.5194/bgd-11-17151-2014, 2014.
Gradoville, M. R., Bombar, D., Crump, B. C., Letelier, R. M., Zehr, J. P.,
and White, A. E.: Diversity and activity of nitrogen-fixing communities
across ocean basins, Limnol. Oceanogr., 62, 1895–1909,
https://doi.org/10.1002/lno.10542, 2017.
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L.,
Boutte, C., Burgaud, G., De Vargas, C., Decelle, J., Del Campo, J., Dolan,
J. R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W. H. C. F.,
Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor,
M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A. L., Siano,
R., Stoeck, T., Vaulot, D., Zimmermann, P., and Christen, R.: The Protist
Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small
Sub-Unit rRNA sequences with curated taxonomy, Nucleic Acids Res., 41,
597–604, https://doi.org/10.1093/nar/gks1160, 2013.
Hager, S. W., Harmon, D. D., and Alpine, A. E.: Chemical Determination of
Particulate Nitrogen in San Francisco Bay. Nitrogen Chlorophyll a Ratios in
Plankton, Estuar. Coast. Shelf S., 19, 193–204,
https://doi.org/10.1016/0272-7714(84)90064-7, 1984.
Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T., Laroche, J.,
D'Hondt, S., and Kuypers, M. M. M.: Heterotrophic organisms dominate nitrogen
fixation in the south pacific gyre, ISME J., 6, 1238–1249,
https://doi.org/10.1038/ismej.2011.182, 2012.
Han, D., Kang, H. Y., Kang, C. K., Unno, T., and Hur, H. G.: Seasonal
Mixing-Driven System in Estuarine–Coastal Zone Triggers an Ecological Shift
in Bacterial Assemblages Involved in Phytoplankton-Derived DMSP Degradation,
Microb. Ecol., 79, 12–20, https://doi.org/10.1007/s00248-019-01392-w,
2020.
Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., and Martiny, J. B. H.:
Beyond biogeographic patterns: Processes shaping the microbial landscape,
Nat. Rev. Microbiol., 10, 497–506, https://doi.org/10.1038/nrmicro2795,
2012.
Hernando-Morales, V., Ameneiro, J., and Teira, E.: Water mass mixing shapes
bacterial biogeography in a highly hydrodynamic region of the Southern
Ocean, Environ. Microbiol., 19, 1017–1029,
https://doi.org/10.1111/1462-2920.13538, 2017.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Hörstmann, C.: CoraHoerstmann/MD206_Microbes: (Version 2.0), Zenodo, https://doi.org/10.5281/zenodo.5000001, 2021.
Hörstmann, C., Raes, E. J., and Waite, A. M.: Nitrogen and carbon processes in the South Indian Ocean and the French Southern and Antarctic Lands, PANGAEA, https://doi.org/10.1594/PANGAEA.885896, 2018.
Holm, S.: Board of the Foundation of the Scandinavian Journal of Statistics,
Scand. J. Stat., 6, 65–70, 1979.
Karl, D., Michaels, A., Bergman, B., Capone, D. G., Carpenter, E. J.,
Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., and Stal, L.: Dinitrogen
fixation in the world's oceans, Biogeochemistry, 57–58, 47–98,
https://doi.org/10.1023/A:1015798105851, 2002.
Kérouel, R. and Aminot, A.: Fluorometric determination of ammonia in sea
and estuarine waters by direct segmented flow analysis, Mar. Chem.,
57, 265–275, https://doi.org/10.1016/S0304-4203(97)00040-6, 1997.
Kilias, E., Wolf, C., Nöthig, E. M., Peeken, I., and Metfies, K.: Protist
distribution in the Western Fram Strait in summer 2010 based on
454-pyrosequencing of 18S rDNA, J. Phycol., 49, 996–1010,
https://doi.org/10.1111/jpy.12109, 2013.
Klawonn, I., Lavik, G., Böning, P., Marchant, H. K., Dekaezemacker, J.,
Mohr, W., and Ploug, H.: Simple approach for the preparation of
15−15N2-enriched water for nitrogen fixation assessments: Evaluation,
application and recommendations, Front. Microbiol., 6, 1–11,
https://doi.org/10.3389/fmicb.2015.00769, 2015.
Knap, A., Michaels, A., Close, A., Ducklow, H., and Dickson, A.: Protocols
for the Joint Global Ocean Flux Study (JGFOS) Core Measurements, JGOFS
Reoprt Nr. 19, vi+170 pp., (Reprint of IOC MAnuals and Guides 29, UNESCO
1994), 198, http://hdl.handle.net/11329/220 (last access: 20 June 2021), 1996.
Knapp, A. N.: The sensitivity of marine N2 fixation to dissolved inorganic
nitrogen, Front. Microbiol., 3, 1–14,
https://doi.org/10.3389/fmicb.2012.00374, 2012.
Laubscher, R. K., Perissinotto, R., and McQuaid, C. D.: Phytoplankton
Production and Biomass at Frontal Zones in the Atlantic Sector of the
Southern-Ocean, Polar Biol., 13, 471–481,
https://doi.org/10.1007/BF00233138, 1993.
Le Fèvre, J.: Aspects of the Biology of Frontal Systems, in: Advances in
Marine Biology, Vol. 23, edited by: Blaxter, J. H. S. and Southward, A. J.,
163–299, Academic Press INC. (London) LTD,
https://doi.org/10.1016/S0065-2881(08)60109-1, 1987.
Lo Monaco, C., Álvarez, M., Key, R. M., Lin, X., Tanhua, T., Tilbrook, B., Bakker, D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Ríos, A. F., Sabine, C. L., and Velo, A.: Assessing the internal consistency of the CARINA database in the Indian sector of the Southern Ocean, Earth Syst. Sci. Data, 2, 51–70, https://doi.org/10.5194/essd-2-51-2010, 2010.
Longhurst, A.: Ecological Geography of the sea, 2nd Edn., Academic Press, London,
2007.
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012, 2012.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J.,
Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A., and
Bowler, C.: Insights into global diatom distribution and diversity in the
world's ocean, P. Natl. Acad. Sci. USA, 113, E1516–E1525,
https://doi.org/10.1073/pnas.1509523113, 2016.
Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Kane, M., Krumins, J.
A., Kuske, C. R., Morin, P. J., Naeem, S., Øvreås, L., Reysenbach, A.,
and Smith, V. H.: Microbial biogeography: putting microorganisms on the
map, Nature, 4, 102–112, https://doi.org/10.1038/nrmicro1341,
2006.
Metzl, N. and Lo Monaco, C.: VT 153/OISO-27 cruise, RV Marion Dufresne, https://doi.org/10.17600/17009700, 2017.
Milici, M., Tomasch, J., Wos-Oxley, M. L., Decelle, J., Jáuregui, R.,
Wang, H., Deng, Z. L., Plumeier, I., Giebel, H. A., Badewien, T. H., Wurst,
M., Pieper, D. H., Simon, M., and Wagner-Döbler, I.: Bacterioplankton
biogeography of the Atlantic ocean: A case study of the distance-decay
relationship, Front. Microbiol., 7, 1–15,
https://doi.org/10.3389/fmicb.2016.00590, 2016.
Mohr, W., Großkopf, T., Wallace, D. W. R., and LaRoche, J.:
Methodological underestimation of oceanic nitrogen fixation rates, PLoS One,
5, 1–7, https://doi.org/10.1371/journal.pone.0012583, 2010.
Mongin, M., Molina, E., and Trull, T. W.: Seasonality and scale of the
Kerguelen plateau phytoplankton bloom: A remote sensing and modeling
analysis of the influence of natural iron fertilization in the Southern
Ocean, Deep-Sea Res. Pt. II, 55, 880–892,
https://doi.org/10.1016/j.dsr2.2007.12.039, 2008.
Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G.: A Simple,
High-Precision, High-Sensitivity Tracer Assay for N2 Fixation, Appl.
Environ. Microb., 62, 986–993,
https://doi.org/10.1128/AEM.62.3.986-993.1996, 1996.
Murphy, J. and Riley, J.: A modified single solution method for the
determination of phosphate in natural waters, Anal. Chem. ACTA, 27, 31–36,
https://doi.org/10.1016/S0003-2670(00)88444-5, 1962.
Padgham, M., Sumner, M. D., and Karney, C. F. F.: geodist R pacakge version
0.0.4, GitHub, https://github.com/hypertidy/geodist (last access: 20 June 2021), 2020.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters:
Assessing small subunit rRNA primers for marine microbiomes with mock
communities, time series and global field samples, Environ. Microbiol.,
18, 1403–1414, https://doi.org/10.1111/1462-2920.13023, 2016.
Partensky, F., Blanchot, J., and Vaulot, D.: Differential distribution and
ecology of Prochlorococcus and Synechococcus in oceanic waters: a review,
Bull. l'Institut océanographique, 19, 457–475, 1999.
Pinhassi, J., Sala, M. M., Havskum, H., Peters, F., Guadayol, Ò.,
Malits, A., and Marrasé, C.: Changes in bacterioplankton composition
under different phytoplankton regimens, Appl. Environ. Microb., 70,
6753–6766, https://doi.org/10.1128/AEM.70.11.6753-6766.2004, 2004.
Pruesse, E., Peplies, J., Glöckner, F. O., Editor, A., and Wren, J.:
SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA
genes, 28, 1823–1829, https://doi.org/10.1093/bioinformatics/bts252,
2012.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Glo, F. O., and
Yarza, P.: The SILVA ribosomal RNA gene database project: improved data
processing and web-based tools, Nucleic Acids Res., 41, D590–D596,
https://doi.org/10.1093/nar/gks1219, 2013.
Raes, E. J., Waite, A. M., McInnes, A. S., Olsen, H., Nguyen, H. M.,
Hardman-Mountford, N., and Thompson, P. A.: Changes in latitude and dominant
diazotrophic community alter N2 fixation, Mar. Ecol.-Prog. Ser., 516,
85–102, https://doi.org/10.3354/meps11009, 2014.
Raes, E. J., Thompson, P. A., McInnes, A. S., Nguyen, H. M.,
Hardman-mountford, N., and Waite, A. M.: Sources of new nitrogen in the
Indian Ocean, Global Biogeochem. Cy., 935, 1283–1297,
https://doi.org/10.1002/2015GB005194, 2015.
Raes, E. J., Bodrossy, L., Kamp, J. Van De, Bissett, A., Ostrowski, M., and
Brown, M. V: Oceanographic boundaries constrain microbial diversity
gradients in the South Pacific Ocean, P. Natl. Acad. Sci. USA, 115, E8266–E8275,
https://doi.org/10.1073/pnas.1719335115, 2018.
Raes, E. J., Kamp, J. Van De, Bodrossy, L., Fong, A. A., Riekenberg, J.,
Holmes, B. H., Erler, D. V, Eyre, B. D., Weil, S., and Waite, A. M.: N 2
Fixation and New Insights Into Nitrification From the Ice-Edge to the
Equator in the South Pacific Ocean, 7, 1–20,
https://doi.org/10.3389/fmars.2020.00389, 2020.
Ras, J., Claustre, H., and Uitz, J.: Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data, Biogeosciences, 5, 353–369, https://doi.org/10.5194/bg-5-353-2008, 2008.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 20 June 2021), 2020.
Sambrotto, R. N. and Mace, B. J.: Coupling of biological and physical
regimes across the Antarctic Polar Front as reflected by nitrogen production
and recycling, Deep-Sea Res. Pt. II, 47, 3339–3367,
https://doi.org/10.1016/S0967-0645(00)00071-0, 2000.
Sarmento, H. and Gasol, J. M.: Use of phytoplankton-derived dissolved
organic carbon by different types of bacterioplankton, Environ. Microbiol.,
14, 2348–2360, https://doi.org/10.1111/j.1462-2920.2012.02787.x, 2012.
Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi,
T., Ehama, M., Hamasaki, K., and Furuya, K.: Basin scale variability of
active diazotrophs and nitrogen fixation in the North Pacific, from the
tropics to the subarctic Bering Sea, Global Biogeochem. Cy., 31,
996–1009, https://doi.org/10.1002/2017GB005681, 2017.
Shiozaki, T., Fujiwara, A., Ijichi, M., Harada, N., Nishino, S., Nishi, S.,
Nagata, T., and Hamasaki, K.: Diazotroph community structure and the role of
nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic
Ocean), Limnol. Oceanogr., 63, 2191–2205, https://doi.org/10.1002/lno.10933, 2018.
Sipler, R. E., Gong, D., Baer, S. E., Sanderson, M. P., Roberts, Q. N.,
Mulholland, M. R., and Bronk, D. A.: Preliminary estimates of the
contribution of Arctic nitrogen fixation to the global nitrogen budget,
Limnol. Oceanogr. Lett., 159–166, https://doi.org/10.1002/lol2.10046, 2017.
Stoeck, T., Bass, D., Nebel, M., Christen, R., and Meredith, D.: Multiple
marker parallel tag environmental DNA sequencing reveals a highly complex
eukaryotic community in marine anoxic water, Mol. Ecol., 19, 21–31,
https://doi.org/10.1111/j.1365-294X.2009.04480.x, 2010.
Strass, V. H., Naveira Garabato, A. C., Pollard, R. T., Fischer, H. I.,
Hense, I., Allen, J. T., Read, J. F., Leach, H., and Smetacek, V.: Mesoscale
frontal dynamics: Shaping the environment of primary production in the
Antarctic Circumpolar Current, Deep-Sea Res. Pt. II,
49, 3735–3769, https://doi.org/10.1016/S0967-0645(02)00109-1, 2002.
Swart, N. C., Gille, S. T., Fyfe, J. C., and Gillett, N. P.: Recent Southern
Ocean warming and freshening driven by greenhouse gas emissions and ozone
depletion, Nat. Geosci., 11, 836–841,
https://doi.org/10.1038/s41561-018-0226-1, 2018.
Talaber, I., Francé, J., Flander-Putrle, V., and Mozetič, P.: Primary
production and community structure of coastal phytoplankton in the Adriatic
Sea: Insights on taxon-specific productivity, Mar. Ecol.-Prog. Ser., 604,
65–81, https://doi.org/10.3354/meps12721, 2018.
Tang, W., Li, Z., and Cassar, N.: Machine Learning Estimates of Global Marine
Nitrogen Fixation, J. Geophys. Res.-Biogeo., 2012, 717–730,
https://doi.org/10.1029/2018JG004828, 2019.
Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke,
C. M., Kassabgy, M., Huang, S., Mann, A. J., Waldmann, J., Weber, M.,
Klindworth, A., Otto, A., Lange, J., Bernhardt, J., Reinsch, C., Hecker, M.,
Peplies, J., Bockelmann, F. D., Callies, U., Gerdts, G., Wichels, A.,
Wiltshire, K. H., Glöckner, F. O., Schweder, T., and Amann, R.:
Substrate-Controlled Succession of Marine Bacterioplankton Populations
Induced by a Phytoplankton Bloom, Science, 336, 608–611,
https://doi.org/10.1126/science.1218344, 2012.
Townsend, D. W. and Pettigrew, N. R.: Nitrogen limitation of secondary
production on Georges Bank, J. Plankton Res., 19, 221–235, 1997.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution
of phytoplankton communities in open ocean: An assessment based on surface
chlorophyll, J. Geophys. Res.-Ocean., 111, C08005,
https://doi.org/10.1029/2005JC003207, 2006.
Vallina, S. M., Follows, M. J., Dutkiewicz, S., Montoya, J. M., Cermeno, P.
and Loreau, M.: Global relationship between phytoplankton diversity and
productivity in the ocean, Nat. Commun., 5, 1–10,
https://doi.org/10.1038/ncomms5299, 2014.
Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J.-C.:
Phytoplankton pigment distribution in relation to upper thermocline
circulation in the eastern Mediterranean Sea during winter, J. Geophys.
Res., 106, 939–956, https://doi.org/10.1029/1999JC000308, 2001.
Waite, A. M., Muhling, B. A., Holl, C. M., Beckley, L. E., Montoya, J. P.,
Strzelecki, J., Thompson, P. A., and Pesant, S.: Food web structure in two
counter-rotating eddies based on δ15N and δ13C isotopic
analyses, Deep-Sea Res. Pt. II, 54, 1055–1075,
https://doi.org/10.1016/j.dsr2.2006.12.010, 2007.
Wilkins, D., Lauro, F. M., Williams, T. J., Demaere, M. Z., Brown, M. V.,
Hoffman, J. M., Andrews-Pfannkoch, C., Mcquaid, J. B., Riddle, M. J.,
Rintoul, S. R., and Cavicchioli, R.: Biogeographic partitioning of Southern
Ocean microorganisms revealed by metagenomics, Environ. Microbiol., 15,
1318–1333, https://doi.org/10.1111/1462-2920.12035, 2013a.
Wilkins, D., Yau, S., Williams, T. J., Allen, M. A., Brown, M. V., Demaere,
M. Z., Lauro, F. M., and Cavicchioli, R.: Key microbial drivers in Antarctic
aquatic environments, FEMS Microbiol. Rev., 37, 303–335,
https://doi.org/10.1111/1574-6976.12007, 2013b.
Wood, E. D., Armstrong, F. A. J., and Richards, F. A.: Determination of
nitrate in sea water by cadmium-copper reduction to nitrite, J. Mar. Biol.
Assoc. UK, 47, 23–31,
https://doi.org/10.1017/S002531540003352X, 1967.
Yang, H., Lohmann, G., Krebs-Kanzow, U., Ionita, M., Shi, X., Sidorenko, D.,
Gong, X., Chen, X., and Gowan, E. J.: Poleward Shift of the Major Ocean Gyres
Detected in a Warming Climate, Geophys. Res. Lett., 47, e2019GL085868,
https://doi.org/10.1029/2019GL085868, 2020.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(1853 KB) - Full-text XML
- Corrigendum
-
Supplement
(12450 KB) - BibTeX
- EndNote
Short summary
Microbes are the main drivers of productivity and nutrient cycling in the ocean. We present a combined approach assessing C and N uptake and microbial community diversity across ecological provinces in the Southern Ocean and southern Indian Ocean. Provinces showed distinct genetic fingerprints, but microbial activity varied gradually across regions, correlating with nutrient concentrations. Our study advances the biogeographic understanding of microbial diversity across C and N uptake regimes.
Microbes are the main drivers of productivity and nutrient cycling in the ocean. We present a...
Altmetrics
Final-revised paper
Preprint