Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3917-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3917-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First pan-Arctic assessment of dissolved organic carbon in lakes of the permafrost region
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Caroline Coch
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
World Wildlife Fund, The Living Planet Centre, Woking, United Kingdom
Anne Morgenstern
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Julia Boike
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Michael Fritz
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Ulrike Herzschuh
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Institute of Biochemistry and Biology, University of Potsdam, Potsdam,
Germany
Institute of Earth and Environmental Science-Geoecology, University of Potsdam, Potsdam, Germany
Kathleen Stoof-Leichsenring
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Yury Dvornikov
Agrarian-Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
Birgit Heim
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Josefine Lenz
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Water and Environmental Research Center, University of Alaska, Fairbanks, AK, USA
Amy Larsen
Yukon–Charley Rivers National Preserve and Gates of the Arctic
National Park and Preserve, National Park Service, Fairbanks, AK, USA
Katey Walter Anthony
Water and Environmental Research Center, University of Alaska, Fairbanks, AK, USA
Benjamin Jones
Institute of Northern Engineering, University of Alaska, Fairbanks,
AK, USA
Karen Frey
Graduate School of Geography, Clark University, Worcester, MA, USA
Guido Grosse
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Related authors
Lydia Stolpmann, Ingmar Nitze, Ingeborg Bussmann, Benjamin M. Jones, Josefine Lenz, Hanno Meyer, Juliane Wolter, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2822, https://doi.org/10.5194/egusphere-2024-2822, 2024
Preprint archived
Short summary
Short summary
We combine hydrochemical and lake change data to show consequences of permafrost thaw induced lake changes on hydrochemistry, which are relevant for the global carbon cycle. We found higher methane concentrations in lakes that do not freeze to the ground and show that lagoons have lower methane concentrations than lakes. Our detailed lake sampling approach show higher concentrations in Dissolved Organic Carbon in areas of higher erosion rates, that might increase under the climate warming.
Ingolf Kühn, Christian Hecht, Ulrike Herzschuh, and Dirk Scherler
Web Ecol., 25, 157–168, https://doi.org/10.5194/we-25-157-2025, https://doi.org/10.5194/we-25-157-2025, 2025
Short summary
Short summary
Since 1850, glaciers have retreated in the Alps, providing ground for vegetation succession. Such systems were studied intensively in other parts of the Alps, but excluding the Northern Limestone Alps. Hence, we initiated a long-term research programme, which we introduce here. Initial findings show an increase in plant species richness and cover with age since deglaciation. This is, however, by far slower than observed elsewhere in the Alps, likely due to the specific geology and geomorphology.
Izabella A. Baisheva, Birgit Heim, Jorge García Molinos, Amelie Stieg, Hanno Meyer, Ramesh Glückler, Kathleen R. Stoof-Leichsenring, Antje Eulenburg, Pier Paul Overduin, Evgenii S. Zakharov, Aital V. Egorov, Paraskovya V. Davydova, Lena A. Ushnitskaya, Sardana N. Levina, Ruslan M. Gorodnichev, Robert Jackisch, Antonie Haas, Stefan Kruse, Luidmila A. Pestryakova, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2025-4114, https://doi.org/10.5194/egusphere-2025-4114, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study provides a new comprehensive assessment of the limnological state of 66 lakes in the Central Yakutian alaas landscapes and the Verkhoyansk mountain range. Our analyses suggest that specific lake-type properties within the thermokarst lake sequence seem to drive inorganic, organic, and isotopic lake hydrochemistry. Future warming may lead to less diversification within lake macrophyte assemblages in old alaas lakes.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Jacob Schladebach, Birgit Heim, Léa Enguehard, Mareike Wieczorek, Jakob Broers, Robert Jackisch, Josias Gloy, Kunyan Hao, James Tretton, Anna Gorshunova, and Stefan Kruse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-340, https://doi.org/10.5194/essd-2025-340, 2025
Preprint under review for ESSD
Short summary
Short summary
BorFIT is a novel training dataset for LiDAR point cloud segmentation and tree species detection in boreal forests. Comprising 384 plots across Siberia, Canada, and Alaska, it features 16,530 manually segmented trees of 12 species. BorFIT supports AI applications for analyzing species distribution, stand structure, and boreal forest response to climate change.
Fabian Seemann, Michael Zech, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Claire Treat, Lutz Schirrmeister, Susanne Liebner, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3727, https://doi.org/10.5194/egusphere-2025-3727, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Arctic coastal landscapes, like those in northernmost Alaska, often contain saline sediments that are more prone to thawing. We studied six sediment cores to understand how thawing and salinity affect organic carbon breakdown and land change. Our results show that salinity speeds up organic matter loss when permafrost thaws. This highlights the overlooked risk of salinity in shaping Arctic landscapes and carbon release as the climate continues to warm.
Mehriban Aliyeva, Michael Angelopoulos, Julia Boike, Moritz Langer, Frederieke Miesner, Scott Dallimore, Dustin Whalen, Lukas U. Arenson, and Pier Paul Overduin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2675, https://doi.org/10.5194/egusphere-2025-2675, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In this study, we investigate the ongoing transformation of terrestrial permafrost into subsea permafrost on a rapidly eroding Arctic island using electrical resistivity tomography and numerical modelling. We draw on 60 years of shoreline data to support our findings. This work is important for understanding permafrost loss in Arctic coastal areas and for guiding future efforts to protect vulnerable shorelines.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Ulrike Herzschuh, Thomas Böhmer, Weihan Jia, and Simeon Lisovski
EGUsphere, https://doi.org/10.5194/egusphere-2025-2678, https://doi.org/10.5194/egusphere-2025-2678, 2025
Short summary
Short summary
We introduce a new climate proxy based on plant DNA preserved in lake sediments. Validated with a large surface sample dataset and applied to a sediment record, this method provides more accurate and robust reconstructions of past climate change than traditional vegetation proxies like pollen, likely due to a higher taxonomic resolution and more localized signal.
Frieda P. Giest, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Kai Mangelsdorf, Torben Windirsch, and Jens Strauss
Biogeosciences, 22, 2871–2887, https://doi.org/10.5194/bg-22-2871-2025, https://doi.org/10.5194/bg-22-2871-2025, 2025
Short summary
Short summary
Climate warming causes permafrost to thaw, releasing greenhouse gases and affecting ecosystems. We studied sediments from Arctic coastal landscapes, including land, lakes, lagoons, and the ocean, finding that organic carbon storage and quality vary with landscape features and saltwater influence. Freshwater and land areas store more carbon, while saltwater reduces its quality. These findings improve predictions of Arctic responses to climate change and their impact on global carbon cycling.
Constanze Reinken, Victor Brovkin, Philipp de Vrese, Ingmar Nitze, Helena Bergstedt, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2025-1817, https://doi.org/10.5194/egusphere-2025-1817, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Thermokarst lakes are dynamic features of ice-rich permafrost landscapes, altering energy, water and carbon cycles, but have so far mostly been modeled on site-level scale. A deterministic modelling approach would be challenging on larger scales due to the lack of extensive high-resolution data of sub-surface conditions. We therefore develop a conceptual stochastic model of thermokarst lake dynamics that treats the involved processes as probabilistic.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025, https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary
Short summary
We present global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21 000 years, which are suitable for the evaluation of Earth-system-model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic and Tibetan Plateau areas during the Last Glacial Maximum and early deglaciation and in northern Africa and the Mediterranean region during the Holocene.
Pauline Walz, Oliver Fritz, Sabrina Marx, Marlin M. Mueller, Christian Thiel, Josefine Lenz, Soraya Kaiser, Roxanne Frappier, Alexander Zipf, and Moritz Langer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1778, https://doi.org/10.5194/egusphere-2025-1778, 2025
Short summary
Short summary
We explored how citizen scientists can help map changes in Arctic landscapes. Using a web tool we created, more than 100 volunteers contributed the approximate center points of particular ground patterns called ice-wedge polygons in aerial images from Alaska and Canada. Our work shows that the data created by volunteers can be used to reconstruct ice-wedge polygon networks and provide valuable insights on the state of frozen ground in the Arctic.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms-Dick, Luidmila A. Pestryakova, and Hanno Meyer
Biogeosciences, 22, 2327–2350, https://doi.org/10.5194/bg-22-2327-2025, https://doi.org/10.5194/bg-22-2327-2025, 2025
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study presents a unique ~220-year sediment record from a remote Siberian boreal lake, providing a multiproxy perspective on climate warming and anthropogenic air pollution. Analyses of diatom assemblages, diatom silicon isotopes, and carbon and nitrogen sediment proxies reveal complex biogeochemical interactions, highlighting anthropogenic influences even on remote water resources.
Nina Nesterova, Ilia Tarasevich, Marina Leibman, Artem Khomutov, Alexander Kizyakov, Ingmar Nitze, and Guido Grosse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-164, https://doi.org/10.5194/essd-2025-164, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first detailed map of retrogressive thaw slump (RTS) landforms across a large area of the West Siberian Arctic. RTSs are key features of abrupt permafrost thaw accelerated by climate change. Using satellite images and field data, we identified and classified over 6000 RTSs. This dataset helps scientists better understand how warming is changing Arctic landscapes and provides a trusted reference for training artificial intelligence to detect these landforms in the future.
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data, 17, 2007–2033, https://doi.org/10.5194/essd-17-2007-2025, https://doi.org/10.5194/essd-17-2007-2025, 2025
Short summary
Short summary
This study reconstructed vegetation and tree cover in the Northern Hemisphere from a harmonized dataset of pollen counts from sediment and peat cores for the past 14 000 years. A model was applied to correct for differences in pollen production between different plants, and modern remote-sensing forest cover was used to validate the reconstructed tree cover. Accurate data on past vegetation are invaluable for the investigation of vegetation–climate dynamics and the validation of vegetation models.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data, 17, 1707–1730, https://doi.org/10.5194/essd-17-1707-2025, https://doi.org/10.5194/essd-17-1707-2025, 2025
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
Biogeosciences, 22, 2069–2086, https://doi.org/10.5194/bg-22-2069-2025, https://doi.org/10.5194/bg-22-2069-2025, 2025
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases under more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in future.
Yarden Gerera, André Pellerin, Efrat Eliani Russak, Katey Walter Anthony, Nicholas Hasson, Yoav Oved Rosenberg, and Orit Sivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1504, https://doi.org/10.5194/egusphere-2025-1504, 2025
Short summary
Short summary
Thermokarst lakes have formed over thousands of years from permafrost thaw in the Arctic. Here we quantify the change in methane production rates as thermokarst lakes evolve by incubation-based approach of measuring and comparing methane production rates and organic carbon lability between a more mature thermokarst lake and a young dynamic thermokarst lake. We also show the use of Rock-Eval analysis of organic carbon along the sediments as a proxy for organics susceptibility for methanogenesis.
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2025-1052, https://doi.org/10.5194/egusphere-2025-1052, 2025
Short summary
Short summary
Permafrost soils store vast amounts of organic carbon, key to understanding climate change. This study uses machine learning and combines existing data with new field data to create detailed regional maps of soil carbon and nitrogen stocks for the Yukon coastal plain. The results show how soil properties vary across the landscape highlighting the importance of data selection for accurate predictions. These findings improve carbon storage estimates and may aid regional carbon budget assessments.
Ephraim Erkens, Michael Angelopoulos, Jens Tronicke, Scott R. Dallimore, Dustin Whalen, Julia Boike, and Pier Paul Overduin
The Cryosphere, 19, 997–1012, https://doi.org/10.5194/tc-19-997-2025, https://doi.org/10.5194/tc-19-997-2025, 2025
Short summary
Short summary
We investigate the depth of subsea permafrost formed by inundation of terrestrial permafrost due to marine transgression around the rapidly disappearing, permafrost-cored Tuktoyaktuk Island (Beaufort Sea, NWT, Canada). We use geoelectrical surveys with floating electrodes to identify the boundary between unfrozen and frozen sediment. Our findings indicate that permafrost thaw depths beneath the seabed can be explained by coastal erosion rates and landscape features before inundation.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Tabea Rettelbach, Ingmar Nitze, Inge Grünberg, Jennika Hammar, Simon Schäffler, Daniel Hein, Matthias Gessner, Tilman Bucher, Jörg Brauchle, Jörg Hartmann, Torsten Sachs, Julia Boike, and Guido Grosse
Earth Syst. Sci. Data, 16, 5767–5798, https://doi.org/10.5194/essd-16-5767-2024, https://doi.org/10.5194/essd-16-5767-2024, 2024
Short summary
Short summary
Permafrost landscapes in the Arctic are rapidly changing due to climate warming. Here, we publish aerial images and elevation models with very high spatial detail that help study these landscapes in northwestern Canada and Alaska. The images were collected using the Modular Aerial Camera System (MACS). This dataset has significant implications for understanding permafrost landscape dynamics in response to climate change. It is publicly available for further research.
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024, https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
Short summary
Snow distribution characterization is essential for accurate snow water estimation for water resource prediction from existing in situ observations and remote-sensing data at a finite spatial resolution. Four different observed snow distribution datasets were analyzed for Gaussianity. We found that non-Gaussianity of snow distribution is a signature of the wind redistribution effect. Generally, seasonal snowpack can be approximated well by a Gaussian distribution for a fully snow-covered area.
Lydia Stolpmann, Ingmar Nitze, Ingeborg Bussmann, Benjamin M. Jones, Josefine Lenz, Hanno Meyer, Juliane Wolter, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2822, https://doi.org/10.5194/egusphere-2024-2822, 2024
Preprint archived
Short summary
Short summary
We combine hydrochemical and lake change data to show consequences of permafrost thaw induced lake changes on hydrochemistry, which are relevant for the global carbon cycle. We found higher methane concentrations in lakes that do not freeze to the ground and show that lagoons have lower methane concentrations than lakes. Our detailed lake sampling approach show higher concentrations in Dissolved Organic Carbon in areas of higher erosion rates, that might increase under the climate warming.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
The Cryosphere, 18, 4787–4810, https://doi.org/10.5194/tc-18-4787-2024, https://doi.org/10.5194/tc-18-4787-2024, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
Earth Syst. Sci. Data, 16, 3719–3753, https://doi.org/10.5194/essd-16-3719-2024, https://doi.org/10.5194/essd-16-3719-2024, 2024
Short summary
Short summary
Arctic warming, leading to permafrost degradation, poses primary threats to infrastructure and secondary ecological hazards from possible infrastructure failure. Our study created a comprehensive Alaska inventory combining various data sources with which we improved infrastructure classification and data on contaminated sites. This resource is presented as a GeoPackage allowing planning of infrastructure damage and possible implications for Arctic communities facing permafrost challenges.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Frederieke Miesner, William Lambert Cable, Pier Paul Overduin, and Julia Boike
The Cryosphere, 18, 2603–2611, https://doi.org/10.5194/tc-18-2603-2024, https://doi.org/10.5194/tc-18-2603-2024, 2024
Short summary
Short summary
The temperature in the sediment below Arctic lakes determines the stability of the permafrost and microbial activity. However, measurements are scarce because of the remoteness. We present a robust and portable device to fill this gap. Test campaigns have demonstrated its utility in a range of environments during winter and summer. The measured temperatures show a great variability within and across locations. The data can be used to validate models and estimate potential emissions.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023, https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary
Short summary
Roads on permafrost have significant environmental effects. This study assessed the Inuvik to Tuktoyaktuk Highway (ITH) in Canada and its impact on snow accumulation, albedo and snowmelt timing. Our findings revealed that snow accumulation increased by up to 36 m from the road, 12-day earlier snowmelt within 100 m due to reduced albedo, and altered snowmelt patterns in seemingly undisturbed areas. Remote sensing aids in understanding road impacts on permafrost.
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023, https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Short summary
This study presents a new model scheme for simulating ice segregation and thaw consolidation in permafrost environments, depending on ground properties and climatic forcing. It is embedded in the CryoGrid community model, a land surface model for the terrestrial cryosphere. We describe the model physics and functionalities, followed by a model validation and a sensitivity study of controlling factors.
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023, https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Short summary
It is now well known from long-term temperature measurements that Arctic permafrost, i.e., ground that remains continuously frozen for at least 2 years, is warming in response to climate change. Temperature, however, only tells half of the story. In this study, we use computer modeling to better understand how the thawing and freezing of water in the ground affects the way permafrost responds to climate change and what temperature trends can and cannot tell us about how permafrost is changing.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Mauricio Arboleda-Zapata, Michael Angelopoulos, Pier Paul Overduin, Guido Grosse, Benjamin M. Jones, and Jens Tronicke
The Cryosphere, 16, 4423–4445, https://doi.org/10.5194/tc-16-4423-2022, https://doi.org/10.5194/tc-16-4423-2022, 2022
Short summary
Short summary
We demonstrate how we can reliably estimate the thawed–frozen permafrost interface with its associated uncertainties in subsea permafrost environments using 2D electrical resistivity tomography (ERT) data. In addition, we show how further analyses considering 1D inversion and sensitivity assessments can help quantify and better understand 2D ERT inversion results. Our results illustrate the capabilities of the ERT method to get insights into the development of the subsea permafrost.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022, https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Loeka L. Jongejans, Kai Mangelsdorf, Cornelia Karger, Thomas Opel, Sebastian Wetterich, Jérémy Courtin, Hanno Meyer, Alexander I. Kizyakov, Guido Grosse, Andrei G. Shepelev, Igor I. Syromyatnikov, Alexander N. Fedorov, and Jens Strauss
The Cryosphere, 16, 3601–3617, https://doi.org/10.5194/tc-16-3601-2022, https://doi.org/10.5194/tc-16-3601-2022, 2022
Short summary
Short summary
Large parts of Arctic Siberia are underlain by permafrost. Climate warming leads to permafrost thaw. At the Batagay megaslump, permafrost sediments up to ~ 650 kyr old are exposed. We took sediment samples and analysed the organic matter (e.g. plant remains). We found distinct differences in the biomarker distributions between the glacial and interglacial deposits with generally stronger microbial activity during interglacial periods. Further permafrost thaw enhances greenhouse gas emissions.
Jan Nitzbon, Damir Gadylyaev, Steffen Schlüter, John Maximilian Köhne, Guido Grosse, and Julia Boike
The Cryosphere, 16, 3507–3515, https://doi.org/10.5194/tc-16-3507-2022, https://doi.org/10.5194/tc-16-3507-2022, 2022
Short summary
Short summary
The microstructure of permafrost soils contains clues to its formation and its preconditioning to future change. We used X-ray computed tomography (CT) to measure the composition of a permafrost drill core from Siberia. By combining CT with laboratory measurements, we determined the the proportions of pore ice, excess ice, minerals, organic matter, and gas contained in the core at an unprecedented resolution. Our work demonstrates the potential of CT to study permafrost properties and processes.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
M. R. Udawalpola, C. Witharana, A. Hasan, A. Liljedahl, M. Ward Jones, and B. Jones
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-M-2-2022, 203–208, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-203-2022, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-203-2022, 2022
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Noriaki Ohara, Benjamin M. Jones, Andrew D. Parsekian, Kenneth M. Hinkel, Katsu Yamatani, Mikhail Kanevskiy, Rodrigo C. Rangel, Amy L. Breen, and Helena Bergstedt
The Cryosphere, 16, 1247–1264, https://doi.org/10.5194/tc-16-1247-2022, https://doi.org/10.5194/tc-16-1247-2022, 2022
Short summary
Short summary
New variational principle suggests that a semi-ellipsoid talik shape (3D Stefan equation) is optimum for incoming energy. However, the lake bathymetry tends to be less ellipsoidal due to the ice-rich layers near the surface. Wind wave erosion is likely responsible for the elongation of lakes, while thaw subsidence slows the wave effect and stabilizes the thermokarst lakes. The derived 3D Stefan equation was compared to the field-observed talik thickness data using geophysical methods.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Michael Fritz, Sebastian Wetterich, Joel McAlister, and Hanno Meyer
Earth Syst. Sci. Data, 14, 57–63, https://doi.org/10.5194/essd-14-57-2022, https://doi.org/10.5194/essd-14-57-2022, 2022
Short summary
Short summary
From 2015 to 2018 we collected rain and snow samples in Inuvik, Canada. We measured the stable water isotope composition of oxygen (δ18O) and hydrogen (δ2H) with a mass spectrometer. This data will be of interest for other scientists who work in the Arctic. They will be able to compare our modern data with their own isotope data in old ice, for example in glaciers, and in permafrost. This will help to correctly interpret the climate signals of the environmental history of the Earth.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Katharina Jentzsch, Julia Boike, and Thomas Foken
Atmos. Meas. Tech., 14, 7291–7296, https://doi.org/10.5194/amt-14-7291-2021, https://doi.org/10.5194/amt-14-7291-2021, 2021
Short summary
Short summary
Very small CO2 fluxes are measured at night in Arctic regions. If the sensible heat flux is not close to zero under these conditions, the WPL correction will take values on the order of the flux. A special quality control is proposed for these cases.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Bruce C. Forbes, Mathias Göckede, Juliane Wolter, Marc Macias-Fauria, Johan Olofsson, Nikita Zimov, and Jens Strauss
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-227, https://doi.org/10.5194/bg-2021-227, 2021
Revised manuscript not accepted
Short summary
Short summary
With global warming, permafrost thaw and associated carbon release are of increasing importance. We examined how large herbivorous animals affect Arctic landscapes and how they might contribute to reduction of these emissions. We show that over a short timespan of roughly 25 years, these animals have already changed the vegetation and landscape. On pastures in a permafrost area in Siberia we found smaller thaw depth and higher carbon content than in surrounding non-pasture areas.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
Short summary
Antarctica consists mostly of frozen water, and it makes the continent sensitive to warming due to enhancing a transition/exchange of water from solid (ice and snow) to liquid (lakes and rivers) form. Therefore, it is important to know how fast water is exchanged in the Antarctic lakes. The study gives first estimates of scales for water exchange for five lakes located in the Larsemann Hills oasis. Two methods are suggested to evaluate the timescale for the lakes depending on their type.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Alexander Savvichev, Igor Rusanov, Yury Dvornikov, Vitaly Kadnikov, Anna Kallistova, Elena Veslopolova, Antonina Chetverova, Marina Leibman, Pavel A. Sigalevich, Nikolay Pimenov, Nikolai Ravin, and Artem Khomutov
Biogeosciences, 18, 2791–2807, https://doi.org/10.5194/bg-18-2791-2021, https://doi.org/10.5194/bg-18-2791-2021, 2021
Short summary
Short summary
Microbial processes of the methane cycle were studied in four lakes of the central part of the Yamal Peninsula in an area of continuous permafrost: two large, deep lakes and two small and shallow ones. It was found that only small, shallow lakes contributed significantly to the overall diffusive methane emissions from the water surface during the warm summer season. The water column of large, deep lakes on Yamal acted as a microbial filter preventing methane emissions into the atmosphere.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Jan Nitzbon, Moritz Langer, Léo C. P. Martin, Sebastian Westermann, Thomas Schneider von Deimling, and Julia Boike
The Cryosphere, 15, 1399–1422, https://doi.org/10.5194/tc-15-1399-2021, https://doi.org/10.5194/tc-15-1399-2021, 2021
Short summary
Short summary
We used a numerical model to investigate how small-scale landscape heterogeneities affect permafrost thaw under climate-warming scenarios. Our results show that representing small-scale heterogeneities in the model can decide whether a landscape is water-logged or well-drained in the future. This in turn affects how fast permafrost thaws under warming. Our research emphasizes the importance of considering small-scale processes in model assessments of permafrost thaw under climate change.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Frederic Thalasso, Katey Walter Anthony, Olya Irzak, Ethan Chaleff, Laughlin Barker, Peter Anthony, Philip Hanke, and Rodrigo Gonzalez-Valencia
Hydrol. Earth Syst. Sci., 24, 6047–6058, https://doi.org/10.5194/hess-24-6047-2020, https://doi.org/10.5194/hess-24-6047-2020, 2020
Short summary
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Cited articles
Abnizova, A., Young, K. L., and Lafrenière, M. J.: Pond hydrology and
dissolved organic carbon dynamics at Polar Bear Pass wetlands, Bathurst
Island, Nunavut, Canada, Ecohydrology, 7, 73–90,
https://doi.org/10.1002/eco.1323, 2014.
Anderson, N. J. and Stedmon, C. A.: The effect of evapoconcentration on
dissolved organic carbon concentration and quality in lakes of SW Greenland,
Freshw. Biol., 52, 280–289,
https://doi.org/10.1111/j.1365-2427.2006.01688.x, 2007.
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E.,
Packman, A. I., Newbold, J. D., and Sabater, F.: Biophysical controls on
organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95–100, 2008.
Bauer, J. E. and Bianchi, T. S.: Dissolved Organic Carbon Cycling and
Transformation, in: Treatise on Estuarine and Coastal Science, Vol. 5, edited
by: Wolanski, E. and McLusky, D. S., Waltham, Academic Press, 7–67,
https://doi.org/10.1016/B978-0-12-374711-2.00502-7, 2011.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun. 10, 264, https://doi.org/10.1038/s41467-018-08240-4,
2019.
Bogard, M. J., Kuhn, C. D., Johnston, S. E., Striegl, R. G., Holtgrieve, G.
W., Dornblaser, M. M., Spencer, R. G. M., Wickland, K. P., and Butman, D.
E.: Negligible cycling of terrestrial carbon in many lakes of the arid
circumpolar landscape, Nat. Geosci., 12, 180–185,
https://doi.org/10.1038/s41561-019-0299-5, 2019.
Bonnaventure, P. P. and Lewkowicz, A. G.: Modelling climate change effects
on the spatial distribution of mountain permafrost at three sites in
northwest Canada, Climate Change, 105, 293–312,
https://doi.org/10.1007/s10584-010-9818-5, 2011.
Brosius, L., Walter Anthony, K. M., Treat, C., Lenz, J., Jones, M.,
Bret-Harte, M. S., and Grosse, G.: Spatiotemporal patterns of northern lake
formation since the Last Glacial Maximum, Quaternary Sci. Rev., 253,
106773, https://doi.org/10.1016/j.quascirev.2020.106773, 2021.
Brown, J., Ferrians, O. J., Heginbottom, J. A. J., and Melnikov, E. S.
(Eds.): Circum-Arctic map of the permafrost and ground-ice conditions,
Washington, DC: U.S. Geological Survey in Cooperation with the
Circum-Pacific Council for Energy and Mineral Resources, Circum-Pacific Map
Series CP-45, scale: 1:10 000 000, 1 sheet, 1997.
Chen, M., Rowland, J. C., Wilson, C. J., Altmann, G. L., and Brumby, S. P.:
Temporal and spatial pattern of thermokarst lake area changes at Yukon
Flats, Alaska, Hydrol. Process., 28, 837–852,
https://doi.org/10.1002/hyp.9642, 2014.
Chupakov, A. V., Chupakova, A. A., Moreva, O. Y., Shirokova, L. S.,
Zabelina, S. A., Vorobieva, T. Y., Klimov, S. I., Brovko, O. S., and
Prokovsky, O. S.: Allochthonous and autichthonous carbon in deep,
organic-rich and organic-poor lakes of the European Russian subarctic,
Boreal Environ. Res., 22, 213–230, 2017.
Coch, C., Juhls, B., Lamoureux, S. F., Lafrenière, M. J., Fritz, M.,
Heim, B., and Lantuit, H.: Comparison of dissolved organic matter and its
optical characteristics in small low and high Arctic catchments,
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019,
2019.
Cole, L., Bardgett, R. D., Ineson, P., and Adamson, J. K.: Relationships
between enchytraeid worms (Oligochaet), climate change, and the release of
dissolved organic carbon from blanket peat in northern England, Soil Biol.
Biochem., 34, 599–607,
https://doi.org/10.1016/S0038-0717(01)00216-4, 2002.
Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds,
B., Lock, M. A, Sleep, D., Hughes, S., and Hudson, J.: Export of dissolved
organic carbon from peatlands under elevated carbon dioxide levels, Nature,
430, 195–198, https://doi.org/10.1038/nature02707, 2004.
Frey, K. E. and Smith, L. C.: Amplified carbon release from vast West
Siberian peatlands by 2100, Geophys. Res. Lett., 32, L09401,
https://doi.org/10.1029/2004GL022025, 2005.
Fritz, M., Opel, T., Tanski, G., Herzschuh, U., Meyer, H., Eulenburg, A.,
and Lantuit, H.: Dissolved Organic Carbon (DOC) in arctic ground ice, The
Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015, 2015.
Fulton, J. R.: Geological Survey of Canada, “A” Series Map 1880A, Nat.
Resour. Can., https://doi.org/10.4095/205040, 1995.
Grosbois, G., Mariash, H., Schneider, T., and Ratio, M.: Under-ice
availability of phytoplankton lipids is key to freshwater zooplankton winter
survival, Sci. Rep., 7, 11543, https://doi.org/10.1038/s41598-017-10956-0,
2017.
Grosse, G., Harden, J., Turetsky, M., McGuire, A. D., Camill, P., Tarnocai,
C., Frolking, S., Schuur, E. A. G., Jorgenson, T., Marchenko, S.,
Romanovsky, V., Wickland, K. P., French, N., Waldrop, M., Bourgeau-Chavez,
L., and Striegl, R. G.: Vulnerability of high-latitude soil organic carbon
in North America to disturbance, J. Geophys. Res.-Biogeo., 116,
G00K06, https://doi.org/10.1029/2010JG001507, 2011.
Grosse, G., Jones, B., and Arp, C.: Thermokarst Lakes, Drainage, and Drained
Basins, in: Treatise on Geomorphology, Vol. 8, edited by: Shroder, J. F.,
Glacial and Periglacial Geomorphology, San Diego, Academic Press, 325–353,
https://doi.org/10.1016/B978-0-12-374739-6.00216-5, 2013.
Halm, D. R. and Griffith, B.: Water-Quality Data from Lakes in the Yukon
Flats, Alaska, 2010–2011, U.S. Geological Survey, Reston, Virginia,
https://doi.org/10.3133/ofr20141181, 2014.
Hamilton, P. B., Gajewski, K., Atkinson, D. E., and Lean, D. R. S.: Physical
and chemical limnology of 204 lakes from the Canadian Arctic Archipelago,
Hydrobiologia, 457, 133–148, https://doi.org/10.1023/A:1012275316543, 2001.
Harms, T. K., Edmonds, J. W., Genet, H., Creed, I. F., Aldred, D., Balser,
A., and Jones, J. B.: Catchment influence on nitrate and dissolved organic
matter in Alaskan streams across a latitudinal gradient, J.
Geophys. Res.-Biogeo., 121, 350–369,
https://doi.org/10.1002/2015JG003201, 2016.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag,
J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hugelius, G., Loisel, L., Chadburn, S., Jackson, R. B., Jones, M.,
MacDonald, G., Marushchak, M., Olefeld, D., Packalen, M., Siewert, M. B.,
Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland
carbon and nitrogen are vulnerable to permafrost thaw, P. Natl. Acad. Sci. USA, 117,
20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020.
IPCC: Climate Change 2013: Mitigation of Climate Change. Contribution of
Working Group III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2013.
Johnston, S. E., Striegl, R. G., Bogard, M. J., Dornblaser, M. M., Butman,
D. E., Kellerman, A. M., Wickland, K. P., Podgorski, D. C., and Spencer, R.
G. M.: Hydrologic connectivity determines dissolved organic matter
biogeochemistry in northern high-latitude lakes, Limnol. Oceanogr., 65,
1764–1780, https://doi.org/10.1002/lno.11417, 2020.
Jones, B. M., Grosse, G, Arp, C. D., Jones, M. C., Walter Anthony, K. M.,
and Romanovsky, V. E.: Modern thermokarst lake dynamics in the continuous
permafrost zone, northern Seward Peninsula, Alaska, J. Geophys. Res., 116,
G00M03, https://doi.org/10.1029/2011JG001666, 2011.
Jorgenson, M. T., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky, V.,
Marchenko, S., Grosse, G., Brown, J., and Jones, B.: Permafrost
characteristics of Alaska, University of Alaska, Fairbanks, Proceedings of the Ninth International Conference
on Permafrost, 3, 121–122, 2008.
Kokelj, S. V., Jenkins, R. E., Milburn, D., Burn, C. R., and Snow, N.: The
Influence of Thermokarst Disturbance on the Water Quality of Small Upland
Lakes, Mackenzie Delta Region, Northwest Territories, Canada, Permafrost
Periglac., 16, 343–353, https://doi.org/10.1002/ppp.536, 2005.
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate
feedbacks accelerate global warming, P. Natl. Acad.
Sci. USA, 108, 14769–14774,
https://doi.org/10.1073/pnas.1103910108, 2011.
Larsen, A. S., O'Donnell, J. A., Schmidt, J. H., Kristenson, H. J., and
Swanson, D. K.: Physical and chemical characteristics of lakes across
heterogeneous landscapes in arctic and subarctic Alaska, J. Geophys. Res.-Biogeo., 122, 989–1008, https://doi.org/10.1002/2016JG003729,
2017.
Lehner, B. and Döll, P.: Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Lim, D. S. S., Douglas, M. S. V., Smol, J. P., and Lean, D. R. S.: Physical
and Chemical Limnological Characteristics of 38 Lakes and Ponds on Bathurst
Island, Nunavut, Canadian High Arctic, Int. Rev. Hydrobiol., 86, 1–22,
https://doi.org/10.1002/1522-2632(200101)86:1<1::AID-IROH1>3.0.CO;2-E, 2001.
Manasypov, R. M., Pokrovsky, O. S., Kirpotin, S. N., and Shirokova, L. S.:
Thermokarst lake waters across the permafrost zones of western Siberia, The
Cryosphere, 8, 1177–1193, https://doi.org/10.5194/tc-8-1177-2014, 2014.
Manasypov, R.M., Vorobyev, S. N., Loiko, S. V., Kritzkov, I. V., Shirokova,
L. S., Shevchenko, V. P., Kirpotin, S. N., Kulizhsky, S. P., Kolesnichenko,
L. G., Zemtzov, V. A., Sinkinov, V. V., and Pokrovsky, O. S.: Seasonal
dynamics of organic carbon and metals in thermokarst lakes from the
discontinuous permafrost zone of western Siberia, Biogeosciences, 12,
3009–3028, https://doi.org/10.5194/bg-12-3009-2015, 2015.
Manual Shimadzu/TOC-V: Shimadzu TOC-V Series Total Organic Carbon Analysator, TOC-V CPH/CPN, TOC-Control V, Version 2.00, Kyoto, Japan, 2008.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Medeiros, A. S., Biastoch, R. G., Luszczek, C. E., Wang, X. A., Muir, D. C.
G., and Quinlan, R.: Patterns in the limnology of lakes and ponds across
multiple local and regional environmental gradients in the eastern Canadian
Arctic, Inland Waters, 2, 59–76, https://doi.org/10.5268/IW-2.2.427, 2012.
Michel, F. A.: Isotope Characterisation of Ground Ice in Northern Canada,
Permafrost Periglac., 22, 3–12, https://doi.org/10.1002/ppp.721,
2011.
Molot, L. A., Hudson, J. J., Dillon, P. J., and Miller, S. A.: Effect of pH
on photo-oxidation of dissolved organic carbon by hydroxyl radicals in a
coloured, softwater stream, Aquat. Sci., 67, 189–195,
https://doi.org/10.1007/s00027-005-0754-9, 2005.
Morgenstern, A., Grosse, G., Günther, F., Fedorova, I., and
Schirrmeister, L.: Spatial analyses of thermokarst lakes and basins in
Yedoma landscapes of the Lena Delta, The Cryosphere, 5, 849–867,
https://doi.org/10.5194/tc-5-849-2011, 2011.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T.,
Blok, D., Tape, K. D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque,
E., Bourdreau, S., Ropars, P., Hermanutz, L., Trant, A., Siegwart Collier,
L., Weijers, S., Rozema, J., Rayback, S. A., Martin Schmidt, N.,
Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S.,
Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J.,
Grogan, P., Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra
ecosystems: dynamics, impacts and research priorities, Environ. Res. Lett.,
6, 045509, https://doi.org/10.1088/1748-9326/6/4/045509, 2011.
Nielsen, A. B.: Present Conditions in Greenland and the Kangerlussuaq Area,
Working Report 2010–2007, Geological Survey of Denmark and Greenland,
Copenhagen (Denmark), Posiva Oy, Helsinki, Finland, 2010.
Nitze, I., Grosse, G., Jones, B. M., Arp, C. D., Ulrich, M., Fedorov, A.,
and Veremeeva, A.: Landsat-based trend analysis of lake dynamics across
northern permafrost regions, Remote Sens., 9, 640,
https://doi.org/10.3390/rs9070640, 2017.
Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., and Boike, J.:
Remote sensing quantifies widespread abundance of permafrost region
disturbances across the Arctic and Subarctic, Nat. Commun., 9, 1–11,
https://doi.org/10.1038/s41467-018-07663-3, 2018.
Northington, R. M. and Saros, J. E.: Factors Controlling Methane in Arctic
Lakes of Southwest Greenland, PLoS ONE, 11, e0159642,
https://doi.org/10.1371/journal.pone.0159642, 2016.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E.,
Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y.,
Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K.R.: Terrestrial
Ecoregions of the World: A New Map of Life on Earth (PDF, 1.1M), BioScience,
51, 933–938,
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2004.
Osburn, C. L., Anderson, N. J., Stedmon, C. A., Giles, M. E., Whiteford, E.
J., McGenity, T. J., Dumbrell, A. J., and Underwood, G. J. C.: Shifts in the
Source and Composition of Dissolved Organic Matter in Southwest Greenland
Lakes Along a Regional Hydroclimatic Gradient, J. Geophys.
Res.-Biogeo., 122, 3431–3445,
https://doi.org/10.1002/2017JG003999, 2017.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016.
Petrov, O. V., Morozov, A. F., Chepkasova, T. V., Kiselev, E. A.,
Zastrozhnov, A. S., Verbitsky, V. R., Strelnikov, S. I., Tarnogradsky, V.
D., Shkatova, V. K., Krutkina, O. N., Minina, E. A., Astakhov, V. I.,
Borisov, B. A., and Gusev, E. A.: Map of the Quaternary Formations of the
Russian Federation, 2014.
Pienitz, R., Smol, J. P., and Lean, D. R. S.: Physical and chemical
limnology of 59 lakes located between the southern Yukon and the Tuktoyaktuk
Peninsula, Northwest Territories (Canada), Can. J. Fish. Aquat. Sci., 54,
330–346, https://doi.org/10.1139/f96-274, 1997a.
Pienitz, R., Smol, J. P., and Lean, D. R. S.: Physical and chemical
limnology of 24 lakes located between Yellowknife and Contwoyto Lake,
Northwest Territories (Canada), Can. J. Fish. Aquat. Sci., 5, 347–358,
https://doi.org/10.1139/f96-275, 1997b.
Pienitz, R., Doran, P. T., and Lamoureux, S. F.: Origin and geomorphology of
lakes in the polar regions, Polar Lakes and Rivers: Limnology of Arctic and
Antarctic Aquatic Ecosystems, edited by: Vincent, W. F. and Laybourn-Parry, J.,
Oxford University Press Inc., New York, 2008.
Prokushkin, A. S., Kawahigashi, M., and Tokareva, I. V.: Global Warming and
Dissolved Organic Carbon Release from Permafrost Soils, in: Permafrost
Soils, Soil Biology, Vol. 16, edited by: Margesin, R., Springer, Berlin,
Heidelberg, Germany, 237–250,
https://doi.org/10.1007/978-3-540-69371-0_16, 2009.
Romanovsky, V. E., Drozdov, D. S., Oberman, N. G., Malkova, G. V., Kholodov,
A. L., Marchenko, S. S., Moskalenko, N. G., Sergeev, D. O., Ukraintseva, N.
G., Abramov, A. A., Gilichinsky, D. A., and Vasiliev, A. A.: Thermal State
of Permafrost in Russia, Permafrost Periglac., 21, 136–155,
https://doi.org/10.1002/ppp.683, 2010.
Schuur, E.A.G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B.,
Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Galina
Mazhitova, H. L., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov,
N., Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.:
Vulnerability of Permafrost Carbon to Climate Change: Implications for the
Global Carbon Sycle, BioScience, 58, 701–714,
https://doi.org/10.1641/B580807, 2008.
Sepulveda-Jauregui, A., Walther Anthony, K. M., Martinez-Cruz, K., Greene,
S., and Thalasso, F.: Methane and carbon dioxide emissions from 40 lakes
along a north-south latitudinal transect in Alaska, Biogeosciences, 12,
3197–3223, https://doi.org/10.5194/bg-12-3197-2015, 2015.
Serikova, S., Prokovsky, O. S., Laudon, H., Krickiv, I. V., Lim, A. G.,
Manasypov, R. M., and Karlsson, J.: High carbon emissions from thermokarst
lakes of western Siberia, Nat. Commun., 10, 1552,
https://doi.org/10.1038/s41467-019-09592-1, 2019.
Shirokova, L., Pokrovsky, O., Kirpotin, S., Desmukh, C., Pokrovsky, B.,
Audry, S., and Viers, J.: Biogeochemistry of organic carbon, CO2, CH4, and
trace elements in thermokarst water bodies in discontinuous permafrost zones
of Western Siberia, Biogeochemistry, 113, 559–573,
https://doi.org/10.1007/s10533-012-9790-4, 2013.
Smith, L. C., Sheng, Y., and MacDonald, G. M.: A First pan-Arctic assessment
of the influence of glaciation, permafrost, topography and peatlands on
Northern Hemisphere lake distribution, Permafrost Periglac., 18,
201–208, 2007.
Sobek, S., Tranvil, L. J., and Cole, J. J.: Temperature independence of
carbon dioxide supersaturation in global lakes, Global Biogeochem. Cy., 19,
GB2003, https://doi.org/10.1029/2004GB002264, 2005.
Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., and Cole, J. J.:
Patterns and regulation of dissolved organic carbon: an analysis of 7,500
widely distributed lakes, Limnol. Oceanogr., 52, 1208–1219,
https://doi.org/10.4319/lo.2007.52.3.1208, 2007.
Stolpmann, L., Coch, C., Morgenstern, A., Boike, J., Fritz, M., Herzschuh, U., Stoof-Leichsenring, K., Dvornikov, Y., Heim, B., Lenz, J., Larsen, A., Walter Anthony, K., Jones, B., Frey, K., and Grosse, G.: Permafrost-Region Lake-DOC version1 Database (PeRL-DOCv1), PANGAEA [Dataset], https://doi.org/10.1594/PANGAEA.932262, 2021.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M.,
Herzschuh, U., and Hubberten, H.-W.: The deep permafrost carbon pool of the
Yedoma region in Siberia and Alaska, Geophys. Res. Lett., 40,
6165–6170, https://doi.org/10.1002/2013GL058088, 2013.
Strauss, J., Laboor, S., Fedorov, A., Fortier, D., Froese, D., Fuchs, M.,
Grosse, G., Günther, F., Harden, J., Hugelius, G., Kanevskiy, M. Z.,
Kholodov, A. L., Kunitsky, V. V., Kraev, G., Lapointe-Elmrabti, L., Lozhkin,
A. V., Rivkina, E., Robinson, J., Schirrmeister, L., Shmelev, D., Shur, Y.,
Siegert, C., Spektor, V., Ulrich, M., Vartanyan, S. L., Veremeeva, A.,
Walter Anthony, K. M., and Zimov, S. A.: Database of Ice-Rich Yedoma
Permafrost (IRYP), PANGAEA [Dataset], https://doi.org/10.1594/PANGAEA.861733, 2016.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G.,
Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T.,
Schuur, E. A. G., Shmelev, D., Ulrich, M., and Veremeeva, A.: Deep Yedoma
permafrost: A synthesis of depositional characteristics and carbon
vulnerability, Earth-Sci. Rev., 172, 75–86,
https://doi.org/10.1016/j.earscirev.2017.07.007, 2017.
Tanski, G., Couture, N., Lantuit, H., Eulenburg, A., and Fritz, M.: Eroding
permafrost coasts release low amounts of dissolved organic carbon (DOC) from
ground ice into the nearshore zone of the Arctic Ocean, Global
Biogeochem. Cy., 30, 1054–1068, https://doi.org/10.1002/2015GB005337,
2016.
Toming, K., Kotta, J., Uuemaa, E., Sobek, S., Kutser, T., and Tranvik, L.
J.: Predicting lake dissolved organic carbon at a global scale, Sci.
Rep., 10, 8471, https://doi.org/10.1038/s41598-020-65010-3, 2020.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R.
G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B.,
Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M.,
McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J.
A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D.
W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von
Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators
of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314,
https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Walter Anthony, K. M.,
Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven,
C., Lawrence, D. M., Gibson, C., Sannel, A. B., and McGuire, A. D.: Carbon
release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020.
Vasiliev, A. A., Drozdov, D. S., Gravis, A. G., Malkova, G. V., Nyland, K.
E., and Streletskiy, D. A.: Permafrost degradation in the Western Russian
Arctic, Environ. Res. Lett., 15, 045001,
https://doi.org/10.1088/1748-9326/ab6f12, 2020.
Vincent, W. F. and Laybourn-Parry, J. (Eds.): Polar Lakes and Rivers:
Limnology of Arctic and Antarctic Aquatic Ecosystems, Oxford University
Press, 2008.
Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G. M.,
Schade, J., Sobczak, W. V., Zimov, N., Zimov, S., Bulygina, E. B., Eglinton,
T. I., and Holmes, R. M.: High biolability of ancient permafrost carbon upon
thaw, Geophys. Res. Lett., 40, 2689–2693,
https://doi.org/10.1002/grl.50348, 2013a.
Vonk, J. E., Mann, P. J., Dowdy, K. L., Davydova, A., Davydov, S. P., Zimov,
N., Spencer, R. G. M., Bulygina, E. B., Eglinton, T. I., and Holmes, R. M.:
Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge
thaw, Environ. Res. Lett., 8, 035023,
https://doi.org/10.1088/1748-9326/8/3/035023, 2013b.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F.,
Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M.,
Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J.,
MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.:
Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic
ecosystems, Biogeosciences, 12, 7129–7167,
https://doi.org/10.5194/bg-12-7129-2015, 2015.
Walter Anthony, K. M., Schneider von Deimling, T., Nitze, I., Frolking, S.,
Emond, A., Daanen, R., Anthony, P., Lindgren, P., Jones, B., and Grosse, G.:
21st-century modelled permafrost carbon emissions accelerated by abrupt
thaw beneath lakes, Nat. Commun., 9, 3262,
https://doi.org/10.1038/s41467-018-05738-9, 2018.
Wickland, K. P., Neff, J. C., and Aiken, G. R.: Dissolved Organic Carbon in
Alaskan Boreal Forest: Sources, Chemical Characteristics, and
Biodegradability, Ecosystems, 10, 1323–1340,
https://doi.org/10.1007/s10021-007-9101-4, 2007.
Xenopoulos, M. A., Lodge, D. M., Frentress, J., Kreps, T. A., Bridgham, S.
D., Grossman, E., and Jackson, C. J.: Regional comparison of watershed
determinants of dissolved organic carbon in temperate lakes from the Upper
Great Lakes region and selected regions globally, Limnol. Oceanogr., 48,
2321–2334, https://doi.org/10.4319/lo.2003.48.6.2321, 2003.
Zimov, S. A., Schuur, E. A. G., and Chapin, F. S.: Permafrost and the global
carbon budget, Science, 312, 1612–1613,
https://doi.org/10.1126/science.1128908, 2006.
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in...
Altmetrics
Final-revised paper
Preprint