Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbonic anhydrase is involved in calcification by the benthic foraminifer Amphistegina lessonii
Siham de Goeyse
CORRESPONDING AUTHOR
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, the Netherlands
Alice E. Webb
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, the Netherlands
Gert-Jan Reichart
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, the Netherlands
Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Lennart J. de Nooijer
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, the Netherlands
Related authors
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past, 21, 957–971, https://doi.org/10.5194/cp-21-957-2025, https://doi.org/10.5194/cp-21-957-2025, 2025
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that, 7200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Peter Kraal, Kristin A. Ungerhofer, Darci Rush, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2025-1870, https://doi.org/10.5194/egusphere-2025-1870, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Element cycles in oxygen-depleted areas such as upwelling areas inform future deoxygenation scenarios. The Benguela upwelling system shows strong decoupling of nitrogen and phosphorus cycling due to seasonal shelf anoxia. Anaerobic processes result in pelagic nitrogen loss as N2. At the same time, sediments are rich in fish-derived and bacterial phosphorus, with high fluxes of excess phosphate, altering deep-water nitrogen:phosphorus ratios. Such alterations can affect ocean functioning.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
EGUsphere, https://doi.org/10.5194/egusphere-2025-1678, https://doi.org/10.5194/egusphere-2025-1678, 2025
Short summary
Short summary
In this study we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in 13C depletion of the residual sporomorph, leaving it rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying diagenesis results in 13C depletion of pollen.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Louise Delaigue, Gert-Jan Reichart, Chris Galley, Yasmina Ourradi, and Matthew Paul Humphreys
EGUsphere, https://doi.org/10.5194/egusphere-2024-2853, https://doi.org/10.5194/egusphere-2024-2853, 2024
Short summary
Short summary
Our study analyzed pH in ocean surface waters to understand how they fluctuate with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023, https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Cited articles
Bentov, S., Brownlee, C., and Erez, J.: The role of seawater endocytosis in
the biomineralization process in calcareous foraminifera, P. Natl. Acad. Sci. USA, 106, 21500–21504, https://doi.org/10.1073/pnas.0906636106, 2009.
Bertucci, A., Moya, A., Tambutté, S., Allemand, D., Supuran, C. T., and
Zoccola, D.: Carbonic anhydrases in anthozoan corals – A review, Bioorgan. Med. Chem., 21, 1437–1450, https://doi.org/10.1016/j.bmc.2012.10.024, 2013.
Brownlee, C., Wheeler, G. L., and Taylor, A. R.: Coccolithophore
biomineralization: New questions, new answers, Semin. Cell Dev. Biol., 46,
11–16, https://doi.org/10.1016/j.semcdb.2015.10.027, 2015.
Cai, W.-J. J., Ma, Y., Hopkinson, B. M., Grottoli, A. G., Warner, M. E.,
Ding, Q., Hu, X., Yuan, X., Schoepf, V., Xu, H., Han, C., Melman, T. F.,
Hoadley, K. D., Pettay, D. T., Matsui, Y., Baumann, J. H., Levas, S., Ying,
Y., and Wang, Y.: Microelectrode characterization of coral daytime interior
pH and carbonate chemistry, Nat. Commun., 7, 11144,
https://doi.org/10.1038/ncomms11144, 2016.
Chen, S., Gagnon, A. C., and Adkins, J. F.: Carbonic anhydrase, coral
calcification and a new model of stable isotope vital effects, Geochim. Cosmochim. Ac., 236, 179–197, https://doi.org/10.1016/j.gca.2018.02.032, 2018.
Chew, S. F., Koh, C. Z. Y., Hiong, K. C., Choo, C. Y. L., Wong, W. P., Neo,
M. L., and Ip, Y. K.: Light-enhanced expression of Carbonic Anhydrase 4-like
supports shell formation in the fluted giant clam Tridacna squamosa, Gene, 683, 101–112, https://doi.org/10.1016/j.gene.2018.10.023, 2019.
De Goeyse, S., Webb, A. E., Reichart, G.-J., and de Nooijer, L. J.: Dissolved organic carbon and total alkalinity values presented in article: “Carbonic anhydrase is involved in benthic foraminiferal calcification”, 4TU.ResearchData, https://doi.org/10.4121/uuid:afcdcdc1-2591-4822-bade-806119cdd724, 2020.
de Nooijer, L. J., Toyofuku, T., and Kitazato, H.: Foraminifera promote
calcification by elevating their intracellular pH, P. Natl. Acad. Sci. USA, 106, 15374–15378, https://doi.org/10.1073/pnas.0904306106, 2009.
Dickson, A. G.: Reference materials for oceanic CO2 measurements, Oceanography, 14, 21–22, 2001.
Duguay, L. E.: Comparative laboratory and field studies on calcification and
carbon fixation in foraminiferal-algal associations, J. Foramin. Res.,
13, 252–261, 1983.
Elzenga, J. T. M., Prins, H. B. A., and Stefels, J.: The role of
extracellular carbonic anhydrase activity in inorganic carbon utilization of
Phaeocystis globosa (Pyrmnesiophyceae): A comparison with other marine algae using isotopic
disequilibrium technique, Limnol. Oceanogr., 45, 372–380,
https://doi.org/10.4319/lo.2000.45.2.0372, 2000.
Erez, J.: The Source of Ions for Biomineralization in Foraminifera and Their
Implications for Paleoceanographic Proxies, Rev. Mineral. Geochem.,
54, 115–149, https://doi.org/10.2113/0540115, 2003.
Ernst, S., Janse, M., Renema, W., Kouwenhoven, T., Goudeau, M.-L., and
Reichart, G.-J.: Benthic foraminifera in a large Indo-Pacific coral reef
aquarium, J. Foramin. Res., 41, 101–113, https://doi.org/10.2113/gsjfr.41.2.101,
2011.
Evans, D., Müller, W., and Erez, J.: Assessing foraminifera
biomineralisation models through trace element data of cultures under
variable seawater chemistry, Geochim. Cosmochim. Ac., 236, 198–217,
https://doi.org/10.1016/j.gca.2018.02.048, 2018.
Giri, S. J., Swart, P. K., and Pourmand, A.: The influence of seawater
calcium ions on coral calcification mechanisms: Constraints from boron and
carbon isotopes and B∕Ca ratios in Pocillopora damicornis, Earth Planet.
Sc. Lett., 519, 130–140, https://doi.org/10.1016/j.epsl.2019.05.008, 2019.
Glas, M. S., Fabricius, K. E., de Beer, D., and Uthicke, S.: The O2, pH
and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2
World, PLoS ONE, 7, e50010,
https://doi.org/10.1371/journal.pone.0050010, 2012.
Hallock, P.: Light dependence in Amphistegina, J. Foramin. Res., 11, 40–46,
https://doi.org/10.2113/gsjfr.11.1.40, 1981.
Hallock, P.: Larger Foraminifera as Indicators of Coral-Reef Vitality, Springer, Boston, MA, USA, 121–150, 2000.
Hallock, P., Forward, L. B., and Hansen, H. J.: Influence of environment on
the test shape of Amphistegina, J. Foramin. Res., 16, 224–231,
https://doi.org/10.2113/gsjfr.16.3.224, 1986.
Haynert, K., Schönfeld, J., Schiebel, R., Wilson, B., and Thomsen, J.: Response of benthic foraminifera to ocean acidification in their natural sediment environment: a long-term culturing experiment, Biogeosciences, 11, 1581–1597, https://doi.org/10.5194/bg-11-1581-2014, 2014.
Hewett-Emmett, D. and Tashian, R. E.: Functional diversity, conservation,
and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families, Mol. Phylogenet. Evol., 5, 50–77,
https://doi.org/10.1006/mpev.1996.0006, 1996.
Hikami, M., Ushie, H., Irie, T., Fujita, K., Kuroyanagi, A., Sakai, K.,
Nojiri, Y., Suzuki, A., and Kawahata, H.: Contrasting calcification responses
to ocean acidification between two reef foraminifers harboring different
algal symbionts, Geophys. Res. Lett., 38, 22, https://doi.org/10.1029/2011GL048501, 2011.
Hydes, D. J., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S.,
Daniel, A., Dickson, A. G., Grosso, O., Kerouel, R., Van Ooijen, J., Sato,
K., Tanhua, T., Woodward, M., and Zhang, J.-Z.: Determination of dissolved
nutrients (N, P, Si) in seawater with high precision and inter-comparability
using gas-segmented continuous flow analysers, in: The GO-SHIP Repeat Hydrography Manual : A Collection of Expert Reports and guidelines. IOCCP Report No 14, ICPO Publication Series No. 134, version 1, 1–87 (online), available at:
http://archimer.ifremer.fr/doc/00020/13141/ (last access: November 2020), 2010.
Keul, N., Langer, G., de Nooijer, L. J., and Bijma, J.: Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration, Biogeosciences, 10, 6185–6198, https://doi.org/10.5194/bg-10-6185-2013, 2013.
Langer, M. R.: Assessing the contribution of foraminiferan protists to
global ocean carbonate production, J. Eukaryot. Microbiol., 55, 163–169,
https://doi.org/10.1111/j.1550-7408.2008.00321.x, 2008.
Lee, J. J.: Living Sands: Symbiosis between Foraminifera and Algae, in:
Symbiosis, Kluwer Academic Publishers, Dordrecht, the Netherlands, 491–506, 2001.
Leggat, W., Buck, B. H., Grice, A., and Yellowlees, D.: The impact of
bleaching on the metabolic contribution of dinoflagellate symbionts to their
giant clam host, Plant Cell Environ., 26, 1951–1961,
https://doi.org/10.1046/j.0016-8025.2003.01111.x, 2003.
Le Roy, N., Marie, B., Gaume, B., Guichard, N., Delgado, S.,
Zanella-Cléon, I., Becchi, M., Auzoux-Bordenave, S., Sire, J. Y., and
Marin, F.: Identification of Two Carbonic Anhydrases in the Mantle of the
European Abalone Haliotis tuberculata (Gastropoda, Haliotidae): Phylogenetic Implications, J. Exp. Zool. Part B, 318, 353–367,
https://doi.org/10.1002/jez.b.22452, 2012.
Le Roy, N., Jackson, D. J., Marie, B., Ramos-Silva, P., and Marin, F.: The
evolution of metazoan α-carbonic anhydrases and their roles in
calcium carbonate biomineralization, Front. Zool., 11, 75,
https://doi.org/10.1186/s12983-014-0075-8, 2014.
Lionetto, M. G., Caricato, R., Giordano, M. E., and Schettino, T.: The
Complex Relationship between Metals and Carbonic Anhydrase: New Insights and
Perspectives., Int. J. Mol. Sci., 17, 127, https://doi.org/10.3390/ijms17010127, 2016.
Liu, X., Byrne, R. H., Lindemuth, M., Easley, R., and Mathis, J. T.: An
automated procedure for laboratory and shipboard spectrophotometric
measurements of seawater alkalinity: Continuously monitored single-step acid
additions, Mar. Chem., 174, 141–146, https://doi.org/10.1016/j.marchem.2015.06.008,
2015.
Mackinder, L., Wheeler, G., Schroeder, D., Riebesell, U., and Brownlee, C.:
Molecular mechanisms underlying calcification in coccolithophores,
Geomicrobiol. J., 27, 585–595, https://doi.org/10.1080/01490451003703014, 2010.
Mackinder, L., Wheeler, G., Schroeder, D., von Dassow, P., Riebesell, U., and
Brownlee, C.: Expression of biomineralization-related ion transport genes in
Emiliania huxleyi, Environ. Microbiol., 13, 3250–3265,
https://doi.org/10.1111/j.1462-2920.2011.02561.x, 2011.
Medaković, D.: Carbonic anhydrase activity and biomineralization process
in embryos, larvae and adult blue mussels Mytilus edulis L., Helgoland Mar. Res., 54,
1–6, https://doi.org/10.1007/s101520050030, 2000.
Mikhalevich, V. I.: New insight into the systematics and evolution of the
foraminifera, Micropaleontology, 59, 493–527, 2013.
Moroney, J. V., Husic, H. D., and Tolbert, N. E.: Effect of Carbonic
Anhydrase Inhibitors on Inorganic Carbon Accumulation by Chlamydomonas
reinhardtii, Plant Physiol., 79, 177–183, https://doi.org/10.1104/pp.79.1.177,
1985.
Moya, A., Tambutté, S., Bertucci, A., Tambutté, E., Lotto, S.,
Vullo, D., Supuran, C. T., Allemand, D., and Zoccola, D.: Carbonic anhydrase
in the scleractinian coral Stylophora pistillata: Characterization, localization, and role in
biomineralization, J. Biol. Chem., 283, 25475–25484,
https://doi.org/10.1074/jbc.M804726200, 2008.
Muller, P. H.: 14Carbon fixation and loss in a foraminiferal-algal symbiont
system, J. Foramin. Res., 8, 35–41, https://doi.org/10.1007/s005350300016, 1978.
Müller, W. E. G., Schröder, H. C., Schlossmacher, U., Neufurth, M.,
Geurtsen, W., Korzhev, M., and Wang, X.: The enzyme carbonic anhydrase as an
integral component of biogenic Ca-carbonate formation in sponge spicules,
FEBS Open Bio, 3, 357–362, https://doi.org/10.1016/j.fob.2013.08.004, 2013.
Nehrke, G., Keul, N., Langer, G., de Nooijer, L. J., Bijma, J., and Meibom, A.: A new model for biomineralization and trace-element signatures of Foraminifera tests, Biogeosciences, 10, 6759–6767, https://doi.org/10.5194/bg-10-6759-2013, 2013.
Pawlowski, J., Holzmann, M., and Tyszka, J.: New supraordinal classification
of Foraminifera: Molecules meet morphology, Mar. Micropaleontol., 100,
1–10, https://doi.org/10.1016/j.marmicro.2013.04.002, 2013.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit
mixed responses to CO2-induced ocean acidification, Geology, 37,
1131–1134, https://doi.org/10.1130/G30210A.1, 2009.
Sabine, C. L. and Tanhua, T.: Estimation of Anthropogenic CO2 Inventories in
the Ocean, Annu. Rev. Mar. Sci., 2, 175–198,
https://doi.org/10.1146/annurev-marine-120308-080947, 2010.
Segev, E. and Erez, J.: Effect of Mg/Ca ratio in seawater on shell
composition in shallow benthic foraminifera, Geochem. Geophy. Geosy., 7, 8, https://doi.org/10.1029/2005GC000969, 2006.
Stoll, M. H. C., Bakker, K., Nobbe, G. H., and Haese, R. R.: Continuous-flow
analysis of dissolved inorganic carbon content in seawater, Anal. Chem.,
73, 4111–4116, https://doi.org/10.1021/ac010303r, 2001.
Stuhr, M., Blank-Landeshammer, B., Reymond, C. E., Kollipara, L., Sickmann,
A., Kucera, M., and Westphal, H.: Disentangling thermal stress responses in a
reef-calcifier and its photosymbionts by shotgun proteomics, Sci. Rep.,
8, 1–13, https://doi.org/10.1038/s41598-018-21875-z, 2018.
ter Kuile, B. and Erez, J.: In situ growth rate experiments on the
symbiont-bearing foraminifera amphistegina lobifera and amphisorus
hmprichii, J. Foramin. Res., 14, 262–276,
https://doi.org/10.2113/gsjfr.14.4.262, 1984.
ter Kuile, B. and Erez, J.: Uptake of inorganic carbon and internal carbon
cycling in symbiont-bearing benthonic foraminifera, Mar. Biol., 94, 499–509,
1987.
ter Kuile, B., Erez, J., and Padan, E.: Competition for inorganic carbon
between photosynthesis and calcification in the symbiont-bearing foraminifer
Amphistegina lobifera, Mar. Biol., 103, 253–259, https://doi.org/10.1007/BF00543355,
1989a.
ter Kuile, B., Erez, J., and Padan, E.: Mechanisms for the uptake of
inorganic carbon by two species of symbiont-bearing foraminifera, Mar.
Biol., 103, 241–251, https://doi.org/10.1007/BF00543354, 1989b.
Toler, S. K. and Hallock, P.: Shell malformation in stressed Amphistegina
populations: Relation to biomineralization and paleoenvironmental potential,
Mar. Micropaleontol., 34, 107–115, https://doi.org/10.1016/S0377-8398(97)00043-1,
1998.
Tóth, S. Z., Schansker, G., and Strasser, R. J.: In intact leaves, the
maximum fluorescence level (FM) is independent of the redox state of the
plastoquinone pool: A DCMU-inhibition study, BBA-Bioenergetics, 1708, 275–282, https://doi.org/10.1016/j.bbabio.2005.03.012, 2005.
Toyofuku, T., Matsuo, M. Y., de Nooijer, L. J., Nagai, Y., Kawada, S.,
Fujita, K., Reichart, G.-J., Nomaki, H., Tsuchiya, M., Sakaguchi, H., and
Kitazato, H.: Proton pumping accompanies calcification in foraminifera, Nat.
Commun., 8, 14145, https://doi.org/10.1038/ncomms14145, 2017.
Uchikawa, J. and Zeebe, R. E.: The effect of carbonic anhydrase on the
kinetics and equilibrium of the oxygen isotope exchange in the CO2–H2O system: Implications for δ18O vital effects in
biogenic carbonates, Geochim. Cosmochim. Ac., 95, 15–34,
https://doi.org/10.1016/j.gca.2012.07.022, 2012.
Velthuys, B. R.: Electron-dependent competition between plastoquinone and
inhibitors for binding to photosystem II, FEBS Lett., 126, 277–281,
https://doi.org/10.1016/0014-5793(81)80260-8, 1981.
Wang, X., Wang, M., Jia, Z., Song, X., Wang, L., and Song, L.: A
shell-formation related carbonic anhydrase in Crassostrea gigas modulates intracellular
calcium against CO2 exposure: Implication for impacts of ocean
acidification on mollusk calcification, Aquat. Toxicol., 189, 216–228,
https://doi.org/10.1016/j.aquatox.2017.06.009, 2017.
Weis, V. M.: The Induction of Carbonic Anhydrase in the Symbiotic Sea
Anemone Aiptasia pulchella, Biol. Bull., 180, 496–504,
https://doi.org/10.2307/1542351, 1991.
Weis, V. M. and Reynolds, W. S.: Carbonic Anhydrase Expression and Synthesis
in the Sea Anemone Anthopleura elegantissima Are Enhanced by the Presence of
Dinoflagellate Symbionts, Physiol. Biochem. Zool., 72, 307–316,
https://doi.org/10.1086/316674, 2002.
Yellowlees, D., Rees, T. A. V., and Leggat, W.: Metabolic interactions
between algal symbionts and invertebrate hosts, Plant Cell Environ., 31,
679–694, https://doi.org/10.1111/j.1365-3040.2008.01802.x, 2008.
Zoccola, D., Ganot, P., Bertucci, A., Caminiti-Segonds, N., Techer, N.,
Voolstra, C. R., Aranda, M., Tambutté, E., Allemand, D., Casey, J. R.,
and Tambutté, S.: Bicarbonate transporters in corals point towards a key
step in the evolution of cnidarian calcification, Sci. Rep., 5, 1–11,
https://doi.org/10.1038/srep09983, 2015.
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and...
Altmetrics
Final-revised paper
Preprint