Articles | Volume 18, issue 16
Biogeosciences, 18, 4705–4715, 2021
https://doi.org/10.5194/bg-18-4705-2021
Biogeosciences, 18, 4705–4715, 2021
https://doi.org/10.5194/bg-18-4705-2021

Research article 18 Aug 2021

Research article | 18 Aug 2021

Diel patterns in stream nitrate concentration produced by in-stream processes

Jan Greiwe et al.

Related authors

Pesticide peak concentration reduction in a small vegetated treatment system controlled by chemograph shape
Jan Greiwe, Oliver Olsson, Klaus Kümmerer, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 497–509, https://doi.org/10.5194/hess-25-497-2021,https://doi.org/10.5194/hess-25-497-2021, 2021
Short summary

Related subject area

Biogeochemistry: Rivers & Streams
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021,https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021,https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021,https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021,https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021,https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary

Cited articles

Aubert, A. H. and Breuer, L.: New Seasonal Shift in In-Stream Diurnal Nitrate Cycles Identified by Mining High-Frequency Data, PloS One, 11, e0153138, https://doi.org/10.1371/journal.pone.0153138, 2016. 
Austin, B. J. and Strauss, E. A.: Nitrification and denitrification response to varying periods of desiccation and inundation in a western Kansas stream, Hydrobiologia, 658, 183–195, https://doi.org/10.1007/s10750-010-0462-x, 2011. 
Birgand, F., Skaggs, R. W., Chescheir, G. M., and Gilliam, J. W.: Nitrogen Removal in Streams of Agricultural Catchments – A Literature Review, Crit. Rev. Env. Sci. Tec., 37, 381–487, https://doi.org/10.1080/10643380600966426, 2007. 
Burns, D. A., Pellerin, B. A., Miller, M. P., Capel, P. D., Tesoriero, A. J., and Duncan, J. M.: Monitoring the riverine pulse: Applying high-frequency nitrate data to advance integrative understanding of biogeochemical and hydrological processes, WIREs Water, 140, e1348, https://doi.org/10.1002/wat2.1348, 2019. 
Christensen, P. B., Nielsen, L. P., Sørensen, J., and Revsbech, N. P.: Denitrification in nitrate-rich streams: Diurnal and seasonal variation related to benthic oxygen metabolism, Limnol. Oceanogr., 35, 640–651, https://doi.org/10.4319/lo.1990.35.3.0640, 1990. 
Download
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Altmetrics
Final-revised paper
Preprint