Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-55-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-55-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge
Department of Civil and Environmental Engineering, Pennsylvania
State University, University Park, PA 16802, United States
Pamela L. Sullivan
College of Earth, Ocean, and Atmospheric Science, Oregon State
University, Corvallis, OR 97331, United States
Gwendolyn L. Macpherson
Department of Geology, University of Kansas, Lawrence, KS 66045,
United States
Sharon A. Billings
Department of Ecology and Evolutionary Biology and Kansas
Biological Survey, University of Kansas, Lawrence, KS 66045, United States
Department of Civil and Environmental Engineering, Pennsylvania
State University, University Park, PA 16802, United States
Related authors
Gary Sterle, Julia Perdrial, Dustin W. Kincaid, Kristen L. Underwood, Donna M. Rizzo, Ijaz Ul Haq, Li Li, Byung Suk Lee, Thomas Adler, Hang Wen, Helena Middleton, and Adrian A. Harpold
Hydrol. Earth Syst. Sci., 28, 611–630, https://doi.org/10.5194/hess-28-611-2024, https://doi.org/10.5194/hess-28-611-2024, 2024
Short summary
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
Kachinga Silwimba, Alejandro N. Flores, Irene Cionni, Sharon A. Billings, Pamela L. Sullivan, Hoori Ajami, Daniel R. Hirmas, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-713, https://doi.org/10.5194/egusphere-2025-713, 2025
Short summary
Short summary
This study evaluates the influence of soil hydraulic parameterizations on soil moisture simulations in CLM5 across the CONUS (1980–2010) using Empirical Orthogonal Function (EOF) analysis. Results reveal significant regional discrepancies, particularly in the Great Plains, where parameter uncertainty drives biases in soil moisture variability. Comparisons with ERA5-Land highlight seasonal mismatches, underscoring the need for improved soil parameterization to enhance land surface model accuracy.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Lena Wang, Sharon Billings, Li Li, Daniel Hirmas, Keira Johnson, Devon Kerins, Julio Pachon, Curtis Beutler, Karla Jarecke, Vaishnavi Varikuti, Micah Unruh, Hoori Ajami, Holly Barnard, Alejandro Flores, Kenneth Williams, and Pamela Sullivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-70, https://doi.org/10.5194/egusphere-2025-70, 2025
Short summary
Short summary
Our study looked at how different forest types and conditions affected soil microbes, and soil carbon and stability. Aspen organic matter led to higher microbial activity, smaller soil aggregates, and more stable soil carbon, possibly reducing dissolved organic carbon movement from hillslopes to streams. This shows the importance of models like the Microbial Efficiency – Matrix Stabilization framework for predicting CO2 release, soil carbon stability, and carbon movement.
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340, https://doi.org/10.5194/hess-2024-340, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We explore tile drainage’ impacts on the integrated hydrology-biogeochemistry-plant system, using ecosys with soil oxygen and microbe dynamics. We found that tile drainage lowers soil water content and improves soil oxygen levels, which helps crops grow better, especially during wet springs, and the developed root system also helps mitigate drought stress on dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
Gary Sterle, Julia Perdrial, Dustin W. Kincaid, Kristen L. Underwood, Donna M. Rizzo, Ijaz Ul Haq, Li Li, Byung Suk Lee, Thomas Adler, Hang Wen, Helena Middleton, and Adrian A. Harpold
Hydrol. Earth Syst. Sci., 28, 611–630, https://doi.org/10.5194/hess-28-611-2024, https://doi.org/10.5194/hess-28-611-2024, 2024
Short summary
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024, https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Short summary
Climate change can significantly impact river runoff; however, predicting future runoff is challenging. Using historical runoff gauge data to evaluate model performances in runoff simulations for the Mekong River, we quantify future runoff changes in the Mekong River with the best simulation combination. Results suggest a significant increase in the annual runoff, along with varied seasonal distributions, thus heightening the need for adapted water resource management measures.
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
Cited articles
Abongwa, P. T. and Atekwana, E. A.: Controls on the chemical and isotopic
composition of carbonate springs during evolution to saturation with respect
to calcite, Chem. Geol., 404, 136–149, https://doi.org/10.1016/j.chemgeo.2015.03.024, 2015.
Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf, M., and
Reichstein, M.: Contribution of sorption, DOC transport and microbial
interactions to the 14C age of a soil organic carbon profile: Insights from
a calibrated process model, Soil Biol. Biochem., 88, 390–402,
https://doi.org/10.1016/j.soilbio.2015.06.008, 2015.
Andrews, J. A. and Schlesinger, W. H.: Soil CO2 dynamics, acidification,
and chemical weathering in a temperate forest with experimental CO2
enrichment, Global Biogeochem. Cy., 15, 149–162, https://doi.org/10.1029/2000gb001278,
2001.
Angers, D. A. and Caron, J.: Plant-induced changes in soil structure:
Processes and feedbacks, Biogeochemistry, 42, 55–72,
https://doi.org/10.1023/a:1005944025343, 1998.
Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J. E., Jiménez, E., Navarrete, D., Almeida, S., Costa, A. C. L., Salinas, N., Phillips, O. L., Anderson, L. O., Alvarez, E., Baker, T. R., Goncalvez, P. H., Huamán-Ovalle, J., Mamani-Solórzano, M., Meir, P., Monteagudo, A., Patiño, S., Peñuela, M. C., Prieto, A., Quesada, C. A., Rozas-Dávila, A., Rudas, A., Silva Jr., J. A., and Vásquez, R.: Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils, Biogeosciences, 6, 2759–2778, https://doi.org/10.5194/bg-6-2759-2009, 2009.
Archer, D. and Brovkin, V.: The millennial atmospheric lifetime of
anthropogenic CO2, Clim. Change, 90, 283–297, https://doi.org/10.1007/s10584-008-9413-1,
2008.
Beerling, D. J., Chaloner, W. G., Woodward, F. I., and Berner, R. A.: The
carbon cycle and carbon dioxide over Phanerozoic time: the role of land
plants, Philos. T. Roy. Soc. B, 353, 75–82, https://doi.org/10.1098/rstb.1998.0192, 1998.
Bengtson, P. and Bengtsson, G.: Rapid turnover of DOC in temperate forests
accounts for increased CO2 production at elevated temperatures, Ecol.
Lett., 10, 783–790, https://doi.org/10.1111/j.1461-0248.2007.01072.x, 2007.
Berner, E. K. and Berner, R. A.: Global environment: water, air, and
geochemical cycles, Princeton University Press, Princeton, USA, 2012.
Berner, R. A.: Weathering, plants, and the long-term carbon cycle,
Geochim. Cosmochim. Ac., 56, 3225–3231,
https://doi.org/10.1016/0016-7037(92)90300-8, 1992.
Berner, R. A.: Paleoclimate – The rise of plants and their effect on
weathering and atmospheric CO2, Science, 276, 544–546,
https://doi.org/10.1126/science.276.5312.544, 1997.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited,
Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013.
Billings, S. A., Hirmas, D., Sullivan, P. L., Lehmeier, C. A., Bagchi, S.,
Min, K., Brecheisen, Z., Hauser, E., Stair, R., Flournoy, R., and Richter,
D. D.: Loss of deep roots limits biogenic agents of soil development that
are only partially restored by decades of forest regeneration,
Elem. Sci. Anth., 6, 34–53 , https://doi.org/10.1525/elementa.287, 2018.
Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J. J., and Weathers, K. C.: Reviews and syntheses: on the roles trees play in building and plumbing the critical zone, Biogeosciences, 14, 5115–5142, https://doi.org/10.5194/bg-14-5115-2017, 2017a.
Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P.
L., and Stinchcomb, G.: Toward a conceptual model relating chemical reaction
fronts to water flow paths in hills, Geomorphology, 277, 100–117,
https://doi.org/10.1016/j.geomorph.2016.09.027, 2017b.
Breecker, D. O., Sharp, Z. D., and McFadden, L. D.: Atmospheric CO2
concentrations during ancient greenhouse climates were similar to those
predicted for AD 2100, P. Natl. Acad. Sci. USA, 107, 576–580, https://doi.org/10.1073/pnas.0902323106, 2010.
Brunner, I., Herzog, C., Dawes, M. A., Arend, M., and Sperisen, C.: How tree
roots respond to drought, Front. Plant Sci., 6, 547,
doi.org/10.3389/fpls.2015.00547, 2015.
Calmels, D., Gaillardet, J., and Francois, L.: Sensitivity of carbonate
weathering to soil CO2 production by biological activity along a temperate
climate transect, Chem. Geol., 390, 74–86, https://doi.org/10.1016/j.chemgeo.2014.10.010,
2014.
Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E.,
and Schulze, E. D.: Maximum rooting depth of vegetation types at the global
scale, Oecologia, 108, 583–595, https://doi.org/10.1007/bf00329030, 1996.
Carey, J. C., Tang, J. W., Templer, P. H., Kroeger, K. D., Crowther, T. W.,
Burton, A. J., Dukes, J. S., Emmett, B., Frey, S. D., Heskel, M. A., Jiang,
L., Machmuller, M. B., Mohan, J., Panetta, A. M., Reich, P. B., Reinsch, S.,
Wang, X., Allison, S. D., Bamminger, C., Bridgham, S., Collins, S. L., De
Dato, G., Eddy, W. C., Enquist, B. J., Estiarte, M., Harte, J., Henderson,
A., Johnson, B. R., Larsen, K. S., Luo, Y., Marhan, S., Melillo, J. M.,
Peuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A. B.,
Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V.,
and Tietema, A.: Temperature response of soil respiration largely unaltered
with experimental warming, P. Natl. Acad. Sci. USA, 113, 13797–13802, https://doi.org/10.1073/pnas.160536511,
2016.
Cerling, T. E.: The stable isotopic composition of modern soil carbonate and
its relationship to climate, Earth Planet. Sc. Lett., 71, 229–240,
https://doi.org/10.1016/0012-821x(84)90089-x, 1984.
Cheng, J. H., Zhang, H. J., Wang, W., Zhang, Y. Y., and Chen, Y. Z.: Changes
in Preferential Flow Path Distribution and Its Affecting Factors in
Southwest China, Soil Sci., 176, 652–660, https://doi.org/10.1097/SS.0b013e31823554ef,
2011.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Costa, A.: Permeability relationship: A reexamination of the
Kozeny equation based on a fractal pore geometry assumption,
Geophys. Res. Lett., 33, L02318, https://doi.org/10.1029/2005GL025134, 2006.
Covington, M. D., Gulley, J. D., and Gabrovsek, F.: Natural variations in
calcite dissolution rates in streams: Controls, implications, and open
questions, Geophys. Res. Lett., 42, 2836–2843, https://doi.org/10.1002/2015gl063044, 2015.
Dandurand, J. L., Gout, R., Hoefs, J., Menschel, G., Schott, J., and
Usdowski, E.: Kinetically controlled variations of major components and
carbon and oxygen isotopes in a calcite-precipitating spring, Chem. Geol., 36, 299–315, https://doi.org/10.1016/0009-2541(82)90053-5, 1982.
Deng, H., Voltolini, M., Molins, S., Steefel, C., DePaolo, D., Ajo-Franklin,
J., and Yang, L.: Alteration and Erosion of Rock Matrix Bordering a
Carbonate-Rich Shale Fracture, Environ. Sci. Tech., 51,
8861–8868, https://doi.org/10.1021/acs.est.7b02063, 2017.
Drever, J. I.: The effect of land plants on weathering rates of silicate
minerals, Geochim. Cosmochim. Ac., 58, 2325–2332,
https://doi.org/10.1016/0016-7037(94)90013-2, 1994.
Eberbach, P. L.: The eco-hydrology of partly cleared, native ecosystems in
southern Australia: a review, Plant Soil, 257, 357–369,
https://doi.org/10.1023/A:1027392703312, 2003.
Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B., and Otero-Casal,
C.: Hydrologic regulation of plant rooting depth, P. Natl. Acad. Sci. USA, 114, 10572–10577, https://doi.org/10.1073/pnas.1712381114, 2017.
Frank, D. A., Pontes, A. W., Maine, E. M., Caruana, J., Raina, R., Raina,
S., and Fridley, J. D.: Grassland root communities: species distributions
and how they are linked to aboveground abundance, Ecology, 91, 3201–3209,
https://doi.org/10.1890/09-1831.1, 2010.
Gaillardet, J., Calmels, D., Romero-Mujalli, G., Zakharova, E., and
Hartmann, J.: Global climate control on carbonate weathering intensity, Chem.
Geol., 527, 118762, https://doi.org/10.1016/j.chemgeo.2018.05.009, 2019.
Gill, R. A., Kelly, R. H., Parton, W. J., Day, K. A., Jackson, R. B.,
Morgan, J. A., Scurlock, J. M. O., Tieszen, L. L., Castle, J. V., Ojima, D.
S., and Zhang, X. S.: Using simple environmental variables to estimate
below-ground productivity in grasslands, Global Ecol. Biogeogr.,
11, 79–86, https://doi.org/10.1046/j.1466-822X.2001.00267.x, 2002.
Goddéris, Y., Williams, J. Z., Schott, J., Pollard, D., and Brantley, S.
L.: Time evolution of the mineralogical composition of Mississippi Valley
loess over the last 10 kyr: Climate and geochemical modeling, Geochim.
Cosmochim. Ac., 74, 6357–6374, https://doi.org/10.1016/j.gca.2010.08.023, 2010.
Gupta, A., Rico-Medina, A., and Cano-Delgado, A. I.: The physiology of plant
responses to drought, Science, 368, 266–269, https://doi.org/10.1126/science.aaz7614, 2020.
Harman, C. J. and Cosans, C. L.: A low-dimensional model of bedrock
weathering and lateral flow coevolution in hillslopes: 2. Controls on
weathering and permeability profiles, drainage hydraulics, and solute export
pathways, Hydrol. Process., 33, 1168–1190, https://doi.org/10.1002/hyp.13385, 2019.
Harper, C. W., Blair, J. M., Fay, P. A., Knapp, A. K., and Carlisle, J. D.:
Increased rainfall variability and reduced rainfall amount decreases soil
CO2 flux in a grassland ecosystem, Global Change Biol., 11, 322–334,
https://doi.org/10.1111/j.1365-2486.2005.00899.x, 2005.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.:
Karst water resources in a changing world: Review of hydrological modeling
approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014.
Hasenmueller, E. A., Jin, L. X., Stinchcomb, G. E., Lin, H., Brantley, S.
L., and Kaye, J. P.: Topographic controls on the depth distribution of soil
CO2 in a small temperate watershed, Appl. Geochem., 63, 58–69,
https://doi.org/10.1016/j.apgeochem.2015.07.005, 2015.
Hasenmueller, E. A., Gu, X., Weitzman, J. N., Adams, T. S., Stinchcomb, G.
E., Eissenstat, D. M., Drohan, P. J., Brantley, S. L., and Kaye, J. P.:
Weathering of rock to regolith: The activity of deep roots in bedrock
fractures, Geoderma, 300, 11–31, doi:/10.1016/j.geoderma.2017.03.020,
2017.
Hauser, E., Richter, D. D., Markewitz, D., Brecheisen, Z., and Billings, S.
A.: Persistent anthropogenic legacies structure depth dependence of
regenerating rooting systems and their functions, Biogeochemistry, 147,
259–275, https://doi.org/10.1007/s10533-020-00641-2, 2020.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and
climate feedbacks, Nature, 451, 289–292, https://doi.org/10.1038/nature06591, 2008.
Houghton, R. A.: Balancing the global carbon budget, Annu. Rev. Earth
Pl. Sc., 35, 313–347, https://doi.org/10.1146/annurev.earth.35.031306.140057,
2007.
Huang, F., Zhang, C. L., Xie, Y. C., Li, L., and Cao, J. H.: Inorganic
carbon flux and its source in the karst catchment of Maocun, Guilin, China,
Environ, Earth Sci, 74, 1079–1089, https://doi.org/10.1007/s12665-015-4478-4,
2015.
Husic, A., Fox, J., Adams, E., Ford, W., Agouridis, C., Currens, J., and Backus, J.: Nitrate Pathways, Processes, and Timing in an Agricultural Karst System: Development and Application of a Numerical Model, Water Resour. Res., 55, 2079–2103, 2019.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E.,
and Schulze, E. D.: A global analysis of root distributions for terrestrial
biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/bf00333714, 1996.
Jiang, H., Deng, Q., Zhou, G., Hui, D., Zhang, D., Liu, S., Chu, G., and Li, J.: Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China, Biogeosciences, 10, 3963–3982, https://doi.org/10.5194/bg-10-3963-2013, 2013.
Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of soil
organic carbon and its relation to climate and vegetation, Ecol.
Appl., 10, 423–436, https://doi.org/10.2307/2641104, 2000.
Kanduc, T., Mori, N., Kocman, D., Stibilj, V., and Grassa, F.:
Hydrogeochemistry of Alpine springs from North Slovenia: Insights from
stable isotopes, Chem. Geol., 300, 40–54, https://doi.org/10.1016/j.chemgeo.2012.01.012, 2012.
Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, 2016.
Kirchner, J. W.: Quantifying new water fractions and transit time distributions using ensemble hydrograph separation: theory and benchmark tests, Hydrol. Earth Syst. Sci., 23, 303–349, https://doi.org/10.5194/hess-23-303-2019, 2019.
Knapp, A. and Ojima, D.: NPP Grassland: Konza Prairie, USA, 1984-1990, R1,
ORNL DAAC, https://doi.org/10.3334/ORNLDAAC/148, 2014.
Kozeny, J.: Über kapillare Leitung des Wassers im Boden, Royal Academy of
Science, Vienna, 136, 271–306, 1927.
Lambers, H., Mougel, C., Jaillard, B., and Hinsinger, P.: Plant-microbe-soil
interactions in the rhizosphere: an evolutionary perspective, Plant Soil, 321, 83–115, https://doi.org/10.1007/s11104-009-0042-x, 2009.
Lawrence, C., Harden, J., and Maher, K.: Modeling the influence of organic
acids on soil weathering, Geochim. Cosmochim. Ac., 139, 487–507,
https://doi.org/10.1016/j.gca.2014.05.003, 2014.
Lebedeva, M. I. and Brantley, S. L.: Exploring geochemical controls on
weathering and erosion of convex hillslopes: beyond the empirical regolith
production function, Earth Surf. Proc. Land., 38, 1793–1807,
https://doi.org/10.1002/esp.3424, 2013.
Lett, M. S., Knapp, A. K., Briggs, J. M., and Blair, J. M.: Influence of
shrub encroachment on aboveground net primary productivity and carbon and
nitrogen pools in a mesic grassland, Can. J. Bot., 82, 1363–1370, https://doi.org/10.1139/b04-088, 2004.
Li, L., Bao, C., Sullivan, P. L., Brantley, S., Shi, Y. N., and Duffy, C.:
Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and
geochemical processes drive stream chemostatic behavior, Water Resour. Res.,
53, 2346–2367, https://doi.org/10.1002/2016wr018935, 2017.
Li, Y., Wang, Y. G., Houghton, R. A., and Tang, L. S.: Hidden carbon sink
beneath desert, Geophys. Res. Lett., 42, 5880–5887, https://doi.org/10.1002/2015gl064222, 2015.
Li, L.: Watershed reactive transport, in: Reviews in Mineralogy & Geochemistry: Reactive transport in natural and engineered systems, edited by: Druhan, J. and Tournassat, C., Mineralogical Society of America, https://doi.org/10.2138/rmg.2018.85.13, 2019.
Li, L., Sullivan, P. L., Benettin, P., Cirpka, O. A., Bishop, K., Brantley, S. L., Knapp, J. L. A., van Meerveld, I., Rinaldo, A., Seibert, J., Wen, H., and Kirchner, J. W.: Toward catchment hydro-biogeochemical theories, WIREs Water, https://doi.org/10.1002/wat2.1495, 2020.
Lopez-Chicano, M., Bouamama, M., Vallejos, A., and Pulido-Bosch, A.: Factors
which determine the hydrogeochemical behaviour of karstic springs. A case
study from the Betic Cordilleras, Spain, Appl. Geochem., 16, 1179–1192,
https://doi.org/10.1016/s0883-2927(01)00012-9, 2001.
Luyssaert, S., Schulze, E. D., Borner, A., Knohl, A., Hessenmoller, D., Law,
B. E., Ciais, P., and Grace, J.: Old-growth forests as global carbon sinks,
Nature, 455, 213–215, https://doi.org/10.1038/nature07276, 2008.
Ma, J., Liu, R., Tang, L.-S., Lan, Z.-D., and Li, Y.: A downward CO2 flux seems to have nowhere to go, Biogeosciences, 11, 6251–6262, https://doi.org/10.5194/bg-11-6251-2014, 2014.
Macpherson, G. L.: Hydrogeology of thin limestones: The Konza Prairie
Long-Term Ecological Research Site, Northeastern Kansas, J. Hydrol., 186,
191–228, https://doi.org/10.1016/s0022-1694(96)03029-6, 1996.
Macpherson, G. L.: AGW01 Long-term measurement of groundwater physical and chemical properties from wells on watershed N04D at Konza Prairie, Environmental Data Initiative, available at: http://lter.konza.ksu.edu/data (last access: 22 November 2020), 2019.
Macpherson, G. L. and Sullivan, P. L.: Dust, impure calcite, and
phytoliths: Modeled alternative sources of chemical weathering solutes in
shallow groundwater, Chem. Geol., 527, 118871, https://doi.org/10.1016/j.chemgeo.2018.08.007,
2019a.
Macpherson, G. L. and Sullivan, P. L.: Watershed-scale chemical weathering in a merokarst terrain, northeastern Kansas, USA, Chem. Geol., 527, 118988, https://doi.org/10.1016/j.chemgeo.2018.12.001, 2019b.
Macpherson, G. L., Roberts, J. A., Blair, J. M., Townsend, M. A., Fowle, D.
A., and Beisner, K. R.: Increasing shallow groundwater CO2 and limestone
weathering, Konza Prairie, USA, Geochim. Cosmochim. Ac., 72,
5581–5599, https://doi.org/10.1016/j.gca.2008.09.004, 2008.
Mazvimavi, D., Meijerink, A. M. J., and Stein, A.: Prediction of base flows
from basin characteristics: a case study from Zimbabwe, Hydrolog.
Sci. J., 49, 703–715,
https://doi.org/10.1623/hysj.49.4.703.54428, 2004.
Mazzacavallo, M. G. and Kulmatiski, A.: Modelling Water Uptake Provides a
New Perspective on Grass and Tree Coexistence, Plos One, 10, e0144300,
https://doi.org/10.1371/journal.pone.0144300, 2015.
McGuire, K. J. and McDonnell, J. J.: A review and evaluation of catchment
transit time modeling, J. Hydrol., 330, 543–563,
https://doi.org/10.1016/j.jhydrol.2006.04.020, 2006.
Moral, F., Cruz-Sanjulian, J. J., and Olias, M.: Geochemical evolution of
groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera,
southern Spain), J. Hydrol., 360, 281–296, https://doi.org/10.1016/j.jhydrol.2008.07.012,
2008.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R.
D., and Veith, T. L.: Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations, T. Asabe, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Mottershead, D. N., Baily, B., Collier, P., and Inkpen, R. J.:
Identification and quantification of weathering by plant roots, Build.
Environ., 38, 1235–1241, https://doi.org/10.1016/s0360-1323(03)00080-5, 2003.
Nardini, A., Casolo, V., Dal Borgo, A., Savi, T., Stenni, B., Bertoncin, P.,
Zini, L., and McDowell, N. G.: Rooting depth, water relations and
non-structural carbohydrate dynamics in three woody angiosperms
differentially affected by an extreme summer drought, Plant Cell Environ., 39, 618–627, https://doi.org/10.1111/pce.12646, 2016.
Neff, J. C. and Hooper, D. U.: Vegetation and climate controls on potential
CO2, DOC and DON production in northern latitude soils, Glob. Change Biol., 8, 872–884, https://doi.org/10.1046/j.1365-2486.2002.00517.x, 2002.
Nepstad, D. C., Decarvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre,
P. A., Negreiros, G. H., Dasilva, E. D., Stone, T. A., Trumbore, S. E., and
Vieira, S.: The role of deep roots in the hydrological and carbon cycles of
amazonian forests and pastures, Nature, 372, 666–669, https://doi.org/10.1038/372666a0,
1994.
Nippert, J. B., Wieme, R. A., Ocheltree, T. W., and Craine, J. M.: Root
characteristics of C4 grasses limit reliance on deep soil water in
tallgrass prairie, Plant Soil, 355, 385–394, https://doi.org/10.1007/s11104-011-1112-4,
2012.
Noguchi, S., Tsuboyama, Y., Sidle, R. C., and Hosoda, I.: Spatially
distributed morphological characteristics of macropores in forest soils of
Hitachi Ohta Experimental Watershed, Japan, J. For. Res.-Jpn., 2,
207–215, https://doi.org/10.1007/BF02348317, 1997.
Oades, J. M.: The role of biology in the formation, stabilization and
degradation of soil structure, Geoderma, 56, 377–400,
https://doi.org/10.1016/0016-7061(93)90123-3, 1993.
Ozkul, M., Gokgoz, A., and Horvatincic, N.: Depositional properties and
geochemistry of Holocene perched springline tufa deposits and associated
spring waters: a case study from the Denizli Province, Western Turkey, in:
Tufas and Speleothems: Unravelling the Microbial and Physical Controls,
edited by: Pedley, H. M. and Rogerson, M., Geological Society Special
Publication, London, UK, 245–262, 2010.
Palandri, J. L. and Kharaka, Y. K.: A compilation of rate parameters of
water-mineral interaction kinetics for application to geochemical modeling,
U. S. Geological Survey, Menlo Park CA, USA, 70 pp., 2004.
Patrick, L., Cable, J., Potts, D., Ignace, D., Barron-Gafford, G., Griffith,
A., Alpert, H., Van Gestel, N., Robertson, T., Huxman, T. E., Zak, J., Loik,
M. E., and Tissue, D.: Effects of an increase in summer precipitation on
leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas, Oecologia, 151, 704–718,
https://doi.org/10.1007/s00442-006-0621-y, 2007.
Pawlik, L., Phillips, J. D., and Samonil, P.: Roots, rock, and regolith:
Biomechanical and biochemical weathering by trees and its impact on
hillslopes – A critical literature review, Earth-Sci. Rev., 159, 142–159,
https://doi.org/10.1016/j.earscirev.2016.06.002, 2016.
Pennell, K. D., Boyd, S. A., and Abriola, L. M.: Surface-area of soil
organic-matter reexamined, Soil Sci. Soc. Am. J., 59,
1012–1018, https://doi.org/10.2136/sssaj1995.03615995005900040008x, 1995.
Phillips, J. D.: Weathering instability and landscape evolution,
Geomorphology, 67, 255–272, https://doi.org/10.1016/j.geomorph.2004.06.012, 2005.
Pierret, A., Maeght, J. L., Clement, C., Montoroi, J. P., Hartmann, C., and
Gonkhamdee, S.: Understanding deep roots and their functions in ecosystems:
an advocacy for more unconventional research, Ann. Bot.-London, 118,
621–635, https://doi.org/10.1093/aob/mcw130, 2016.
Pittman, E. D. and Lewan, M. D.: Organic acids in geological processes,
Springer Science Business Media, Berlin, Germany, 2012.
Plummer, L., Wigley, T., and Parkhurst, D.: The kinetics of calcite
dissolution in CO2-water systems at 5 degrees to 60 degrees C and 0.0 to
1.0 atm CO2, Am, J, Sci,, 278, 179–216, https://doi.org/10.2475/ajs.278.2.179, 1978.
Price, K.: Effects of watershed topography, soils, land use, and climate on
baseflow hydrology in humid regions: A review, Prog. Phys.
Geog., 35, 465–492, https://doi.org/10.1177/0309133311402714, 2011.
Renard, P. and Allard, D.: Connectivity metrics for subsurface flow and
transport, Adv. Water Resour., 51, 168–196, https://doi.org/10.1016/j.advwatres.2011.12.001,
2013.
Richter, D. D. and Billings, S. A.: `One physical system': Tansley's
ecosystem as Earth's critical zone, New Phytol., 206, 900–912,
https://doi.org/10.1111/nph.13338, 2015.
Romero-Mujalli, G., Hartmann, J., and Börker, J.: Temperature and CO2
dependency of global carbonate weathering fluxes – Implications for future
carbonate weathering research, Chem. Geol., 527, 118874,
https://doi.org/10.1016/j.chemgeo.2018.08.010, 2019a.
Romero-Mujalli, G., Hartmann, J., Börker, J., Gaillardet, J., and
Calmels, D.: Ecosystem controlled soil-rock pCO2 and carbonate
weathering – Constraints by temperature and soil water content, Chem. Geol.,
527, 118634, https://doi.org/10.1016/j.chemgeo.2018.01.030, 2019b.
Sadras, V. O.: Influence of size of rainfall events on water-driven
processes I. Water budget of wheat crops in south-eastern Australia, Aust.
J. Agric. Res., 54, 341–351, https://doi.org/10.1071/ar02112, 2003.
Salehikhoo, F. and Li, L.: The role of magnesite spatial distribution patterns in determining dissolution rates: When do they matter?, Geochim. Cosmochim. Ac., 155, 107–121, 2015.
Scholes, R. J. and Archer, S. R.: Tree-grass interactions in savannas,
Annu. Rev. Ecol. Syst., 28, 517–544,
https://doi.org/10.1146/annurev.ecolsys.28.1.517, 1997.
Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S. T., Benettin,
P., Dubbert, M., Hartmann, A., Hrachowitz, M., Kirchner, J. W., McDonnell,
J. J., Orlowski, N., Penna, D., Pfahl, S., Rinderer, M., Rodriguez, N.,
Schmidt, M., and Werner, C.: The Demographics of Water: A Review of Water
Ages in the Critical Zone, Rev. Geophys., 57, 800–834, https://doi.org/10.1029/2018rg000633,
2019.
Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T.,
Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, J. C. L.,
Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N.,
Yabusaki, S. B., and Yeh, G. T.: Reactive transport codes for subsurface
environmental simulation, Computat. Geosci., 19, 445–478,
https://doi.org/10.1007/s10596-014-9443-x, 2015.
Stevens, N., Lehmann, C. E. R., Murphy, B. P., and Durigan, G.: Savanna
woody encroachment is widespread across three continents, Glob. Change
Biol., 23, 235–244, https://doi.org/10.1111/gcb.13409, 2017.
Steward, D. R., Yang, X., Lauwo, S. Y., Staggenborg, S. A., Macpherson, G. L., and Welch, S. M.: From precipitation to groundwater baseflow in a native prairie ecosystem: a regional study of the Konza LTER in the Flint Hills of Kansas, USA, Hydrol. Earth Syst. Sci., 15, 3181–3194, https://doi.org/10.5194/hess-15-3181-2011, 2011.
Sullivan, P. L., Stops, M. W., Macpherson, G. L., Li, L., Hirmas, D. R., and
Dodds, W. K.: How landscape heterogeneity governs stream water
concentration-discharge behavior in carbonate terrains (Konza Prairie, USA),
Chem. Geol., 527, 118989, https://doi.org/10.1016/j.chemgeo.2018.12.002, 2019a.
Sullivan, P. L., Macpherson, G. L., Martin, J. B. and Price, R. M.: Evolution of carbonate and karst critical zones, Chem. Geol., 527, 119223, https://doi.org/10.1016/j.chemgeo.2019.06.023, 2019b.
Tsypin, M. and Macpherson, G. L.: The effect of precipitation events on
inorganic carbon in soil and shallow groundwater, Konza Prairie LTER Site,
NE Kansas, USA, Appl. Geochem., 27, 2356–2369,
https://doi.org/10.1016/j.apgeochem.2012.07.008, 2012.
Vargas, R., Collins, S. L., Thomey, M. L., Johnson, J. E., Brown, R. F.,
Natvig, D. O., and Friggens, M. T.: Precipitation variability and fire
influence the temporal dynamics of soil CO2 efflux in an arid grassland,
Glob. Change Biol., 18, 1401–1411, https://doi.org/10.1111/j.1365-2486.2011.02628.x, 2012.
Vero, S. E., Macpherson, G. L., Sullivan, P. L., Brookfield, A. E., Nippert, J. B., Kirk, M. F., Datta, S., and Kempton, P.: Developing a Conceptual Framework of Landscape and Hydrology on Tallgrass Prairie: A Critical Zone Approach, Vadose Zone Journal, 17, https://doi.org/10.2136/vzj2017.03.0069, 2018.
Vergani, C. and Graf, F.: Soil permeability, aggregate stability and root
growth: a pot experiment from a soil bioengineering perspective,
Ecohydrology, 9, 830–842, https://doi.org/10.1002/eco.1686, 2016.
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R.
F., and Friedl, M. A.: Extensive land cover change across Arctic-Boreal
Northwestern North America from disturbance and climate forcing, Glob.
Change Biol., 26, 807–822, https://doi.org/10.1111/gcb.14804, 2020.
Ward, D., Wiegand, K., and Getzin, S.: Walter's two-layer hypothesis
revisited: back to the roots!, Oecologia, 172, 617–630,
https://doi.org/10.1007/s00442-012-2538-y, 2013.
Watson, K. W. and Luxmoore, R. J.: Estimating macroporosity in a forest
watershed by use of a tension infiltrometer, Soil Sci. Soc. Am.
J., 50, 578–582, https://doi.org/10.2136/sssaj1986.03615995005000030007x, 1986.
Weiler, M. and Naef, F.: An experimental tracer study of the role of
macropores in infiltration in grassland soils, Hydrol. Process., 17,
477–493, https://doi.org/10.1002/hyp.1136, 2003.
Wen, H. and Li, L.: An upscaled rate law for magnesite dissolution in
heterogeneous porous media, Geochim. Cosmochim. Ac., 210, 289–305,
https://doi.org/10.1016/j.gca.2017.04.019, 2017.
Wen, H. and Li, L.: An upscaled rate law for mineral dissolution in
heterogeneous media: The role of time and length scales, Geochim. Cosmochim.
Ac., 235, 1–20, https://doi.org/10.1016/j.gca.2018.04.024, 2018.
Wen, H., Li, L., Crandall, D., and Hakala, A.: Where lower calcite abundance
creates more alteration: enhanced rock matrix diffusivity induced by
preferential dissolution, Energy Fuels, 30, 4197–4208,
https://doi.org/10.1021/acs.energyfuels.5b02932, 2016.
Wen, H., Perdrial, J., Abbott, B. W., Bernal, S., Dupas, R., Godsey, S. E., Harpold, A., Rizzo, D., Underwood, K., Adler, T., Sterle, G., and Li, L.: Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale, Hydrol. Earth Syst. Sci., 24, 945–966, https://doi.org/10.5194/hess-24-945-2020, 2020.
White, A. F. and Brantley, S. L.: The effect of time on the weathering of
silicate minerals: why do weathering rates differ in the laboratory and
field?, Chem. Geol., 202, 479–506, https://doi.org/10.1016/j.chemgeo.2003.03.001, 2003.
Winnick, M. J. and Maher, K.: Relationships between CO2, thermodynamic
limits on silicate weathering, and the strength of the silicate weathering
feedback, Earth Planet. Sc. Lett., 485, 111–120, https://doi.org/10.1016/j.epsl.2018.01.005,
2018.
Wolery, T. J., Jackson, K. J., Bourcier, W. L., Bruton, C. J., Viani, B. E.,
Knauss, K. G., and Delany, J. M.: Current Status of the Eq3/6 Software
Package for Geochemical Modeling, Acs. Sym. Ser., 416, 104–116, 1990.
Wu, Z. T., Dijkstra, P., Koch, G. W., Penuelas, J., and Hungate, B. A.:
Responses of terrestrial ecosystems to temperature and precipitation change:
a meta-analysis of experimental manipulation, Glob. Change Biol., 17,
927–942, https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
Zhang, Y. H., Niu, J. Z., Yu, X. X., Zhu, W. L., and Du, X. Q.: Effects of
fine root length density and root biomass on soil preferential flow in
forest ecosystems, For. Syst., 24, e012, https://doi.org/10.5424/fs/2015241-06048, 2015.
Zhi, W., Li, L., Dong, W. M., Brown, W., Kaye, J., Steefel, C. I., and
Williams, K. H.: Distinct Source Water Chemistry Shapes Contrasting
Concentration – Discharge Patterns, Water Resour. Res., 55, 4233–4251,
https://doi.org/10.1029/2018wr024257, 2019.
Zhi, W. and Li, L.: The Shallow and Deep Hypothesis: Subsurface Vertical
Chemical Contrasts Shape Nitrate Export Patterns from Different Land Uses,
Environ. Sci. Technol., 54, 11915–11928, https://doi.org/10.1021/acs.est.0c01340, 2020.
Zhi, W., Williams, K. H., Carroll, R. W. H., Brown, W., Dong, W., Kerins, D. and Li, L.: Significant stream chemistry response to temperature variations in a high-elevation mountain watershed, Communications Earth and Environment, 1, 43, https://doi.org/10.1038/s43247-020-00039-w, 2020.
Zhou, X. H., Talley, M., and Luo, Y. Q.: Biomass, Litter, and Soil
Respiration Along a Precipitation Gradient in Southern Great Plains, USA,
Ecosystems, 12, 1369–1380, https://doi.org/10.1007/s10021-009-9296-7, 2009.
Zhu, H., Zhang, L. M., and Garg, A.: Investigating plant
transpiration-induced soil suction affected by root morphology and root
depth, Comput. Geotech., 103, 26–31, https://doi.org/10.1016/j.compgeo.2018.06.019,
2018.
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant...
Altmetrics
Final-revised paper
Preprint