Articles | Volume 18, issue 22
https://doi.org/10.5194/bg-18-5903-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5903-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean
Johannes Vogel
CORRESPONDING AUTHOR
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Institute of Ecology, Technical University of Berlin, Berlin, Germany
Eva Paton
Institute of Ecology, Technical University of Berlin, Berlin, Germany
Valentin Aich
Global Water Partnership, Geneva, Switzerland
Related authors
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428, https://doi.org/10.5194/egusphere-2025-428, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Pedro Henrique Lima Alencar, Eva Nora Paton, and José Carlos de Araújo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-278, https://doi.org/10.5194/hess-2021-278, 2021
Manuscript not accepted for further review
Short summary
Short summary
Knowing how long and how fast it rained on a particular day is not often an easy (or cheap) task. It requires equipment and constant monitoring. It can be even harder if you live in an isolated area or if the day you are interested in is so much in the past that such pieces of equipment were not even in the market. In this paper, we propose a new way to assess such information and also show how it can help to model sediment transport and siltation in watersheds.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Cited articles
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung,
M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato,
E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P.,
Wiltshire, A., Zaehle, S., and Zeng, N.: Carbon cycle. The dominant role of
semi-arid ecosystems in the trend and variability of the land CO2 sink,
Science (New York, N.Y.), 348, 895–899, https://doi.org/10.1126/science.aaa1668, 2015. a
Albergel, C., Dorigo, W., Reichle, R. H., Balsamo, G., de Rosnay, P.,
Muñoz-Sabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and
Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote
Sensing, J. Hydrometeorol., 14, 1259–1277,
https://doi.org/10.1175/JHM-D-12-0161.1, 2013. a
Bachmair, S., Tanguy, M., Hannaford, J., and Stahl, K.: How well do
meteorological indicators represent agricultural and forest drought across
Europe?, Environ. Res. Lett., 13, 034042,
https://doi.org/10.1088/1748-9326/aaafda, 2018. a, b
Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P.,
and Smets, B.: GEOV1: LAI and FAPAR essential climate variables and FCOVER
global time series capitalizing over existing products, Part 1: Principles of
development and production, Remote Sens. Environ., 137, 299–309,
https://doi.org/10.1016/j.rse.2012.12.027, 2013. a
Batllori, E., de Cáceres, M., Brotons, L., Ackerly, D. D., Moritz, M. A.,
and Lloret, F.: Cumulative effects of fire and drought in Mediterranean
ecosystems, Ecosphere, 8, e01906, https://doi.org/10.1002/ecs2.1906, 2017. a
Baumbach, L., Siegmund, J. F., Mittermeier, M., and Donner, R. V.: Impacts of
temperature extremes on European vegetation during the growing season,
Biogeosciences, 14, 4891–4903, https://doi.org/10.5194/bg-14-4891-2017, 2017. a, b, c
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing, J. R. Statist. Soc. B,
57, 289–300, 1995. a
Berg, A., Lintner, B. R., Findell, K., Seneviratne, S. I., van den Hurk, B.,
Ducharne, A., Chéruy, F., Hagemann, S., Lawrence, D. M., Malyshev, S.,
Meier, A., and Gentine, P.: Interannual Coupling between Summertime Surface
Temperature and Precipitation over Land: Processes and Implications for
Climate Change, J. Clim., 28, 1308–1328,
https://doi.org/10.1175/JCLI-D-14-00324.1, 2015. a
Berg, A., Sheffield, J., and Milly, P. C. D.: Divergent surface and total soil
moisture projections under global warming, Geophys. Res. Lett., 44,
236–244, https://doi.org/10.1002/2016GL071921, 2017. a
Bréda, N., Huc, R., Granier, A., and Dreyer, E.: Temperate forest trees and
stands under severe drought: a review of ecophysiological responses,
adaptation processes and long-term consequences, Ann. Forest Sci.,
63, 625–644, https://doi.org/10.1051/forest:2006042, 2006. a
Bulut, B., Yilmaz, M. T., Afshar, M. H., Şorman, A. Ü., Yücel,
İ., Cosh, M. H., and Şimşek, O.: Evaluation of
Remotely-Sensed and Model-Based Soil Moisture Products According to Different
Soil Type, Vegetation Cover and Climate Regime Using Station-Based
Observations over Turkey, Remote Sens., 11, 1875, https://doi.org/10.3390/rs11161875,
2019. a
Chen, T., de Jeu, R., Liu, Y. Y., van der Werf, G. R., and Dolman, A. J.:
Using satellite based soil moisture to quantify the water driven variability
in NDVI: A case study over mainland Australia, Remote Sens. Environ.t,
140, 330–338, https://doi.org/10.1016/j.rse.2013.08.022, 2014. a, b
Conte, M., Sorani, N., and Piervitali, E.: Extreme climatic events over the
Mediterranean, in: Mediterranean desertification, edited by: Geeson, N.,
Brandt, C. J., and Thornes, J. B., Vol. 1, John Wiley &
Sons, Chichester West Sussex England and Hoboken NJ USA, 15–31, 2002. a
Crausbay, S. D., Ramirez, A. R., Carter, S. L., Cross, M. S., Hall, K. R.,
Bathke, D. J., Betancourt, J. L., Colt, S., Cravens, A. E., Dalton, M. S.,
Dunham, J. B., Hay, L. E., Hayes, M. J., McEvoy, J., McNutt, C. A., Moritz,
M. A., Nislow, K. H., Raheem, N., and Sanford, T.: Defining Ecological
Drought for the Twenty-First Century, Bull. Am. Meteorol.
Soc., 98, 2543–2550, https://doi.org/10.1175/BAMS-D-16-0292.1, 2017. a
Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salentinig,
A., Trnka, M., Anderson, M., Ng, W.-T., Kokalj, Ž., Bucur, A., and
Dorigo, W.: Earth Observation for agricultural drought monitoring in the
Pannonian Basin (southeastern Europe): current state and future directions,
Reg. Environ. Change, 20, 123, 1–17, https://doi.org/10.1007/s10113-020-01710-w, 2020. a
Daryanto, S., Wang, L., and Jacinthe, P.-A.: Global Synthesis of Drought
Effects on Maize and Wheat Production, PloS one, 11, e0156362,
https://doi.org/10.1371/journal.pone.0156362, 2016. a
de Boeck, H. J., Dreesen, F. E., Janssens, I. A., and Nijs, I.: Whole-system
responses of experimental plant communities to climate extremes imposed in
different seasons, New Phytol., 189, 806–817,
https://doi.org/10.1111/j.1469-8137.2010.03515.x, 2011. a, b
de Jeu, R. and Dorigo, W.: On the importance of satellite observed soil
moisture, Int. J. Appl. Earth Obs., 45, 107–109, https://doi.org/10.1016/j.jag.2015.10.007, 2016. a
de Luca, P., Messori, G., Faranda, D., Ward, P. J., and Coumou, D.: Compound
warm–dry and cold–wet events over the Mediterranean, Earth Syst. Dynam.,
11, 793–805, https://doi.org/10.5194/esd-11-793-2020, 2020. a, b
Denton, E. M., Dietrich, J. D., Smith, M. D., and Knapp, A. K.: Drought timing
differentially affects above- and belowground productivity in a mesic
grassland, Plant Ecol., 218, 317–328, https://doi.org/10.1007/s11258-016-0690-x,
2017. a
Dorigo, W. and de Jeu, R.: Satellite soil moisture for advancing our
understanding of earth system processes and climate change, Int.
J. Appl. Earth Obs., 48, 1–4,
https://doi.org/10.1016/j.jag.2016.02.007, 2016. a, b
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi,
M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D.,
Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C.,
van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.:
ESA CCI Soil Moisture for improved Earth system understanding: State-of-the
art and future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017. a, b, c, d, e, f, g, h
Dorigo, W. A., Gruber, A., de Jeu, R., Wagner, W., Stacke, T., Loew, A.,
Albergel, C., Brocca, L., Chung, D., Parinussa, R. M., and Kidd, R.:
Evaluation of the ESA CCI soil moisture product using ground-based
observations, Remote Sens. Environ., 162, 380–395,
https://doi.org/10.1016/j.rse.2014.07.023, 2015. a
ESA: Land Cover CCI Product User Guide Version 2: Tech. Rep,
available at: http://maps.elie.ucl.ac.be/CCI/viewer/index.php (last access: 5 November 2021),
2017. a
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate,
Atmos. Chem. Phys., 13, 10081–10094,
https://doi.org/10.5194/acp-13-10081-2013, 2013. a
Fraga, H., Pinto, J. G., Viola, F., and Santos, J. A.: Climate change
projections for olive yields in the Mediterranean Basin, Int.
J. Climatol., 40, 769–781, https://doi.org/10.1002/joc.6237, 2020. a
Fuster, B., Sánchez-Zapero, J., Camacho, F., García-Santos, V., Verger,
A., Lacaze, R., Weiss, M., Baret, F., and Smets, B.: Quality Assessment of
PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus Global
Land Service, Remote Sens., 12, 1017, https://doi.org/10.3390/rs12061017, 2020. a
Gao, X. and Giorgi, F.: Increased aridity in the Mediterranean region under
greenhouse gas forcing estimated from high resolution simulations with a
regional climate model, Glob. Planet. Change, 62, 195–209,
https://doi.org/10.1016/j.gloplacha.2008.02.002, 2008. a, b
Gobron, N., Belward, A., Pinty, B., and Knorr, W.: Monitoring biosphere
vegetation 1998–2009, Geophys. Res. Lett., 37, 1–6,
https://doi.org/10.1029/2010GL043870, 2010. a
Gordo, O. and Sanz, J. J.: Long-term temporal changes of plant phenology in the
Western Mediterranean, Glob. Change Biol., 15, 1930–1948,
https://doi.org/10.1111/j.1365-2486.2009.01851.x, 2009. a
Gordo, O. and Sanz, J. J.: Impact of climate change on plant phenology in
Mediterranean ecosystems, Glob. Change Biol., 16, 1082–1106,
https://doi.org/10.1111/j.1365-2486.2009.02084.x, 2010. a, b
Gouveia, C. M., Bastos, A., Trigo, R. M., and DaCamara, C. C.: Drought impacts on vegetation in the pre- and post-fire events over Iberian Peninsula, Nat. Hazards Earth Syst. Sci., 12, 3123–3137, https://doi.org/10.5194/nhess-12-3123-2012, 2012. a
Gouveia, C. M., Trigo, R. M., Beguería, S., and Vicente-Serrano, S. M.:
Drought impacts on vegetation activity in the Mediterranean region: An
assessment using remote sensing data and multi-scale drought indicators,
Glob. Planet. Change, 151, 15–27,
https://doi.org/10.1016/j.gloplacha.2016.06.011, 2017. a
Green, J. K., Konings, A. G., Alemohammad, S. H., Berry, J., Entekhabi, D.,
Kolassa, J., Lee, J.-E., and Gentine, P.: Regionally strong feedbacks between
the atmosphere and terrestrial biosphere, Nat. Geosci., 10, 410–414,
https://doi.org/10.1038/ngeo2957, 2017. a
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.:
Evolution of the ESA CCI Soil Moisture climate data records and their
underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739,
https://doi.org/10.5194/essd-11-717-2019, 2019. a, b, c
Hatfield, J. L. and Prueger, J. H.: Temperature extremes: Effect on plant
growth and development, Weather and Climate Extremes, 10, 4–10,
https://doi.org/10.1016/j.wace.2015.08.001, 2015. a, b
IPCC (Ed.): Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J., https://www.ipcc.ch/srccl/,
2019. a, b
Jentsch, A., Kreyling, J., and Beierkuhnlein, C.: A new generation of
climate-change experiments: events, not trends, Front. Ecol.
Environ., 5, 365–374, 2007. a
Karnieli, A., Ohana-Levi, N., Silver, M., Paz-Kagan, T., Panov, N., Varghese,
D., Chrysoulakis, N., and Provenzale, A.: Spatial and Seasonal Patterns in
Vegetation Growth-Limiting Factors over Europe, Remote Sens., 11, 2406,
https://doi.org/10.3390/rs11202406, 2019. a, b
Kidd, R. and Haas, E.: ESA Climate Change Initiative Plus Soil Moisture: Soil
Moisture ECV Product User Guide (PUG) Revision 3: D3.3.1 Version 4.5, Earth
Observation Data Centre for Water Resources Monitoring (EODC) GmbH,
available at: https://www.esa-soilmoisture-cci.org/node/145 (last access: 5 November 2021), 2018. a
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the
Köppen-Geiger climate classification updated, Meteorol.
Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006. a
Le Page, M. and Zribi, M.: Analysis and Predictability of Drought In
Northwest Africa Using Optical and Microwave Satellite Remote Sensing
Products, Sci. Rep., 9, 1466, https://doi.org/10.1038/s41598-018-37911-x,
2019. a, b
Lian, X., Piao, S., Li, L. Z. X., Li, Y., Huntingford, C., Ciais, P., Cescatti,
A., Janssens, I. A., Peñuelas, J., Buermann, W., Chen, A., Li, X.,
Myneni, R. B., Wang, X., Wang, Y., Yang, Y., Zeng, Z., Zhang, Y., and
McVicar, T. R.: Summer soil drying exacerbated by earlier spring greening of
northern vegetation, Sci. Adv., 6, eaax0255,
https://doi.org/10.1126/sciadv.aax0255, 2020. a
Lionello, P., Malanotte-Rizzoli P., Boscolo, R., Alpert, P., Artale, V., Li,
L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., and
Xoplaki, E.: The Mediterranean Climate: An Overview of the Main
Characteristics and Issues, in: Mediterranean climate variability, edited by:
Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R., Developments in earth
& environmental sciences, Elsevier, Amsterdam, 1–26, 2006. a, b, c
Lionello, P., Abrantes, F., Congedi, L., Dulac, F., Gacic, M., Gomis, D.,
Goodess, C., Hoff, H., Kutiel, H., Luterbacher, J., Planton, S., Reale, M.,
Schröder, K., Struglia, M. V., Toreti, A., Tsimplis, M., Ulbrich, U., and
Xoplaki, E.: Mediterranean Climate: Background Information, in: The climate
of the Mediterranean region, edited by Lionello, P., Elsevier insights, Elsevier Science, Amsterdam,
xxxv–xc, 2012. a
Liu, D., Ogaya, R., Barbeta, A., Yang, X., and Peñuelas, J.: Long-term
experimental drought combined with natural extremes accelerate vegetation
shift in a Mediterranean holm oak forest, Environ. Exp.
Bot., 151, 1–11, https://doi.org/10.1016/j.envexpbot.2018.02.008, 2018. a
Liu, X., Zhu, X., Pan, Y., Li, S., Liu, Y., and Ma, Y.: Agricultural drought
monitoring: Progress, challenges, and prospects, J. Geogr.
Sci., 26, 750–767, https://doi.org/10.1007/s11442-016-1297-9, 2016. a
McWilliam, J. R.: The National and International Importance of Drought and
Salinity Effects on Agricultural Production, Aust. J. Plant Physiol., 13,
1–13, 1986. a
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R.,
Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A.,
Chmielewski, F.-M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C.,
Donnelly, A., Filella, I., Jatzcak, K., Måge, F., Mestre, A., Nordli,
Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger,
H., Striz, M., Susnik, A., van Vliet, A. J. H., Wielgolaski, F.-E., Zach,
S., and Zust, A.: European phenological response to climate change matches
the warming pattern, Glob. Change Biol., 12, 1969–1976,
https://doi.org/10.1111/j.1365-2486.2006.01193.x, 2006. a
Mueller, B. and Seneviratne, S. I.: Hot days induced by precipitation deficits
at the global scale, P. Natl. Acad. Sci. USA, 109, 12398–12403,
https://doi.org/10.1073/pnas.1204330109, 2012. a, b
Muñoz-Sabater, J.: ERA5-Land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019. a
Myneni, R. B. and Williams, D. L.: On the relationship between FAPAR and NDVI,
Remote Sens. Environ., 49, 200–211,
https://doi.org/10.1016/0034-4257(94)90016-7, 1994. a
Niu, S., Luo, Y., Li, D., Cao, S., Xia, J., Li, J., and Smith, M. D.: Plant
growth and mortality under climatic extremes: An overview, Environ.
Exp. Bot., 98, 13–19, https://doi.org/10.1016/j.envexpbot.2013.10.004, 2014. a
Ogaya, R. and Peñuelas, J.: Tree growth, mortality, and above-ground
biomass accumulation in a holm oak forest under a five-year experimental
field drought, Plant Ecol., 189, 291–299, https://doi.org/10.1007/s11258-006-9184-6,
2007. a
Orth, R., Destouni, G., Jung, M., and Reichstein, M.: Large-scale biospheric
drought response intensifies linearly with drought duration in arid regions,
Biogeosciences, 17, 2647–2656, https://doi.org/10.5194/bg-17-2647-2020, 2020. a
Pan, S., Yang, J., Tian, H., Shi, H., Chang, J., Ciais, P., Francois, L.,
Frieler, K., Fu, B., Hickler, T., Ito, A., Nishina, K., Ostberg, S., Reyer,
C. P., Schaphoff, S., Steinkamp, J., and Zhao, F.: Climate Extreme Versus
Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and
Precipitation, J. Geophys. Res.-Biogeo., 125, e2019JG005252,
https://doi.org/10.1029/2019JG005252, 2020. a
Papagiannopoulou, C., Miralles, D. G., Dorigo, W. A., Verhoest, N. E. C.,
Depoorter, M., and Waegeman, W.: Vegetation anomalies caused by antecedent
precipitation in most of the world, Environ. Res. Lett., 12,
074016, https://doi.org/10.1088/1748-9326/aa7145, 2017. a, b
Páscoa, P., Gouveia, C. M., Russo, A., and Trigo, R. M.: The role of
drought on wheat yield interannual variability in the Iberian Peninsula from
1929 to 2012, Int. J. Biometeorol., 61, 439–451,
https://doi.org/10.1007/s00484-016-1224-x, 2017. a
Peña-Gallardo, M., Vicente-Serrano, S. M., Domínguez-Castro, F., and Beguería, S.: The impact of drought on the productivity of two rainfed crops in Spain, Nat. Hazards Earth Syst. Sci., 19, 1215–1234, https://doi.org/10.5194/nhess-19-1215-2019, 2019. a, b
Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J.,
Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero,
G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C.,
Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga,
A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M.,
Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker,
B., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez,
S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., and
Terradas, J.: Impacts of Global Change on Mediterranean Forests and Their
Services, Forests, 8, 463, https://doi.org/10.3390/f8120463, 2017. a
Perkins-Kirkpatrick, S. E. and Gibson, P. B.: Changes in regional heatwave
characteristics as a function of increasing global temperature, Sci.
Repo., 7, 12256, https://doi.org/10.1038/s41598-017-12520-2, 2017. a
Pinty, B., Lavergne, T., Widlowski, J.-L., Gobron, N., and Verstraete, M. M.:
On the need to observe vegetation canopies in the near-infrared to estimate
visible light absorption, Remote Sens. Environ., 113, 10–23,
https://doi.org/10.1016/j.rse.2008.08.017, 2009. a
Potter, C., Tan, P. N., Steinbach, M., Klooster, S., Kumar, V., Myneni, R., and
Genovese, V.: Major disturbance events in terrestrial ecosystems detected
using global satellite data sets, Glob. Change Biol., 9, 1005–1021,
2003. a
R Core Team: R: A Language and Environment for Statistical Computing,
available at: https://www.R-project.org/ (last access: 5 November 2021), 2020. a
Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N.,
Cramer, W., Granier, A., Ogée, J., Allard, V., Aubinet, M., Bernhofer,
C., Buchmann, N., Carrara, A., Grünwald, T., Heimann, M., Heinesch, B.,
Knohl, A., Kutsch, W., Loustau, D., Manca, G., Matteucci, G., Miglietta, F.,
Ourcival, J. M., Pilegaard, K., Pumpanen, J., Rambal, S., Schaphoff, S.,
Seufert, G., Soussana, J.-F., Sanz, M. J., Vesala, T., and Zhao, M.:
Reduction of ecosystem productivity and respiration during the European
summer 2003 climate anomaly: a joint flux tower, Remote Sensing and Modelling
Analysis, Glob. Change Biol., 13, 634–651,
https://doi.org/10.1111/j.1365-2486.2006.01224.x, 2007. a
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne,
S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D.,
Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz,
A., and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500,
287–295, https://doi.org/10.1038/nature12350, 2013. a, b
Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P.,
Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P., Abou Jaoudé, R.,
Klein, T., Kuster, T. M., Martins, M., Niedrist, G., Riccardi, M., Wohlfahrt,
G., de Angelis, P., de Dato, G., François, L., Menzel, A., and Pereira,
M.: A plant's perspective of extremes: terrestrial plant responses to
changing climatic variability, Glob. Change Biol., 19, 75–89,
https://doi.org/10.1111/gcb.12023, 2013. a
Ribeiro, A. F., Russo, A., Gouveia, C. M., and Pires, C. A.: Drought-related
hot summers: A joint probability analysis in the Iberian Peninsula, Weather
and Climate Extremes, 30, 100279, https://doi.org/10.1016/j.wace.2020.100279, 2020. a
Rolinski, S., Rammig, A., Walz, A., von Bloh, W., van Oijen, M., and
Thonicke, K.: A probabilistic risk assessment for the vulnerability of the
European carbon cycle to weather extremes: the ecosystem perspective,
Biogeosciences, 12, 1813–1831, https://doi.org/10.5194/bg-12-1813-2015, 2015. a, b, c, d
Rubel, F., Brugger, K., Haslinger, K., and Auer, I.: The climate of the
European Alps: Shift of very high resolution Köppen-Geiger climate zones
1800–2100, Meteorol. Z., 26, 115–125,
https://doi.org/10.1127/metz/2016/0816, 2017. a
Ruffault, J., Curt, T., Martin-StPaul, N. K., Moron, V., and Trigo, R. M.:
Extreme wildfire events are linked to global-change-type droughts in the
northern Mediterranean, Nat. Hazards Earth Syst. Sci., 18,
847–856, https://doi.org/10.5194/nhess-18-847-2018, 2018. a, b
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink,
M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Change, 8,
421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018. a, b
Sarris, D., Christodoulakis, D., and Körner, C.: Recent decline in
precipitation and tree growth in the eastern Mediterranean, Glob. Change
Biol., 13, 1187–1200, https://doi.org/10.1111/j.1365-2486.2007.01348.x, 2007. a
Sarris, D., Christodoulakis, D., and Körner, C.: Impact of recent climatic
change on growth of low elevation eastern Mediterranean forest trees,
Climatic Change, 106, 203–223, https://doi.org/10.1007/s10584-010-9901-y, 2011. a
Sarris, D., Christopoulou, A., Angelonidi, E., Koutsias, N., Fulé, P. Z.,
and Arianoutsou, M.: Increasing extremes of heat and drought associated with
recent severe wildfires in southern Greece, Reg. Environ. Change,
14, 1257–1268, https://doi.org/10.1007/s10113-013-0568-6, 2014. a
Schulzweida, U.: CDO Climate Data Operator, Zenodo, https://doi.org/10.5281/zenodo.3539275, 2019. a
Schwingshackl, C., Hirschi, M., and Seneviratne, S. I.: Quantifying
Spatiotemporal Variations of Soil Moisture Control on Surface Energy Balance
and Near-Surface Air Temperature, J. Clim., 30, 7105–7124,
https://doi.org/10.1175/JCLI-D-16-0727.1, 2017. a, b
Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C.:
Land-atmosphere coupling and climate change in Europe, Nature, 443, 205–209,
https://doi.org/10.1038/nature05095, 2006. a
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010. a, b, c, d
Sherry, R. A., Weng, E., Arnone, J. A., Johnson, D. W., Schimel, D. S.,
Verburg, P. S., Wallace, L. L., and Luo, Y.: Lagged effects of experimental
warming and doubled precipitation on annual and seasonal aboveground biomass
production in a tallgrass prairie, Glob. Change Biol., 14, 2923–2936,
https://doi.org/10.1111/j.1365-2486.2008.01703.x, 2008. a
Sippel, S., Zscheischler, J., and Reichstein, M.: Ecosystem impacts of climate
extremes crucially depend on the timing, P. Natl. Acad. Sci. USA, 113, 5768–5770,
https://doi.org/10.1073/pnas.1605667113, 2016. a
Sippel, S., Forkel, M., Rammig, A., Thonicke, K., Flach, M., Heimann, M., Otto,
F. E. L., Reichstein, M., and Mahecha, M. D.: Contrasting and interacting
changes in simulated spring and summer carbon cycle extremes in European
ecosystems, Environ. Res. Lett., 12, 075006,
https://doi.org/10.1088/1748-9326/aa7398, 2017. a
Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M., and
Frank, D.: Drought, Heat, and the Carbon Cycle: a Review, Curr. Clim.
Change Rep., 4, 266–286, https://doi.org/10.1007/s40641-018-0103-4, 2018. a
Smit, H. J., Metzger, M. J., and Ewert, F.: Spatial distribution of grassland
productivity and land use in Europe, Agr. Syst., 98, 208–219,
https://doi.org/10.1016/j.agsy.2008.07.004, 2008. a
Sousa, P. M., Barriopedro, D., Ramos, A. M., García-Herrera, R.,
Espírito-Santo, F., and Trigo, R. M.: Saharan air intrusions as a
relevant mechanism for Iberian heatwaves: The record breaking events of
August 2018 and June 2019, Weather and Climate Extremes, 26, 100224,
https://doi.org/10.1016/j.wace.2019.100224, 2019. a
Spano, D., Snyder, R. L., and Cesaraccio, C.: Mediterranean Phenology, in:
Phenology: An Integrative Environmental Science, edited by: Schwartz, M. D.,
Springer Netherlands, Dordrecht, 173–196,
https://doi.org/10.1007/978-94-007-6925-0_10, 2013. a, b
Szczypta, C., Calvet, J.-C., Maignan, F., Dorigo, W., Baret, F., and Ciais, P.:
Suitability of modelled and remotely sensed essential climate variables for
monitoring Euro-Mediterranean droughts, Geosci. Model Dev., 7,
931–946, https://doi.org/10.5194/gmd-7-931-2014, 2014. a
Teuling, A. J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M., Ciais, P.,
Buchmann, N., Ammann, C., Montagnani, L., Richardson, A. D., Wohlfahrt, G.,
and Seneviratne, S. I.: A regional perspective on trends in continental
evaporation, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2008GL036584, 2009. a
Toreti, A. and Naveau, P.: On the evaluation of climate model simulated
precipitation extremes, Environ. Res. Lett., 10, 014012,
https://doi.org/10.1088/1748-9326/10/1/014012, 2015. a
Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S. M., Volaire,
F., Boone, A., Le Page, M., Llasat, M. C., Albergel, C., Burak, S.,
Cailleret, M., Kalin, K. C., Davi, H., Dupuy, J.-L., Greve, P., Grillakis,
M., Hanich, L., Jarlan, L., Martin-StPaul, N., Martínez-Vilalta, J.,
Mouillot, F., Pulido-Velazquez, D., Quintana-Seguí, P., Renard, D.,
Turco, M., Türkeş, M., Trigo, R., Vidal, J.-P., Vilagrosa, A.,
Zribi, M., and Polcher, J.: Challenges for drought assessment in the
Mediterranean region under future climate scenarios, Earth-Sci. Rev.,
210, 103348, https://doi.org/10.1016/j.earscirev.2020.103348, 2020. a, b, c
Ulbrich, U., Lionello, P., Belušić, D., Jacobeit, J., Knippertz, P.,
Kuglitsch, F. G., Leckebusch, G. C., Luterbacher, J., Maugeri, M., Maheras,
P., Nissen, K. M., Pavan, V., Pinto, J. G., Saaroni, H., Seubert, S., Toreti,
A., Xoplaki, E., and Ziv, B.: Climate of the Mediterranean, in: The climate
of the Mediterranean region, edited by: Lionello, P., Elsevier insights,
Elsevier Science, Amsterdam, 301–346,
https://doi.org/10.1016/B978-0-12-416042-2.00005-7, 2012. a
van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law,
B. E., Meir, P., Peters, W., Phillips, O. L., Reichstein, M., Chen, T.,
Dekker, S. C., Doubková, M., Friedl, M. A., Jung, M., van den Hurk, B.,
de Jeu, R., Kruijt, B., Ohta, T., Rebel, K. T., Plummer, S., Seneviratne,
S. I., Sitch, S., Teuling, A. J., van der Werf, G. R., and Wang, G.:
Drought and ecosystem carbon cycling, Agr. Forest Meteorol.,
151, 765–773, https://doi.org/10.1016/j.agrformet.2011.01.018, 2011. a, b, c
van der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R., and Screen,
J. A.: Ensemble climate-impact modelling: extreme impacts from moderate
meteorological conditions, Environ. Res. Lett., 15, 034050,
https://doi.org/10.1088/1748-9326/ab7668, 2020. a
van Oijen, M., Beer, C., Cramer, W., Rammig, A., Reichstein, M., Rolinski,
S., and Soussana, J.-F.: A novel probabilistic risk analysis to determine the
vulnerability of ecosystems to extreme climatic events, Environ.
Res. Lett., 8, 015032, https://doi.org/10.1088/1748-9326/8/1/015032, 2013. a, b, c
van Oijen, M., Balkovi, J., Beer, C., Cameron, D. R., Ciais, P., Cramer, W.,
Kato, T., Kuhnert, M., Martin, R., Myneni, R., Rammig, A., Rolinski, S.,
Soussana, J.-F., Thonicke, K., van der Velde, M., and Xu, L.: Impact of
droughts on the carbon cycle in European vegetation: a probabilistic risk
analysis using six vegetation models, Biogeosciences, 11, 6357–6375,
https://doi.org/10.5194/bg-11-6357-2014, 2014. a, b
Verger, A., Baret, F., and Weiss, M.: Near Real-Time Vegetation Monitoring at
Global Scale, IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 7, 3473–3481, https://doi.org/10.1109/JSTARS.2014.2328632, 2014. a
Verger, A., Baret, F., and Weiss, M.: Copernicus Global Land Operations
”Vegetation and Energy” “CGLOPS-1”: Algorithm Theorethical Basis
Document: Leaf Area Index (LAI) Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR) Fraction of green Vegetation Cover (FCover)
Collection 1 km Version 2 Issue I1.41, Copernicus Global Land Operations,
available at: https://land.copernicus.eu/global/products/fapar (last access: 5 November 2021), 2019. a
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo,
R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E.,
Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo,
A.: Response of vegetation to drought time-scales across global land biomes,
P. Natl. Acad. Sci. USA, 110, 52–57, https://doi.org/10.1073/pnas.1207068110, 2013. a
Vicente-Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y., and
Tomas-Burguera, M.: Unraveling the influence of atmospheric evaporative
demand on drought and its response to climate change, WIREs Climate Change,
11, e632, https://doi.org/10.1002/wcc.632, 2020. a, b
Vogel, J.: Ecosystem_vulnerability, GitLab [code], available at: https://gitup.uni-potsdam.de/joschavogel/ecosystem_vulnerability, last access: 5 November 2021. a
Vogel, J., Paton, E., Aich, V., and Bronstert, A.: Increasing compound warm
spells and droughts in the Mediterranean Basin, Weather and Climate Extremes,
32, 100312, https://doi.org/10.1016/j.wace.2021.100312, 2021. a
von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018. a
Weißhuhn, P., Müller, F., and Wiggering, H.: Ecosystem Vulnerability
Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach,
Environ. Manag., 61, 904–915, https://doi.org/10.1007/s00267-018-1023-8,
2018. a
West, H., Quinn, N., and Horswell, M.: Remote sensing for drought monitoring
& impact assessment: Progress, past challenges and future opportunities,
Remote Sens. Environ., 232, 111291,
https://doi.org/10.1016/j.rse.2019.111291, 2019. a, b
Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai, A. R.,
Richardson, A. D., Scott, R. L., Law, B. E., Litvak, M. E., Brunsell, N. A.,
Peters, W., and van der Laan-Luijkx, I. T.: Warm spring reduced carbon
cycle impact of the 2012 US summer drought, P. Natl.
Acad. Sci. USA, 113, 5880–5885,
https://doi.org/10.1073/pnas.1519620113, 2016. a
Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., and Zhao, W.:
Time-lag effects of global vegetation responses to climate change, Glob.
Change Biol., 21, 3520–3531, https://doi.org/10.1111/gcb.12945, 2015. a
Zdruli, P.: Desertification in the Mediterranean region, in: Mediterranean
Yearbook, edited by: IEMed, Girona, 250–254,
available at: https://www.iemed.org/med-yearbook/iemed-mediterranean-yearbook-2011/
(last access: 5 November 2021),
2011. a
Zeng, F.-W., Collatz, G., Pinzon, J., and Ivanoff, A.: Evaluating and
Quantifying the Climate-Driven Interannual Variability in Global Inventory
Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index
(NDVI3g) at Global Scales, Remote Sens., 5, 3918–3950,
https://doi.org/10.3390/rs5083918, 2013. a, b, c
Zhang, H. and Oweis, T.: Water–yield relations and optimal irrigation
scheduling of wheat in the Mediterranean region, Agr. Water
Manag., 38, 195–211, https://doi.org/10.1016/S0378-3774(98)00069-9, 1999. a
Zhang, L., Jiao, W., Zhang, H., Huang, C., and Tong, Q.: Studying drought
phenomena in the Continental United States in 2011 and 2012 using various
drought indices, Remote Sens. Environ., 190, 96–106,
https://doi.org/10.1016/j.rse.2016.12.010, 2017.
a
Zhang, Y., Xiao, X., Zhou, S., Ciais, P., McCarthy, H., and Luo, Y.: Canopy and
physiological controls of GPP during drought and heat wave, Geophys.
Res. Lett., 43, 3325–3333, https://doi.org/10.1002/2016GL068501, 2016. a, b
Zscheischler, J., Mahecha, M. D., Harmeling, S., and Reichstein, M.: Detection
and attribution of large spatiotemporal extreme events in Earth observation
data, Ecol. Inform., 15, 66–73, https://doi.org/10.1016/j.ecoinf.2013.03.004,
2013. a
Zscheischler, J., Reichstein, M., von Buttlar, J., Mu, M., Randerson, J. T.,
and Mahecha, M. D.: Carbon cycle extremes during the 21st century in CMIP5
models: Future evolution and attribution to climatic drivers, Geophys.
Res. Lett., 41, 8853–8861, https://doi.org/10.1002/2014GL062409, 2014. a
Zscheischler, J., Orth, R., and Seneviratne, S. I.: A submonthly database for
detecting changes in vegetation-atmosphere coupling, Geophys. Res.
Lett., 42, 9816–9824, https://doi.org/10.1002/2015GL066563, 2015. a, b
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Short summary
This study investigates extreme ecosystem impacts evoked by temperature and soil moisture in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations. The analysis showed that ecosystem vulnerability is caused by several varying combinations of both drivers during the yearly cycle. The approach presented here helps to provide insights on the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.
This study investigates extreme ecosystem impacts evoked by temperature and soil moisture in the...
Altmetrics
Final-revised paper
Preprint