Articles | Volume 18, issue 24
https://doi.org/10.5194/bg-18-6567-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6567-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Not all biodiversity rich spots are climate refugia
GeoZentrum Nordbayern, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Loewenichstr. 28, Erlangen, Germany
Qianshuo Zhao
Institute of Marine Science, University of Auckland, Auckland 1142,
New Zealand
Mark J. Costello
Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049,
Norway
Wolfgang Kiessling
GeoZentrum Nordbayern, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Loewenichstr. 28, Erlangen, Germany
Related authors
Isaiah E. Smith, Ádám T. Kocsis, and Wolfgang Kiessling
Biogeosciences, 22, 3503–3513, https://doi.org/10.5194/bg-22-3503-2025, https://doi.org/10.5194/bg-22-3503-2025, 2025
Short summary
Short summary
We examine how change in a species' geographic range size over time influences that species' extinction risk. We analyze instantaneous range size and range size change and how these terms relate to extinction risk in marine microplankton. We find that both the instantaneous range size and the change in range size are informative predictors of extinction. Using predictive models, we also assess extinction probability in four extant groups.
Isaiah E. Smith, Ádám T. Kocsis, and Wolfgang Kiessling
Biogeosciences, 22, 3503–3513, https://doi.org/10.5194/bg-22-3503-2025, https://doi.org/10.5194/bg-22-3503-2025, 2025
Short summary
Short summary
We examine how change in a species' geographic range size over time influences that species' extinction risk. We analyze instantaneous range size and range size change and how these terms relate to extinction risk in marine microplankton. We find that both the instantaneous range size and the change in range size are informative predictors of extinction. Using predictive models, we also assess extinction probability in four extant groups.
Cited articles
Asaad, I., Lundquist, C. J., Erdmann, M. V., and Costello, M. J.: Ecological
criteria to identify areas for biodiversity conservation, Biol.
Conserv., 213, 309–316, https://doi.org/10.1016/j.biocon.2016.10.007, 2017.
Bivand, R. and Rundel, C.: rgeos: Interface to Geometry Engine – Open Source
(“GEOS”), version 0.5-5, available at: https://cran.r-project.org/package=rgeos, 2020.
Bivand, R., Keitt, T., and Rowlingson, B.: rgdal: Bindings for the
Geospatial Data Abstraction Library, version 1.5-23, available at:
https://cran.r-project.org/package=rgdal, 2017.
Brito-Morales, I., Molinos, J. G., Schoeman, D. S., Burrows, M. T.,
Poloczanska, E. S., Brown, C. J., Ferrier, S., Harwood, T. D., Klein, C. J.,
McDonald-Madden, E., Moore, P. J., Pandolfi, J. M., Watson, J. E. M.,
Wenger, A. S., and Richardson, A. J.: Climate Velocity Can Inform
Conservation in a Warming World, Trend. Ecol. Evol., 33,
441–457, https://doi.org/10.1016/j.tree.2018.03.009, 2018.
Brito-Morales, I., Schoeman, D. S., Molinos, J. G., Burrows, M. T., Klein,
C. J., Arafeh-Dalmau, N., Kaschner, K., Garilao, C., Kesner-Reyes, K., and
Richardson, A. J.: Climate velocity reveals increasing exposure of
deep-ocean biodiversity to future warming, Nat. Clim. Change, 10, 576–581, https://doi.org/10.1038/s41558-020-0773-5, 2020.
Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C., and
Fordham, D. A.: Persistent Quaternary climate refugia are hospices for
biodiversity in the Anthropocene, Nat. Clim. Change, 10, 244–248, https://doi.org/10.1038/s41558-019-0682-7, 2020.
Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E.
S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S.,
Holding, J., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M.,
Parmesan, C., Schwing, F. B., Sydeman, W. J., and Richardson, A. J.: The
Pace of Shifting Climate in Marine and Terrestrial Ecosystems, Science, 334,
652–655, https://doi.org/10.1126/science.1210288, 2011.
Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G.,
Hoffmann, A., Buckley, L. B., Moore, P. J., Brown, C. J., Bruno, J. F.,
Duarte, C. M., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Kiessling,
W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier,
S., Williams, K. J., and Poloczanska, E. S.: Geographical limits to
species-range shifts are suggested by climate velocity, Nature, 507,
492–495, https://doi.org/10.1038/nature12976, 2014.
Chaudhary, C., Richardson, A. J., Schoeman, D. S., and Costello, M. J.:
Global warming is causing a more pronounced dip in marine species richness
around the equator, P. Natl. Acad. Sci., 118, e2015094118, https://doi.org/10.1073/pnas.2015094118, 2021.
Collen, B., Whitton, F., Dyer, E. E., Baillie, J. E. M., Cumberlidge, N.,
Darwall, W. R. T., Pollock, C., Richman, N. I., Soulsby, A.-M., and
Böhm, M.: Global patterns of freshwater species diversity, threat and
endemism, Global Ecol. Biogeogr., 23, 40–51, https://doi.org/10.1111/geb.12096,
2014.
Costello, M. J.: Biodiversity: The Known, Unknown, and Rates of
Extinction, Curr. Biol., 25, R368–R371, https://doi.org/10.1016/j.cub.2015.03.051, 2015.
Costello, M. J. and Chaudhary, C.: Marine Biodiversity, Biogeography,
Deep-Sea Gradients, and Conservation, Curr. Biol., 27, R511–R527, https://doi.org/10.1016/j.cub.2017.04.060, 2017.
Costello, M. J., Tsai, P., Wong, P. S., Cheung, A. K. L., Basher, Z., and
Chaudhary, C.: Marine biogeographic realms and species endemicity, Nat.
Commun., 8, 1057, https://doi.org/10.1038/s41467-017-01121-2, 2017.
Darwall, W., Bremerich, V., Wever, A. D., Dell, A. I., Freyhof, J., Gessner,
M. O., Grossart, H.-P., Harrison, I., Irvine, K., Jähnig, S. C.,
Jeschke, J. M., Lee, J. J., Lu, C., Lewandowska, A. M., Monaghan, M. T.,
Nejstgaard, J. C., Patricio, H., Schmidt-Kloiber, A., Stuart, S. N., Thieme,
M., Tockner, K., Turak, E., and Weyl, O.: The Alliance for Freshwater Life:
A global call to unite efforts for freshwater biodiversity science and
conservation, Aquat. Conserv., 28,
1015–1022, https://doi.org/10.1002/aqc.2958, 2018.
Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J.,
Arneth, A., Balvanera, P., Brauman, K. A., Butchart, S. H. M., Chan, K. M.
A., Garibaldi, L. A., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G.
F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S.,
Purvis, A., Razzaque, J., Reyers, B., Chowdhury, R. R., Shin, Y.-J.,
Visseren-Hamakers, I., Willis, K. J., and Zayas, C. N.: Pervasive
human-driven decline of life on Earth points to the need for transformative
change, Science, 366, eaax3100, https://doi.org/10.1126/science.aax3100, 2019.
Dynesius, M. and Jansson, R.: Evolutionary consequences of changes in
species' geographical distributions driven by Milankovitch climate
oscillations, P. Natl. Acad. Sci. USA, 97,
9115–9120, https://doi.org/10.1073/pnas.97.16.9115, 2000.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J.
Climatol., 37, 4302-4315, https://doi.org/10.1002/joc.5086, 2017.
García Molinos, J., Halpern, B. S., Schoeman, D. S., Brown, C. J.,
Kiessling, W., Moore, P. J., Pandolfi, J. M., Poloczanska, E. S.,
Richardson, A. J., and Burrows, M. T.: Climate velocity and the future
global redistribution of marine biodiversity, Nat. Clim. Change, 6, 83–88, https://doi.org/10.1038/nclimate2769, 2016.
GDAL/OGR contributors: GDAL/OGR geospatial data abstraction software
library, version 2.2.3, available at: https://launchpad.net/ubuntu/bionic/amd64/libgdal-dev/2.2.3+dfsg-2, 2021.
Halpern, B. S., Frazier, M., Potapenko, J., Casey, K. S., Koenig, K., Longo,
C., Lowndes, J. S., Rockwood, R. C., Selig, E. R., Selkoe, K. A., and
Walbridge, S.: Spatial and temporal changes in cumulative human impacts on
the world's ocean, Nat. Commun., 6, 7615, https://doi.org/10.1038/ncomms8615, 2015.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci.
Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Harrison, I., Abell, R., Darwall, W., Thieme, M. L., Tickner, D., and
Timboe, I.: The freshwater biodiversity crisis, Science, 362, 1369–1369,
https://doi.org/10.1126/science.aav9242, 2018.
Harrison, S. and Noss, R.: Endemism hotspots are linked to stable climatic
refugia, Ann. Bot., 119, 207–214, https://doi.org/10.1093/aob/mcw248, 2017.
Hausfather, Z. and Peters, G. P.: Emissions – the “business as usual” story
is misleading, Nature, 577, 618–620, https://doi.org/10.1038/d41586-020-00177-3, 2020.
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, version 3.4-13, available at:
https://cran.r-project.org/package=raster, 2016.
Hoffman, M., Koenig, K., Bunting, G., Costanza, J., and Williams, K. J.: Biodiversity Hotspots (version 2016.1) (2016.1), Zenodo [data set], https://doi.org/10.5281/zenodo.3261807, 2016.
Huntley, B., Allen, J. R. M., Forrest, M., Hickler, T., Ohlemüller, R.,
Singarayer, J. S., Valdes, P. J., and Williams, J.: Projected climatic
changes lead to biome changes in areas of previously constant biome, J. Biogeogr., 48, 2418–2428, https://doi.org/10.1111/jbi.14213, 2021.
Iturbide, M., Fernández, J., Gutiérrez, J. M., Bedia, J.,
Cimadevilla, E., Díez-Sierra, J., Manzanas, R., Casanueva, A.,
Baño-Medina, J., Milovac, J., Herrera, S., Cofiño, A. S., San
Martín, D., García-Díez, M., Hauser, M., Huard, D., and
Yelekci, Ö.: Repository supporting the implementation of FAIR principles
in the IPCC-WGI Atlas (v2.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.5176260, 2021.
Jansson, R.: Global patterns in endemism explained by past climatic change,
P. Roy. Soc. Lond. B,
270, 583–590, https://doi.org/10.1098/rspb.2002.2283, 2003.
Jefferson, T. and Costello, M. J.: Hotspots of Marine Biodiversity, in: Encyclopedia of the World's Biomes, edited by: Goldstein, M. I. and DellaSala, D. A., Elsevier, 586–596, https://doi.org/10.1016/B978-0-12-409548-9.11952-9, 2020.
Kampstra, P.: Beanplot: A boxplot alternative for visual comparison of
distributions, version 1.2, J. Stat. Softw., 28, 1–9, available at: https://cran.r-project.org/package=beanplot, 2008.
Kocsis, Á. T., Zhao, Q., Costello, M. J., and Kiessling, W.:
Supplementary Information for “Not all biodiversity richspots are climate
refugia” (v0.4.1), Zenodo [code and data set], https://doi.org/10.5281/zenodo.5669968, 2021.
Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne,
J., and Grenouillet, G.: Species better track climate warming in the oceans
than on land, Nat. Ecol. Evol., 4, 1044–1059, https://doi.org/10.1038/s41559-020-1198-2, 2020.
Leroy, B., Dias, M. S., Giraud, E., Hugueny, B., Jézéquel, C.,
Leprieur, F., Oberdorff, T., and Tedesco, P. A.: Global biogeographical
regions of freshwater fish species, J. Biogeogr., 46, 2407–2419,
https://doi.org/10.1111/jbi.13674, 2019.
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., and
Ackerly, D. D.: The velocity of climate change, Nature, 462, 1052–1055, https://doi.org/10.1038/nature08649, 2009.
Manes, S., Costello, M. J., Beckett, H., Debnath, A., Devenish-Nelson, E.,
Grey, K.-A., Jenkins, R., Khan, T. M., Kiessling, W., Krause, C., Maharaj,
S. S., Midgley, G. F., Price, J., Talukdar, G., and Vale, M. M.: Endemism
increases species' climate change risk in areas of global biodiversity
importance, Biol. Conserv., 257, 109070, https://doi.org/10.1016/j.biocon.2021.109070,
2021.
Michalak, J. L., Stralberg, D., Cartwright, J. M., and Lawler, J. J.:
Combining physical and species-based approaches improves refugia
identification, Front. Ecol. Environ., 18, 254–260, https://doi.org/10.1002/fee.2207, 2020.
Mittermeier, R., Patricio, R., Hoffman, M., Pilgrim, J., Brooks, T.,
Mittermeier, C., Lamoreux, J., and da Fonseca, G.: Hotspots revisited CEMEX,
Cemex, Mexico City, 392 pp., 2004.
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., and Gascon,
C.: Global biodiversity conservation: the critical role of hotspots, in:
Biodiversity hotspots, Springer, Berlin, 3–22, 2011.
Molinos, J. G., Schoeman, D. S., Brown, C. J., and Burrows, M. T.: VoCC: An
r package for calculating the velocity of climate change and related
climatic metrics, Meth. Ecol. Evol., 10, 2195–2202,
https://doi.org/10.1111/2041-210X.13295, 2019.
Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly,
D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H.,
Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I.,
Quiñones, R. M., Stralberg, D., and Thorne, J. H.: Climate-change
refugia: biodiversity in the slow lane, Front. Ecol.
Environ., 18, 228–234, https://doi.org/10.1002/fee.2189, 2020.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and
Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 403,
853–858, https://doi.org/10.1038/35002501, 2000.
Noss, R. F., Platt, W. J., Sorrie, B. A., Weakley, A. S., Means, D. B.,
Costanza, J., and Peet, R. K.: How global biodiversity hotspots may go
unrecognized: lessons from the North American Coastal Plain, Divers.
Distrib., 21, 236–244, https://doi.org/10.1111/ddi.12278, 2015.
O'Hara, C. C., Villaseñor-Derbez, J. C., Ralph, G. M., and Halpern, B.
S.: Mapping status and conservation of global at-risk marine biodiversity,
Conserv. Lett., 12, e12651, https://doi.org/10.1111/conl.12651, 2019.
Olson, D. M. and Dinerstein, E.: The Global 200: Priority Ecoregions for
Global Conservation, Ann. MO Bot. Gard., 89, 199–224,
https://doi.org/10.2307/3298564, 2002.
Pebesma, E. J. and Bivand, R. S.: Classes and methods for spatial data in R,
R News, 5, 9–13, 2005.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., and Levin, S. A.:
Marine Taxa Track Local Climate Velocities, Science, 341, 1239–1242,
https://doi.org/10.1126/science.1239352, 2013.
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., and Sunday, J.
M.: Greater vulnerability to warming of marine versus terrestrial
ectotherms, Nature, 569, 108–111, https://doi.org/10.1038/s41586-019-1132-4, 2019.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108,
4407, https://doi.org/10.1029/2002JD002670, 2003.
R Development Core Team: R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, version 4.1.0,
available at: https://www.r-project.org/,
2021.
Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J.,
Sutherland, W. J., and Svenning, J.-C.: The Influence of Late Quaternary
Climate-Change Velocity on Species Endemism, Science, 334, 660–664,
https://doi.org/10.1126/science.1210173, 2011.
Senior, R. A., Hill, J. K., Benedick, S., and Edwards, D. P.: Tropical
forests are thermally buffered despite intensive selective logging, Glob.
Change Biol., 24, 1267–1278, https://doi.org/10.1111/gcb.13914, 2018.
Sunday, J. M., Bates, A. E., and Dulvy, N. K.: Thermal tolerance and the
global redistribution of animals, Nat. Clim. Change, 2, 686–690, https://doi.org/10.1038/nclimate1539, 2012.
Sydeman, W. J., Schoeman, D. S., Thompson, S. A., Hoover, B. A.,
García-Reyes, M., Daunt, F., Agnew, P., Anker-Nilssen, T., Barbraud,
C., Barrett, R., Becker, P. H., Bell, E., Boersma, P. D., Bouwhuis, S.,
Cannell, B., Crawford, R. J. M., Dann, P., Delord, K., Elliott, G.,
Erikstad, K. E., Flint, E., Furness, R. W., Harris, M. P., Hatch, S.,
Hilwig, K., Hinke, J. T., Jahncke, J., Mills, J. A., Reiertsen, T. K.,
Renner, H., Sherley, R. B., Surman, C., Taylor, G., Thayer, J. A., Trathan,
P. N., Velarde, E., Walker, K., Wanless, S., Warzybok, P., and Watanuki, Y.:
Hemispheric asymmetry in ocean change and the productivity of ecosystem
sentinels, Science, 372, 980–983, https://doi.org/10.1126/science.abf1772, 2021.
Tedesco, P. A., Oberdorff, T., Cornu, J. F., Beauchard, O., Brosse, S.,
Dürr, H. H., Grenouillet, G., Leprieur, F., Tisseuil, C., Zaiss, R., and
Hugueny, B.: A scenario for impacts of water availability loss due to
climate change on riverine fish extinction rates, J. Appl.
Ecol., 50, 1105–1115, https://doi.org/10.1111/1365-2664.12125, 2013.
Warren, R., Price, J., VanDerWal, J., Cornelius, S., and Sohl, H.: The
implications of the United Nations Paris Agreement on climate change for
globally significant biodiversity areas, Climatic Change, 147, 395–409, https://doi.org/10.1007/s10584-018-2158-6, 2018.
Zhao, Q.: Where Marine Protected Areas would best represent 30 % of ocean biodiversity, Mendeley Data, V1, https://doi.org/10.17632/wk6s7kh48m.1, 2020.
Zhao, Q., Stephenson, F., Lundquist, C., Kaschner, K., Jayathilake, D., and
Costello, M. J.: Where Marine Protected Areas would best represent 30 % of
ocean biodiversity, Biol. Conserv., 244, 108536, https://doi.org/10.1016/j.biocon.2020.108536, 2020.
Short summary
Biodiversity is under threat from the effects of global warming, and assessing the effects of climate change on areas of high species richness is of prime importance to conservation. Terrestrial and freshwater rich spots have been and will be less affected by climate change than other areas. However, marine rich spots of biodiversity are expected to experience more pronounced warming.
Biodiversity is under threat from the effects of global warming, and assessing the effects of...
Altmetrics
Final-revised paper
Preprint