Articles | Volume 19, issue 4
https://doi.org/10.5194/bg-19-1211-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1211-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Center for Accelerator Mass Spectrometry, Lawrence Livermore National
Laboratory, Livermore, CA 94550, USA
Heather M. Throckmorton
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA
currently at: Agilent Technologies, Lexington, MA 02421, USA
Jeffrey M. Heikoop
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA
Brent D. Newman
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA
Alexandra L. Hedgpeth
Center for Accelerator Mass Spectrometry, Lawrence Livermore National
Laboratory, Livermore, CA 94550, USA
Department of Geography, University of California, Los Angeles, CA 90095,
USA
Marisa N. Repasch
Center for Accelerator Mass Spectrometry, Lawrence Livermore National
Laboratory, Livermore, CA 94550, USA
Thomas P. Guilderson
Center for Accelerator Mass Spectrometry, Lawrence Livermore National
Laboratory, Livermore, CA 94550, USA
currently at: University of California, Santa Cruz, CA 95064, USA
Cathy J. Wilson
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA
retired
Related authors
Alexandra Hedgpeth, Alison M. Hoyt, Kyle C. Cavanaugh, Karis J. McFarlane, and Daniela F. Cusack
Biogeosciences, 22, 2667–2690, https://doi.org/10.5194/bg-22-2667-2025, https://doi.org/10.5194/bg-22-2667-2025, 2025
Short summary
Short summary
Tropical peatlands store ancient carbon and have been identified as both being vulnerable to future climate change and taking a long time to recover after a disturbance. It is unknown if these gases are produced from decomposition of 1000-year-old peat. Radiocarbon dating shows emitted gases are young, indicating that surface carbon (rather than old peat) drives emissions. Preserving these ecosystems can trap old carbon, mitigating climate change.
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Alexandra Hedgpeth, Alison M. Hoyt, Kyle C. Cavanaugh, Karis J. McFarlane, and Daniela F. Cusack
Biogeosciences, 22, 2667–2690, https://doi.org/10.5194/bg-22-2667-2025, https://doi.org/10.5194/bg-22-2667-2025, 2025
Short summary
Short summary
Tropical peatlands store ancient carbon and have been identified as both being vulnerable to future climate change and taking a long time to recover after a disturbance. It is unknown if these gases are produced from decomposition of 1000-year-old peat. Radiocarbon dating shows emitted gases are young, indicating that surface carbon (rather than old peat) drives emissions. Preserving these ecosystems can trap old carbon, mitigating climate change.
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Rachael E. McCaully, Carli A. Arendt, Brent D. Newman, Verity G. Salmon, Jeffrey M. Heikoop, Cathy J. Wilson, Sanna Sevanto, Nathan A. Wales, George B. Perkins, Oana C. Marina, and Stan D. Wullschleger
The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022, https://doi.org/10.5194/tc-16-1889-2022, 2022
Short summary
Short summary
Degrading permafrost and shrub expansion are critically important to tundra biogeochemistry. We observed significant variability in soil pore water NO3-N in an alder-dominated permafrost hillslope in Alaska. Proximity to alder shrubs and the presence or absence of topographic gradients and precipitation events strongly influence NO3-N availability and mobility. The highly dynamic nature of labile N on small spatiotemporal scales has implications for nutrient responses to a warming Arctic.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Cited articles
Amon, R. M. W. and Meon, B.: The biogeochemistry of dissolved organic
matter and nutrients in two large Arctic estuaries and potential
implications for our understanding of the Arctic Ocean system, Mar. Chem., 92, 311–330, https://doi.org/10.1016/j.marchem.2004.06.034, 2004.
Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A.,
Guggenberger, G., Bauch, D., Stedmon, C., Raymond, P. A., Holmes, R. M.,
McClelland, J. W., Peterson, B. J., Walker, S. A., and Zhulidov, A. V.:
Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim. Ac., 94, 217–237, https://doi.org/10.1016/j.gca.2012.07.015, 2012.
Aurela, M., Laurila, T., and Tuovinen, J.-P.: Annual CO2 balance of a
subarctic fen in northern Europe: Importance of the wintertime efflux, J.
Geophys. Res., 107, 4607, https://doi.org/10.1029/2002jd002055, 2002.
Balcarczyk, K. L., Jones, J. B., Jaffé, R., and Maie, N.: Stream
dissolved organic matter bioavailability and composition in watersheds
underlain with discontinuous permafrost, Biogeochemistry, 94, 255–270,
https://doi.org/10.1007/s10533-009-9324-x, 2009.
Benner, R., Benitez-Nelson, B., Kaiser, K., and Amon, R. M. W.: Export of
young terrigenous dissolved organic carbon from rivers to the Arctic Ocean,
Geophys. Res. Lett., 31, L05305, https://doi.org/10.1029/2003gl019251, 2004.
Billett, M. F., Palmer, S. M., Hope, D., Deacon, C., Storeton-West, R.,
Hargreaves, K. J., Flechard, C., and Fowler, D.: Linking
land-atmosphere-stream carbon fluxes in a lowland peatland system, Global Biogeochem. Cy., 18, GB1024, https://doi.org/10.1029/2003gb002058, 2004.
Bockheim, J. G. and Hinkel, K. M.: Characteristics and Significance of the
Transition Zone in Drained Thaw-Lake Basins of the Arctic Coastal Plain,
Alaska, Arctic, 58, 406–417, 2005.
Bockheim, J. G., Hinkel, K. M., Eisner, W. R., and Dai, X. Y.: Carbon Pools
and Accumulation Rates in an Age-Series of Soils in Drained Thaw-Lake
Basins, Arctic Alaska, Soil Sci. Soc. Am. J., 68, 697–704,
https://doi.org/10.2136/sssaj2004.6970, 2004.
Chanton, J. P.: The effect of gas transport on the isotope signature of
methane in wetlands, Org. Geochem., 36, 753–768,
https://doi.org/10.1016/j.orggeochem.2004.10.007, 2005.
Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E.,
Siegel, D. I., Tremblay, L. B., and Cooper, W. T.: Radiocarbon evidence for
the importance of surface vegetation on fermentation and methanogenesis in
contrasting types of boreal peatlands, Global Biogeochem. Cy., 22,
GB4022, https://doi.org/10.1029/2008gb003274, 2008.
Charman, D., Aravena, R., Bryant, C. L., and Harkness, D. D.: Carbon
isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor,
southwest England, Geology, 27, 539–542, 1999.
Christensen, T. R., Johansson, T., Olsrud, M., Ström, L., Lindroth, A.,
Mastepanov, M., Malmer, N., Friborg, T., Crill, P., and Callaghan, T. V.: A
catchment-scale carbon and greenhouse gas budget of a subarctic landscape,
Philos. T. R. Soc. A, 365, 1643–1656, https://doi.org/10.1098/rsta.2007.2035, 2007.
Cleveland, C. C. and Liptzin, D.: stoichiometry in soil: is there a
“Redfield ratio” for the microbial biomass?, Biogeochemistry, 85, 235–252,
https://doi.org/10.1007/s10533-007-9132-0, 2007.
Coch, C., Juhls, B., Lamoureux, S. F., Lafrenière, M. J., Fritz, M., Heim, B., and Lantuit, H.: Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments, Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, 2019.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowwell, W. H., Tranvik, L.
J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A.,
Middleburg, J. J., and Melack, J.: Plumbing the global carbon cycle:
integrating inland waters into the terrestrial carbon budget, Ecosystems,
10, 171–184, https://doi.org/10.1007/s10021-006-9013-8, 2007.
Corbett, J. E., Tfaily, M., Burdige, D., Cooper, W., Glaser, P., and
Chanton, J.: Partitioning pathways of CO2 production in peatlands with
stable carbon isotopes, Biogeochemistry, 114, 327–340,
https://doi.org/10.1007/s10533-012-9813-1, 2013.
Dean, J. F., van der Velde, Y., Garnett, M. H., Dinsmore, K. J., Baxter, R.,
Lessels, J. S., Smith, P., Street, L. E., Subke, J. A., Tetzlaff, D.,
Washbourne, I., Wookey, P. A., and Billett, M. F.: Abundant pre-industrial
carbon detected in Canadian Arctic headwaters: implications for the
permafrost carbon feedback, Environ. Res. Lett., 13, 034024,
https://doi.org/10.1088/1748-9326/aaa1fe, 2018.
Dean, J. F., Meisel, O. H., Martyn Rosco, M., Marchesini, L. B., Garnett, M.
H., Lenderink, H., van Logtestijn, R., Borges, A. V., Bouillon, S., Lambert,
T., Röckmann, T., Maximov, T., Petrov, R., Karsanaev, S., Aerts, R., van
Huissteden, J., Vonk, J. E., and Dolman, A. J.: East Siberian Arctic inland
waters emit mostly contemporary carbon, Nat. Commun., 11, 1627,
https://doi.org/10.1038/s41467-020-15511-6, 2020.
De Rosario-Martinez, H.: phia: Post-Hoc Interaction Analysis, CRAN repository [code], https://cran.r-project.org/web/packages/phia/index.html (last access: 26 April2 2019), 2015.
Drake, T. W., Wickland, K. P., Spencer, R. G., McKnight, D. M., and Striegl,
R. G.: Ancient low-molecular-weight organic acids in permafrost fuel rapid
carbon dioxide production upon thaw, P. Natl. Acad. Sci. USA, 112,
13946–13951, https://doi.org/10.1073/pnas.1511705112, 2015.
Drake, T. W., Raymond, P. A., and Spencer, R. G. M.: Terrestrial carbon
inputs to inland waters: A current synthesis of estimates and uncertainty,
Limnol. Oceanogr. Lett., 3, 132–142, https://doi.org/10.1002/lol2.10055, 2018a.
Drake, T. W., Guillemette, F., Hemingway, J. D., Chanton, J. P., Podgorski,
D. C., Zimov, N. S., and Spencer, R. G. M.: The Ephemeral Signature of
Permafrost Carbon in an Arctic Fluvial Network, J. Geophys. Res.-Biogeo., 123, 1475–1485, https://doi.org/10.1029/2017jg004311, 2018b.
Estop-Aragonés, C., Olefeldt, D., Abbott, B. W., Chanton, J. P.,
Czimczik, C. I., Dean, J. F., Egan, J. E., Gandois, L., Garnett, M. H.,
Hartley, I. P., Hoyt, A., Lupascu, M., Natali, S. M., O'Donnell, J. A.,
Raymond, P. A., Tanentzap, A. J., Tank, S. E., Schuur, E. A. G., Turetsky,
M., and Anthony, K. W.: Assessing the Potential for Mobilization of Old Soil
Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the
Northern Permafrost Region, Global Biogeochem. Cy., 34, e2020GB006672,
https://doi.org/10.1029/2020GB006672, 2020.
Fan, Z., Neff, J. C., and Wickland, K. P.: Modeling the production,
decomposition, and tranport of dissolved organic carbon in boreal soils,
Soil Sci., 175, 223–232, 2010.
Finlay, J., Neff, J., Zimov, S., Davydova, A., and Davydov, S.: Snowmelt
dominance of dissolved organic carbon in high-latitude watersheds:
Implications for characterization and flux of river DOC, Geophys. Res. Lett., 33, L10401, https://doi.org/10.1029/2006gl025754, 2006.
Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., and Fenner, N.:
Export of organic carbon from peat soils, Nature, 412, 785–785,
https://doi.org/10.1038/35090628, 2001.
Frey, K. E.: Amplified carbon release from vast West Siberian peatlands by
2100, Geophys. Res. Lett., 32, L09401, https://doi.org/10.1029/2004gl022025, 2005.
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on
arctic river biogeochemistry, Hydrol, Process., 23, 169–182,
https://doi.org/10.1002/hyp.7196, 2009.
Gao, L., Zhou, Z., Reyes, A. V., and Guo, L.: Yields and Characterization of
Dissolved Organic Matter From Different Aged Soils in Northern Alaska,
J. Geophys. Res.-Biogeo., 123, 2035–2052,
https://doi.org/10.1029/2018jg004408, 2018.
Guo, L. and Macdonald, R. W.: Source and transport of terrigenous organic
matter in the upper Yukon River: Evidence from isotope (δ13C,
Δ14C, and δ15N) composition of dissolved, colloidal, and
particulate phases, Global Biogeochem. Cy., 20, GB2011, https://doi.org/10.1029/2005gb002593,
2006.
Guo, L., Ping, C.-L., and Macdonald, R. W.: Mobilization pathways of organic
carbon from permafrost to arctic rivers in a changing climate, Geophys. Res. Lett., 34, L13603, https://doi.org/10.1029/2007gl030689, 2007.
Harrell Jr, F. E.: Hmisc: Harrell Miscellaneous, CRAN repository [code], https://cran.r-project.org/web/packages/Hmisc/, last access: 8 November 2019.
Hayes, D. J., Kicklighter, D. W., McGuire, A. D., Chen, M., Zhuang, Q.,
Yuan, F., Melillo, J. M., and Wullschleger, S. D.: The impacts of recent
permafrost thaw on land–atmosphere greenhouse gas exchange, Environ. Res. Lett., 9, 045005, https://doi.org/10.1088/1748-9326/9/4/045005, 2014.
Hicks Pries, C. E., Schuur, E. A. G., and Crummer, K. G.: Thawing permafrost
increases old soil and autotrophic respiration in tundra: Partitioning
ecosystem respiration using δ13C and Δ14C, Glob. Change Biol., 19, 649–661, https://doi.org/10.1111/gcb.12058, 2013.
Hines, M. E., Duddleston, K. N., Rooney-Varga, J. N., Fields, D., and
Chanton, J. P.: Uncoupling of acetate degradation from methane formation in
Alaskan wetlands: Connections to vegetation distribution, Global Biogeochem. Cy., 22, GB2017, https://doi.org/10.1029/2006gb002903, 2008.
Hinkel, K. M., Eisner, W. R., Bockheim, J. G., Nelson, F. E., Peterson, K.
M., and Dai, X.: Spatial Extent, Age, and Carbon Stocks in Drained Thaw Lake
Basins on the Barrow Peninsula, Alaska, Arct. Antarct. Alp. Res., 35, 291–300, https://doi.org/10.1657/1523-0430(2003)035[0291:Seaacs]2.0.Co;2,
2003.
Holmes, R. M., McClelland, J. W., Raymond, P. A., Frazer, B. B., Peterson,
B. J., and Stieglitz, M.: Lability of DOC transported by Alaskan rivers to
the Arctic Ocean, Geophys. Res. Lett., 35, L03402,
https://doi.org/10.1029/2007gl032837, 2008.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large
Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coast., 35,
369–382, https://doi.org/10.1007/s12237-011-9386-6, 2011.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Johnston, S. E., Carey, J. C., Kellerman, A., Podgorski, D. C., Gewirtzman,
J., and Spencer, R. G. M.: Controls on Riverine Dissolved Organic Matter
Composition Across an Arctic-Boreal Latitudinal Gradient, J. Geophys.
Res.-Biogeo., 126, e2020JG005988, https://doi.org/10.1029/2020JG005988, 2021.
Kawahigashi, M., Kaiser, K., Kalbitz, K., Rodionov, A., and Guggenberger,
G.: Dissolved organic matter in small streams along a gradient from
discontinuous to continuous permafrost, Glob. Change Biol., 10,
1576–1586, https://doi.org/10.1111/j.1365-2486.2004.00827.x, 2004.
Kellerman, A. M., Arellano, A., Podgorski, D. C., Martin, E. E., Martin, J.
B., Deuerling, K. M., Bianchi, T. S., and Spencer, R. G. M.: Fundamental
drivers of dissolved organic matter composition across an Arctic effective
precipitation gradient, Limnol. Oceanogr., 65, 1217–1234, https://doi.org/10.1002/lno.11385, 2019.
Kling, G. W., Kipphut, G. W., and Miller., M. C.: Arctic Lakes and streams
as gas conduits to the atmosphere: implications for tundra carbon budgets,
Science, 251, 298–301, 1991.
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate
feedbacks accelerate global warming, P. Natl. Acad. Sci. USA, 108, 14769–14774, https://doi.org/10.1073/pnas.1103910108, 2011.
Lapierre, J.-F., Guillemette, F., Berggren, M., and del Giorgio, P. A.:
Increases in terrestrially derived carbon stimulate organic carbon
processing and CO2 emissions in boreal aquatic ecosystems, Nat. Commun., 4, 2972, https://doi.org/10.1038/ncomms3972, 2013.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil
organic matter into particulate and mineral-associated forms to address
global change in the 21st century, Glob. Change Biol., 26, 261–273,
https://doi.org/10.1111/gcb.14859, 2020.
Liu, F., Kou, D., Abbott, B. W., Mao, C., Chen, Y., Chen, L., and Yang, Y.:
Disentangling the Effects of Climate, Vegetation, Soil and Related Substrate
Properties on the Biodegradability of Permafrost-Derived Dissolved Organic
Carbon, J. Geophys. Res.-Biogeo., 124, 3377–3389,
https://doi.org/10.1029/2018JG004944, 2019.
Mann, P. J., Davydova, A., Zimov, N., Spencer, R. G. M., Davydov, S.,
Bulygina, E., Zimov, S., and Holmes, R. M.: Controls on the composition and
lability of dissolved organic matter in Siberia's Kolyma River basin,
J. Geophys. Res.-Biogeo., 117, G01028,
https://doi.org/10.1029/2011jg001798, 2012.
Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A.,
Vonk, J. E., Holmes, R. M., and Spencer, R. G.: Utilization of ancient
permafrost carbon in headwaters of Arctic fluvial networks, Nat. Commun., 6,
7856, https://doi.org/10.1038/ncomms8856, 2015.
Mann, P. J., Spencer, R. G. M., Hernes, P. J., Six, J., Aiken, G. R., Tank,
S. E., McClelland, J. W., Butler, K. D., Dyda, R. Y., and Holmes, R. M.:
Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical
Measurements, Front. Earth Sci., 4, 25, https://doi.org/10.3389/feart.2016.00025, 2016.
McClelland, J. W., Holmes, R. M., Peterson, B. J., Raymond, P. A., Striegl,
R. G., Zhulidov, A. V., Zimov, S. A., Zimov, N., Tank, S. E., Spencer, R. G.
M., Staples, R., Gurtovaya, T. Y., and Griffin, C. G.: Particulate organic
carbon and nitrogen export from major Arctic rivers, Global Biogeochem. Cy., 30, 629–643, https://doi.org/10.1002/2015gb005351, 2016.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change,
Ecol. Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Molot, L. A. and Dillon, P. J.: Photolytic regulation of dissolved organic
carbon in northern lakes, Global Biogeochem. Cy., 11, 357–365,
https://doi.org/10.1029/97gb01198, 1997.
Moore, T. R., Trofymow, J. A., Prescott, C. E., Titus, B. D., and Group, C.
W.: Nature and nurture in the dynamics of C, N and P during litter
decomposition in Canadian forests, Plant Soil, 339, 163–175,
https://doi.org/10.1007/s11104-010-0563-3, 2011.
Neff, J. C. and Hooper, D. U.: Vegetation and climate controls on potential
CO2, DOC and DON production in northern latitude soils, Global Change Biol., 8, 872–884, 2002.
Neff, J. C., Finlay, J. C., Zimov, S. A., Davydov, S. P., Carrasco, J. J.,
Schuur, E. A. G., and Davydova, A. I.: Seasonal changes in the age and
structure of dissolved organic carbon in Siberian rivers and streams,
Geophys. Res. Lett., 33, L23401, https://doi.org/10.1029/2006gl028222, 2006.
Newman, B. D., Throckmorton, H. M., Graham, D. E., Gu, B., Hubbard, S. S.,
Liang, L., Wu, Y., Heikoop, J. M., Herndon, E. M., Phelps, T. J., Wilson, C.
J., and Wullschleger, S. D.: Microtopographic and depth controls on active
layer chemistry in Arctic polygonal ground, Geophys. Res. Lett., 42, 1808–1817, https://doi.org/10.1002/2014gl062804, 2015.
O'Donnell, J. A., Aiken, G. R., Walvoord, M. A., and Butler, K. D.:
Dissolved organic matter composition of winter flow in the Yukon River
basin: Implications of permafrost thaw and increased groundwater discharge,
Global Biogeochem. Cy., 26, GB0E06, https://doi.org/10.1029/2012gb004341, 2012.
Olefeldt, D. and Roulet, N. T.: Effects of permafrost and hydrology on the
composition and transport of dissolved organic carbon in a subarctic
peatland complex, J. Geophys. Res.-Biogeo., 117,
G01005, https://doi.org/10.1029/2011jg001819, 2012.
Pastor, J., Solin, J., Bridgham, S. D., Updegraff, K., Harth, C.,
Weishampel, P., and Dewey, B.: Global warming and the export of dissolved
organic carbon from boreal peatlands, Oikos, 100, 380–386,
10.1034/j.1600-0706.2003.11774.x, 2003.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team: nlme:
Linear and Nonlinear Mixed Effects Models, CRAN repository [code], https://cran.r-project.org/web/packages/nlme/index.html, last access: 5 July 2019.
Pokrovsky, O. S., Shirokova, L. S., Kirpotin, S. N., Audry, S., Viers, J., and Dupré, B.: Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia, Biogeosciences, 8, 565–583, https://doi.org/10.5194/bg-8-565-2011, 2011.
Prokushkin, A. S., Pokrovsky, O. S., Shirokova, L. S., Korets, M. A., Viers,
J., Prokushkin, S. G., Amon, R. M. W., Guggenberger, G., and McDowell, W.
H.: Sources and the flux pattern of dissolved carbon in rivers of the
Yenisey basin draining the Central Siberian Plateau, Environ. Res. Lett., 6, 045212, https://doi.org/10.1088/1748-9326/6/4/045212, 2011.
Raymond, P. A., Saiers, J. E., and Sobczak, W. V.: Hydrological and
biogeochemical controls on watershed dissolved organic matter transport:
pulse-shunt concept, Ecology, 97, 5–16, https://doi.org/10.1890/14-1684.1, 2016.
Raymond, P. A., McClelland, J. W., Holmes, R. M., Zhulidov, A. V., Mull, K.,
Peterson, B. J., Striegl, R. G., Aiken, G. R., and Gurtovaya, T. Y.: Flux
and age of dissolved organic carbon exported to the Arctic Ocean: A carbon
isotopic study of the five largest arctic rivers, Global Biogeochem. Cy., 21, GB4011, https://doi.org/10.1029/2007gb002934, 2007.
R Core Team: R: A language and environment for statistical computing., R
Foundation for Statistical Computing [code], https://www.R-project.org, last access: 5 November 2019.
Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys,
E. R., and Bubier, J.: Contemporary carbon balance and late Holocene carbon
accumulation in a northern peatland, Glob. Change Biol., 13, 397–411,
https://doi.org/10.1111/j.1365-2486.2006.01292.x, 2007.
Schadel, C., Bader, M. K. F., Schuur, E. A. G., Biasi, C., Bracho, R.,
Capek, P., De Baets, S., Diakova, K., Ernakovich, J., Estop-Aragones, C.,
Graham, D. E., Hartley, I. P., Iversen, C. M., Kane, E. S., Knoblauch, C.,
Lupascu, M., Martikainen, P. J., Natali, S. M., Norby, R. J., O'Donnell, J.
A., Chowdhury, T. R., Santruckova, H., Shaver, G., Sloan, V. L., Treat, C.
C., Turetsky, M. R., Waldrop, M. P., and Wickland, K. P.: Potential carbon
emissions dominated by carbon dioxide from thawed permafrost soils, Nat. Clim. Change, 6, 950–953, https://doi.org/10.1038/Nclimate3054, 2016.
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., and Witt,
R.: The impact of the permafrost carbon feedback on global climate,
Environ. Res. Lett., 9, 085003, https://doi.org/10.1088/1748-9326/9/8/085003,
2014.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
permafrost carbon to climate change: Implications for the global carbon
cycle, Bioscience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P.,
Canadell, J. G., Chanton, J. P., Chapin III, F. S., Christensen, T. R.,
Ciais, P., Crosby, B. T., Czimczik, C. I., Grosse, G., Harden, J., Hayes, D.
J., Hugelius, G., Jastrow, J. D., Jones, J. B., Kleinen, T., Koven, C. D.,
Krinner, G., Kuhry, P., Lawrence, D. M., McGuire, A. D., Natali, S. M.,
O'Donnell, J. A., Ping, C. L., Riley, W. J., Rinke, A., Romanovsky, V. E.,
Sannel, A. B. K., Schädel, C., Schaefer, K., Sky, J., Subin, Z. M.,
Tarnocai, C., Turetsky, M. R., Waldrop, M. P., Walter Anthony, K. M.,
Wickland, K. P., Wilson, C. J., and Zimov, S. A.: Expert assessment of
vulnerability of permafrost carbon to climate change, Climatic Change, 119,
359–374, https://doi.org/10.1007/s10584-013-0730-7, 2013.
Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shirokova, L. S., Pokrovsky, O. S., Kirpotin, S. N., Desmukh, C., Pokrovsky,
B. G., Audry, S., and Viers, J.: Biogeochemistry of organic carbon, CO2,
CH4, and trace elements in thermokarst water bodies in discontinuous
permafrost zones of Western Siberia, Biogeochemistry, 113, 573–593,
https://doi.org/10.1007/s10533-012-9790-4, 2013.
Shogren, A. J., Zarnetske, J. P., Abbott, B. W., Iannucci, F., Frei, R. J.,
Griffin, N. A., and Bowden, W. B.: Revealing biogeochemical signatures of
Arctic landscapes with river chemistry, Scientific Reports, 9, 12894,
https://doi.org/10.1038/s41598-019-49296-6, 2019.
Spencer, R. G. M., Aiken, G. R., Wickland, K. P., Striegl, R. G., and
Hernes, P. J.: Seasonal and spatial variability in dissolved organic matter
quantity and composition from the Yukon River basin, Alaska, Global Biogeochem. Cy., 22, GB4002, https://doi.org/10.1029/2008gb003231, 2008.
Spencer, R. G. M., Butler, K. D., and Aiken, G. R.: Dissolved organic carbon
and chromophoric dissolved organic matter properties of rivers in the USA,
J. Geophys. Res.-Biogeo., 117, G03001, https://doi.org/10.1029/2011JG001928, 2012.
Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P., and
Raymond, P. A.: Carbon export and cycling by the Yukon, Tanana, and
Porcupine rivers, Alaska, 2001–2005, Water Resour. Res., 43, W02411, https://doi.org/10.1029/2006wr005201, 2007.
Stuiver, M. and Polach, H. A.: Reporting of C-14 data, Radiocarbon, 19, 355–363, 1977.
Tanentzap, A. J., Burd, K., Kuhn, M., Estop-Aragonés, C., Tank, S. E.,
and Olefeldt, D.: Aged soils contribute little to contemporary carbon
cycling downstream of thawing permafrost peatlands, Glob. Change Biol., 27, 5368–5382, https://doi.org/10.1111/gcb.15756, 2021.
Tank, S. E., Fellman, J. B., Hood, E., and Kritzberg, E. S.: Beyond
respiration: Controls on lateral carbon fluxes across the
terrestrial-aquatic interface, Limnol. Oceanogr. Lett., 3, 76–88,
https://doi.org/10.1002/lol2.10065, 2018.
Textor, S. R., Wickland, K. P., Podgorski, D. C., Johnston, S. E., and
Spencer, R. G. M.: Dissolved Organic Carbon Turnover in
Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and
the Priming Effect, Front. Earth Sci., 7, 275, https://doi.org/10.3389/feart.2019.00275,
2019.
Throckmorton, H. M., Heikoop, J. M., McFarlane, K., Newman, B. D., and
Wilson, C. J.: Inorganic Carbon Isotopes and Chemical Characterization of
Watershed Drainages, Barrow, Alaska, 2013, U.S. Department of Energy, Oak
Ridge national Laboratory [data set], https://doi.org/10.5440/1221564, 2015a.
Throckmorton, H. M., Heikoop, J. M., Newman, B. D., Altmann, G. L., Conrad,
M. S., Muss, J. D., Perkins, G. B., Smith, L. J., Torn, M. S., Wullschleger,
S. D., and Wilson, C. J.: Pathways and transformations of dissolved methane
and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from
analysis of stable isotopes, Global Biogeochem. Cy., 29, 1893–1910,
https://doi.org/10.1002/2014gb005044, 2015b.
Townsend-Small, A., McClelland, J. W., Max Holmes, R., and Peterson, B. J.:
Seasonal and hydrologic drivers of dissolved organic matter and nutrients in
the upper Kuparuk River, Alaskan Arctic, Biogeochemistry, 103, 109–124,
https://doi.org/10.1007/s10533-010-9451-4, 2011.
Vaughn, L. J. S. and Torn, M. S.: Radiocarbon measurements of ecosystem respiration and soil pore-space CO2 in Utqiaġvik (Barrow), Alaska, Earth Syst. Sci. Data, 10, 1943–1957, https://doi.org/10.5194/essd-10-1943-2018, 2018.
Vaughn, L. J. S., Conrad, M. E., Bill, M., and Torn, M. S.: Isotopic insights
into methane production, oxidation, and emissions in Arctic polygon tundra,
Glob. Change Biol., 22, 3487–3502, https://doi.org/10.1111/gcb.13281, 2016.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, Fourth, Springer, New York, ISBN 0-387-95457-0, 2002.
Vogel, J. S., Southon, J. R., Nelson, D. E., and Brown, T. A.: Performance
of catalytically condensed carbon for use in accelerator mass-spectrometry,
Nucl. Instrum. Meth. B, 5, 289–293,
https://doi.org/10.1016/0168-583X(84)90529-9, 1984.
Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G. M.,
Schade, J., Sobczak, W. V., Zimov, N., Zimov, S., Bulygina, E., Eglinton, T.
I., and Holmes, R. M.: High biolability of ancient permafrost carbon upon
thaw, Geophys. Res. Lett., 40, 2689–2693, https://doi.org/10.1002/grl.50348, 2013.
Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C., Striegl, R. G., Abbott, B. W., and Wickland, K. P.: Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis, Biogeosciences, 12, 6915–6930, https://doi.org/10.5194/bg-12-6915-2015, 2015a.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, 2015b.
Vonk, J. E., Tank, S. E., and Walvoord, M. A.: Integrating hydrology and
biogeochemistry across frozen landscapes, Nat. Commun., 10, 5377,
https://doi.org/10.1038/s41467-019-13361-5, 2019.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of Specific Ultraviolet Absorbance as an
Indicator of the Chemical Composition and Reactivity of Dissolved Organic
Carbon, Environ. Sci. Technol., 37, 4702–4708,
https://doi.org/10.1021/es030360x, 2003.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in
marine and freshwater environments: CO2 reduction vs. acetate
fermentation – Isotope evidence, Geochim. Cosmochim. Ac., 50,
693–709, https://doi.org/10.1016/0016-7037(86)90346-7, 1986.
Whittinghill, K. A., Finlay, J. C., and Hobbie, S. E.: Bioavailability of
dissolved organic carbon across a hillslope chronosequence in the Kuparuk
River region, Alaska, Soil Biol. Biochem., 79, 25–33, https://doi.org/10.1016/j.soilbio.2014.08.020, 2014.
Wild, B., Schnecker, J., Alves, R. J. E., Barsukov, P., Bárta, J.,
Čapek, P., Gentsch, N., Gittel, A., Guggenberger, G., Lashchinskiy, N.,
Mikutta, R., Rusalimova, O., Šantrůčková, H., Shibistova,
O., Urich, T., Watzka, M., Zrazhevskaya, G., and Richter, A.: Input of
easily available organic C and N stimulates microbial decomposition of soil
organic matter in arctic permafrost soil, Soil Biol. Biochem., 75,
143–151, https://doi.org/10.1016/j.soilbio.2014.04.014, 2014.
Wild, B., Andersson, A., Bröder, L., Vonk, J., Hugelius, G., McClelland,
J. W., Song, W., Raymond, P. A., and Gustafsson, Ö.: Rivers across the
Siberian Arctic unearth the patterns of carbon release from thawing
permafrost, P. Natl. Acad. Sci. USA, 116, 10280,
https://doi.org/10.1073/pnas.1811797116, 2019.
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C.
W., Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E.,
Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J. K., Guilderson, T. P.,
Griffiths, N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.:
Stability of peatland carbon to rising temperatures, Nat. Commun., 7, 13723, https://doi.org/10.1038/ncomms13723, 2016.
Yacobi, Y., Alberts, J., Takacs, M., and McElvaine, M.: Absorption
spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers:
the impact of molecular size distribution, J. Limnol., 62, 41–46,
https://doi.org/10.4081/jlimnol.2003.41, 2003.
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon...
Altmetrics
Final-revised paper
Preprint