Articles | Volume 19, issue 4
https://doi.org/10.5194/bg-19-1225-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1225-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ignoring carbon emissions from thermokarst ponds results in overestimation of tundra net carbon uptake
Lutz Beckebanze
CORRESPONDING AUTHOR
Institute of Soil Science, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Department of the Land in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
International Max Planck Research School on Earth System Modelling, Hamburg, Germany
David Holl
Institute of Soil Science, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Christian Wille
Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum (GFZ), Potsdam, Germany
Charlotta Mirbach
Institute of Soil Science, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Lars Kutzbach
Institute of Soil Science, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Related authors
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
Atmos. Meas. Tech., 18, 749–772, https://doi.org/10.5194/amt-18-749-2025, https://doi.org/10.5194/amt-18-749-2025, 2025
Short summary
Short summary
Airborne eddy covariance platforms are crucial to measure three-dimensional wind and turbulent matter and energy transport between the surface and the atmosphere at larger scales. In this study, we introduce a new airborne eddy covariance platform (Schleicher ASK-16) and demonstrate that this platform is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and remote-sensing-based products.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere, 14, 4201–4215, https://doi.org/10.5194/tc-14-4201-2020, https://doi.org/10.5194/tc-14-4201-2020, 2020
Short summary
Short summary
To better understand the connection between sea ice and permafrost, we investigate how sea ice interacts with the atmosphere over the adjacent landmass in the Laptev Sea region using a climate model. Melt of sea ice in spring is mainly controlled by the atmosphere; in fall, feedback mechanisms are important. Throughout summer, lower-than-usual sea ice leads to more southward transport of heat and moisture, but these links from sea ice to the atmosphere over land are weak.
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020, https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
Cited articles
Andresen, C. G. and Lougheed, V. L.: Disappearing Arctic tundra ponds:
Fine-scale analysis of surface hydrology in drained thaw lake basins over a
65 year period (1948–2013), J. Geophys. Res.-Biogeo.,
120, 466–479, https://doi.org/10.1002/2014jg002778, 2015. a
Andresen, C. G., Lara, M. J., Tweedie, C. E., and Lougheed, V. L.: Rising
plant-mediated methane emissions from arctic wetlands, Glob. Change
Biol., 120.3, 466–479, https://doi.org/10.1111/gcb.13469, 2017. a
Beckebanze, L., Rehder, Z., Norman, R., Holl, D., Mirbach, C., Wille, C., and Kutzbach, L.: Eddy-covariance and meteorological measurements of large pond and polygonal tundra in Lena River Delta, Siberia (summer 2019), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937594, 2021. a
Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie,
Y. T., Merante, A., and Derry, A. M.: Oxic water column methanogenesis as a
major component of aquatic CH4 fluxes, Nat. Commun.,
5, 5350, https://doi.org/10.1038/ncomms6350, 2014. a
Boike, J., Grüber, M., Langer, M., Piel, K., and Scheritz, M.:
Orthomosaic of Samoylov Island, Lena Delta, Siberia, PANGAEA,
https://doi.org/10.1594/PANGAEA.786073, 2012. a
Boike, J., Georgi, C., Kirilin, G., Muster, S., Abramova, K.,
Fedorova, I., Chetverova, A., Grigoriev, M. N., Bornemann, N., and
Langer, M.: Temperature, water level and bathymetry of thermokarst lakes
in the continuous permafrost zone of northern Siberia – Lena River Delta,
Siberia, PANGAEA, https://doi.org/10.1594/PANGAEA.846525, 2015a. a, b, c
Boike, J., Veh, G., Stoof, G., Grüber, M., Langer, M., and
Muster, S.: Visible and near-infrared orthomosaic and orthophotos of
Samoylov Island, Siberia, summer 2008, with links to data files, PANGAEA,
https://doi.org/10.1594/PANGAEA.847343, 2015b. a, b
Boike, J., Veh, G., Viitanen, L.-K., Bornemann, N., Stoof, G., and
Muster, S.: Visible and near-infrared orthomosaic of Samoylov Island,
Siberia, summer 2015 (5.3 GB), PANGAEA, https://doi.org/10.1594/PANGAEA.845724,
2015c. a, b
Boike, J., Nitzbon, J., Anders, K., Grigoriev, M. N., Bolshiyanov,
D. Y., Langer, M., Lange, S., Bornemann, N., Morgenstern, A.,
Schreiber, P., Wille, C., Chadburn, S., Gouttevin, I., and
Kutzbach, L.: Meteorologic data at station Samoylov (2002–2018, level 2,
version 201908), PANGAEA, https://doi.org/10.1594/PANGAEA.905232,
2019. a
Borrel, G., Jézéquel, D., Biderre-Petit, C., Morel-Desrosiers, N.,
Morel, J.-P., Peyret, P., Fonty, G., and Lehours, A.-C.: Production and
consumption of methane in freshwater lake ecosystems, Res.
Microbiol., 162, 832–847, https://doi.org/10.1016/j.resmic.2011.06.004, 2011. a
Bouchard, F., Laurion, I., Preskienis, V., Fortier, D., Xu, X., and Whiticar,
M. J.: Modern to millennium-old greenhouse gases emitted from ponds and
lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut),
Biogeosciences, 12, 7279–7298, https://doi.org/10.5194/bg-12-7279-2015, 2015. a, b, c, d
Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mard, J., Mernild, S. H.,
Prowse, T., Semenova, O., Stuefer, S. L., and Woo, M. K.: Arctic terrestrial
hydrology: A synthesis of processes, regional effects, and research
challenges, J. Geophys. Res.-Biogeo., 121, 621–649,
https://doi.org/10.1002/2015jg003131, 2016. a
Burba, G., Schmidt, A., Scott, R. L., Nakai, T., Kathilankal, J., Fratini, G.,
Hanson, C., Law, B., Mcdermitt, D. K., Eckles, R., Furtaw, M., and
Velgersdyk, M.: Calculating CO2 and H2O eddy covariance fluxes from an
enclosed gas analyzer using an instantaneous mixing ratio, Glob. Change
Biol., 18, 385–399, https://doi.org/10.1111/j.1365-2486.2011.02536.x, 2012. a
Conrad, R.: Contribution of hydrogen to methane production and control of
hydrogen concentrations in methanogenic soils and sediments, FEMS
Microbiol. Ecol., 28, 193–202, https://doi.org/10.1016/S0168-6496(98)00086-5,
1999. a
Donis, D., Flury, S., Stöckli, A., Spangenberg, J. E., Vachon, D., and
McGinnis, D. F.: Full-scale evaluation of methane production under oxic
conditions in a mesotrophic lake, Nat. Commun., 8, 1661,
https://doi.org/10.1038/s41467-017-01648-4, 2017. a
Ducharme-Riel, V., Vachon, D., del Giorgio, P. A., and Prairie, Y. T.: The
relative contribution of winter under-ice and summer hypolimnetic CO2
accumulation to the annual CO2 emissions from northern lakes, Ecosystems,
18, 547–559, https://doi.org/10.1007/s10021-015-9846-0, 2015. a
Edgington, E. and Onghena, P.: Randomization tests, CRC Press, ISBN 9780367577711, 2007. a
Ellis, C. J., Rochefort, L., Gauthier, G., and Pienitz, R.: Paleoecological
evidence for transitions between contrasting landforms in a polygon-patterned
high arctic wetland, Arct. Antarct. Alp. Res., 40, 624–637,
https://doi.org/10.1657/1523-0430(07-059)[ELLIS]2.0.CO;2, 2008. a
Encinas Fernández, J., Peeters, F., and Hofmann, H.: On the methane
paradox: Transport from shallow water zones rather than in situ
methanogenesis is the major source of CH4 in the open surface
water of lakes, J. Geophys. Res.-Biogeo., 121,
2717–2726, https://doi.org/10.1002/2016JG003586, 2016. a
Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wüest, A., MacIntyre,
S., and Chapin, F. S.: CO2 exchange between air and water in an Arctic
Alaskan and midlatitude Swiss lake: Importance of convective mixing, J. Geophys. Res.-Atmos., 108, 4362, https://doi.org/10.1029/2002JD002653, 2003. a, b, c
Fan, S.-M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., and Fitzjarrald, D. R.:
Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon
Forest, J. Geophys. Res.-Atmos., 95, 16851–16864,
https://doi.org/10.1029/JD095iD10p16851, 1990. a
Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D.: Relative
humidity effects on water vapour fluxes measured with closed-path
eddy-covariance systems with short sampling lines, Agr. Forest
Meteorol., 165, 53–63, https://doi.org/10.1016/j.agrformet.2012.05.018, 2012. a
Gash, J. H. C. and Culf, A. D.: Applying a linear detrend to eddy correlation
data in realtime, Bound.-Lay. Meteorol., 79, 301–306,
https://doi.org/10.1007/bf00119443, 1996. a
Günthel, M., Klawonn, I., Woodhouse, J., Bižić, M., Ionescu, D.,
Ganzert, L., Kümmel, S., Nijenhuis, I., Zoccarato, L., Grossart, H.-P.,
and Tang, K. W.: Photosynthesis-driven methane production in oxic lake water
as an important contributor to methane emission, Limnol. Oceanogr.,
65, 2853–2865, https://doi.org/10.1002/lno.11557, 2020. a
Hedderich, R. and Whitman, W. B.: Physiology and biochemistry of the
methane-producing Archaea, Springer New York, New York, NY,
1050–1079, https://doi.org/10.1007/0-387-30742-7_34, 2006. a, b
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water
CO2 and CH4 emissions from very small ponds,
Nat. Geosci., 9, 222–226, https://doi.org/10.1038/ngeo2654, 2016. a, b, c
Holl, D., Pancotto, V., Heger, A., Camargo, S. J., and Kutzbach, L.: Cushion
bogs are stronger carbon dioxide net sinks than moss-dominated bogs as
revealed by eddy covariance measurements on Tierra del Fuego, Argentina,
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, 2019. a
Ibrom, A., Dellwik, E., Flyvbjerg, H., Jensen, N. O., and Pilegaard, K.: Strong
low-pass filtering effects on water vapour flux measurements with closed-path
eddy correlation systems, Agr. Forest Meteorol., 147, 140–156, https://doi.org/10.1016/j.agrformet.2007.07.007, 2007a. a
Ibrom, A., Dellwik, E., Larsen, S. E., and Pilegaard, K.: On the use of the
Webb-Pearman-Leuning theory for closed-path eddy correlation measurements,
Tellus B, 59, 937–946,
https://doi.org/10.1111/j.1600-0889.2007.00311.x, 2007b. a
Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., Itoh, M., and Iizuka, K.:
Partitioning eddy-covariance methane fluxes from a shallow lake into
diffusive and ebullitive fluxes, Bound.-Lay. Meteorol., 169, 413–428,
https://doi.org/10.1007/s10546-018-0383-1, 2018. a
Jansen, J., Thornton, B. F., Jammet, M. M., Wik, M., Cortés, A., Friborg,
T., MacIntyre, S., and Crill, P. M.: Climate-sensitive controls on large
spring emissions of CH4 and CO2 from northern lakes, J.
Geophys. Res.-Biogeo., 124, 2379–2399,
https://doi.org/10.1029/2019JG005094, 2019. a, b
Jonsson, A., Åberg, J., Lindroth, A., and Jansson, M.: Gas transfer rate
and CO2 flux between an unproductive lake and the atmosphere
in northern Sweden, J. Geophys. Res.-Biogeo., 113,
1–13, https://doi.org/10.1029/2008JG000688, 2008. a, b
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows: their
structure and measurement, Oxford University Press, https://doi.org/10.1093/oso/9780195062397.001.0001, 1994. a
Kartoziia, A.: Assessment of the ice wedge polygon current state by means of
UAV imagery analysis (Samoylov Island, the Lena Delta), Remote Sens., 11,
1627, https://doi.org/10.3390/rs11131627, 2019. a
Kling, G. W., Kipphut, G. W., and Miller, M. C.: The flux of CO2 and CH4
from lakes and rivers in arctic Alaska, Hydrobiologia, 240, 23–36,
https://doi.org/10.1007/BF00013449, 1992. a
Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., and Pfeiffer, E. M.:
Regulation of methane production, oxidation, and emission by vascular plants
and bryophytes in ponds of the northeast Siberian polygonal tundra, J. Geophys. Res.-Biogeo., 120, 2525–2541,
https://doi.org/10.1002/2015jg003053, 2015. a
Kormann, R. and Meixner, F. X.: An analytical footprint model for non-neutral
stratification, Bound.-Lay. Meteorol., 99, 207–224,
https://doi.org/10.1023/A:1018991015119, 2001. a, b, c, d
LI-COR: EddyPro Version 7.0.6, https://www.licor.com/env/support/EddyPro/home.html (last access: 10 June 2020), 2019. a
Liss, P. S. and Slater, P. G.: Flux of gases across the Air-Sea interface,
Nature, 247, 181–184, https://doi.org/10.1038/247181a0, 1974. a
Lundin, E. J., Giesler, R., Persson, A., Thompson, M. S., and Karlsson, J.:
Integrating carbon emissions from lakes and streams in a subarctic
catchment, J. Geophys. Res.-Biogeo., 118, 1200–1207,
https://doi.org/10.1002/jgrg.20092, 2013. a
Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy
covariance software package TK2, Univ, Bayreuth, Abt. Mikrometeorol., Universität Bayreuth, Abt. Mikrometeorologie, ISSN 161489166.26, 26–42, 2004. a
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E.,
Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin,
P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic
tundra: Comparisons among observations, process models, and atmospheric
inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012,
2012. a
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging,
detrending, and filtering of eddy covariance time series, in: Handbook of
micrometeorology, Springer, 7–31, https://doi.org/10.1007/1-4020-2265-4_2, 2004. a
Muster, S., Roth, K., Langer, M., Lange, S., Cresto Aleina, F., Bartsch, A.,
Morgenstern, A., Grosse, G., Jones, B., Sannel, A. B. K., Sjöberg, Y.,
Günther, F., Andresen, C., Veremeeva, A., Lindgren, P. R., Bouchard,
F., Lara, M. J., Fortier, D., Charbonneau, S., Virtanen, T. A., Hugelius, G.,
Palmtag, J., Siewert, M. B., Riley, W. J., Koven, C. D., and Boike, J.:
PeRL: a circum-Arctic Permafrost Region Pond and Lake database, Earth
Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, 2017. a
Neff, J. C. and Asner, G. P.: Dissolved organic carbon in terrestrial
ecosystems: Synthesis and a model, Ecosystems, 4, 29–48,
https://doi.org/10.1007/s100210000058, 2001. a
Peeters, F., Encinas Fernandez, J., and Hofmann, H.: Sediment fluxes rather
than oxic methanogenesis explain diffusive CH4 emissions from
lakes and reservoirs, Sci. Rep., 9, 243,
https://doi.org/10.1038/s41598-018-36530-w, 2019. a
Ramsar Convention Secretariat: An introduction to the ramsar convention on
wetlands (previously The Ramsar Convention Manual), Ramsar Convention
Secretariat, Gland, Switzerland, https://www.ramsar.org/sites/default/files/documents/library/handbook1_5ed_introductiontoconvention_e.pdf (last access: 22 February 2022), 2016. a
Repo, M. E., Huttunen, J. T., Naumov, A. V., Chichulin, A. V., Lapshina, E. D.,
Bleuten, W., and Martikainen, P. J.: Release of CO2 and
CH4 from small wetland lakes in western Siberia, Tellus B, 59, 788–796,
https://doi.org/10.1111/j.1600-0889.2007.00301.x, 2007. a
Rößger, N., Wille, C., Holl, D., Göckede, M., and Kutzbach, L.:
Scaling and balancing carbon dioxide fluxes in a heterogeneous tundra
ecosystem of the Lena River Delta, Biogeosciences, 16, 2591–2615,
https://doi.org/10.5194/bg-16-2591-2019, 2019a. a, b
Rößger, N., Wille, C., Veh, G., Boike, J., and Kutzbach, L.: Scaling
and balancing methane fluxes in a heterogeneous tundra ecosystem of the Lena
River Delta, Agr. Forest Meteorol., 266/267, 243–255,
https://doi.org/10.1016/j.agrformet.2018.06.026, 2019b. a, b
Runkle, B. R., Sachs, T., Wille, C., Pfeiffer, E. M., and Kutzbach, L.: Bulk
partitioning the growing season net ecosystem exchange of CO2 in Siberian
tundra reveals the seasonality of it carbon sequestration strength,
Biogeosciences, 10, 1337–1349, https://doi.org/10.5194/bg-10-1337-2013, 2013. a
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S.,
and Thalasso, F.: Methane and carbon dioxide emissions from 40 lakes along a
north-south latitudinal transect in Alaska, Biogeosciences, 12, 3197–3223,
https://doi.org/10.5194/bg-12-3197-2015, 2015. a, b, c
Sieczko, A. K., Duc, N. T., Schenk, J., Pajala, G., Rudberg, D., Sawakuchi,
H. O., and Bastviken, D.: Diel variability of methane emissions from lakes,
P. Natl. Acad. Sci. USA, 117, 21488–21494,
https://doi.org/10.1073/pnas.2006024117, 2020. a, b
Squires, M. M. and Lesack, L. F.: The relation between sediment nutrient
content and macrophyte biomass and community structure along a water
transparency gradient among lakes of the Mackenzie Delta, Can. J. Fish. Aquat. Sci., 60, 333–343, https://doi.org/10.1139/f03-027, 2003. a
Treat, C. C., Marushchak, M. E., Voigt, C., Zhang, Y., Tan, Z., Zhuang, Q.,
Virtanen, T. A., Räsänen, A., Biasi, C., Hugelius, G., Kaverin,
D., Miller, P. A., Stendel, M., Romanovsky, V., Rivkin, F., Martikainen,
P. J., and Shurpali, N. J.: Tundra landscape heterogeneity, not interannual
variability, controls the decadal regional carbon balance in the Western
Russian Arctic, Glob. Change Biol., 24, 5188–5204,
https://doi.org/10.1111/gcb.14421, 2018. a, b, c
Tuovinen, J.-P., Aurela, M., Hatakka, J., Räsänen, A., Virtanen, T.,
Mikola, J., Ivakhov, V., Kondratyev, V., and Laurila, T.: Interpreting eddy
covariance data from heterogeneous Siberian tundra: land-cover-specific
methane fluxes and spatial representativeness, Biogeosciences, 16, 255–274,
https://doi.org/10.5194/bg-16-255-2019, 2019. a, b
Earth Resources Observation and Science (EROS) Center: USGS EROS Archive – Declassified Data – Declassified Satellite Imagery – 1, https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#science (last access: 15 June 2020), 2018. a
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for
tower and aircraft data, J. Atmos. Ocean. Technol., 14,
512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997. a
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F.,
Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M.,
Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J.,
Macmillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.:
Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic
ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015,
2015. a, b
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin, F. S.:
Methane bubbling from Siberian thaw lakes as a positive feedback to climate
warming, Nature, 443, 71–75, https://doi.org/10.1038/nature05040, 2006. a, b
Walter Anthony, K. M. and Anthony, P.: Constraining spatial variability of
methane ebullition seeps in thermokarst lakes using point process models,
J. Geophys. Res.-Biogeo., 118, 1015–1034,
https://doi.org/10.1002/jgrg.20087, 2013. a
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements
for density effects due to heat and water vapour transfer, Quarterly J. Roy. Meteorol. Soc., 106, 85–100,
https://doi.org/10.1002/qj.49710644707, 1980.
a
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of...
Altmetrics
Final-revised paper
Preprint