Research article
28 Feb 2022
Research article
| 28 Feb 2022
Ignoring carbon emissions from thermokarst ponds results in overestimation of tundra net carbon uptake
Lutz Beckebanze et al.
Related authors
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-240, https://doi.org/10.5194/bg-2022-240, 2023
Preprint under review for BG
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We fine that emissions increase substantially. Under annual temperatures 5 °C above present temperatures pond methane emissions are more than three times higher than now. Most of this increase is caused by an increase in plant productivity as plant provide the substrate microbes use to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere, 14, 4201–4215, https://doi.org/10.5194/tc-14-4201-2020, https://doi.org/10.5194/tc-14-4201-2020, 2020
Short summary
Short summary
To better understand the connection between sea ice and permafrost, we investigate how sea ice interacts with the atmosphere over the adjacent landmass in the Laptev Sea region using a climate model. Melt of sea ice in spring is mainly controlled by the atmosphere; in fall, feedback mechanisms are important. Throughout summer, lower-than-usual sea ice leads to more southward transport of heat and moisture, but these links from sea ice to the atmosphere over land are weak.
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020, https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
David Holl, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, https://doi.org/10.5194/bg-17-2853-2020, 2020
Short summary
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
Astrid Lampert, Falk Pätzold, Magnus O. Asmussen, Lennart Lobitz, Thomas Krüger, Thomas Rausch, Torsten Sachs, Christian Wille, Denis Sotomayor Zakharov, Dominik Gaus, Stephan Bansmer, and Ellen Damm
Atmos. Meas. Tech., 13, 1937–1952, https://doi.org/10.5194/amt-13-1937-2020, https://doi.org/10.5194/amt-13-1937-2020, 2020
Short summary
Short summary
Methane has high climate warming potential. Sources of methane can be distinguished by the isotopic composition. To investigate the origin of methane, an airborne sampling system has been developed that can take air samples worldwide and at various altitudes. The article shows the performance of the overall system, from taking samples to laboratory analyses. As known methane source, a rewetted peatland site, was studied, and the vertical distribution of the isotopic composition is investigated.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Norman Rößger, Christian Wille, David Holl, Mathias Göckede, and Lars Kutzbach
Biogeosciences, 16, 2591–2615, https://doi.org/10.5194/bg-16-2591-2019, https://doi.org/10.5194/bg-16-2591-2019, 2019
Tim Eckhardt, Christian Knoblauch, Lars Kutzbach, David Holl, Gillian Simpson, Evgeny Abakumov, and Eva-Maria Pfeiffer
Biogeosciences, 16, 1543–1562, https://doi.org/10.5194/bg-16-1543-2019, https://doi.org/10.5194/bg-16-1543-2019, 2019
Short summary
Short summary
We quantified the contribution of individual components governing the net ecosystem exchange of CO2 and how these fluxes respond to environmental changes in a drained and water-saturated site in the polygonal tundra of northeast Siberia. This work finds both sites as a sink for atmospheric CO2 during the growing season, but sink strengths varied between the sites. Furthermore, it was shown that soil hydrological conditions were one of the key drivers for differing CO2 fluxes between the sites.
Julia Boike, Jan Nitzbon, Katharina Anders, Mikhail Grigoriev, Dmitry Bolshiyanov, Moritz Langer, Stephan Lange, Niko Bornemann, Anne Morgenstern, Peter Schreiber, Christian Wille, Sarah Chadburn, Isabelle Gouttevin, Eleanor Burke, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, https://doi.org/10.5194/essd-11-261-2019, 2019
Short summary
Short summary
Long-term observational data are available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, processing, and data quality control. Furthermore, we present a merged dataset of the parameters, which were measured from 1998 onwards.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017, https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary
Short summary
A new consistent, process-based methane module that is integrated with permafrost processes is presented. It was developed within a global land surface scheme and evaluated at a polygonal tundra site in Samoylov, Russia. The calculated methane emissions show fair agreement with field data and capture detailed differences between the explicitly modelled gas transport processes and in the gas dynamics under varying soil water and temperature conditions during seasons and on different microsites.
Fabian Beermann, Moritz Langer, Sebastian Wetterich, Jens Strauss, Julia Boike, Claudia Fiencke, Lutz Schirrmeister, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-117, https://doi.org/10.5194/bg-2016-117, 2016
Revised manuscript not accepted
Short summary
Short summary
This paper aims to quantify pools of inorganic nitrogen in permafrost soils of arctic Siberia and to estimate annual release rates of this nitrogen due to permafrost thaw. We report for the first time stores of inorganic nitrogen in Siberian permafrost soils. These nitrogen stores are important as permafrost thaw can mobilize substantial amounts of nitrogen, potentially changing the nutrient balance of these soils and representing a significant non-carbon permafrost climate feedback.
F. Cresto Aleina, B. R. K. Runkle, T. Kleinen, L. Kutzbach, J. Schneider, and V. Brovkin
Biogeosciences, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015, https://doi.org/10.5194/bg-12-5689-2015, 2015
Short summary
Short summary
We developed a process-based model for peatland micro-topography and hydrology, the Hummock-Hollow (HH) model, which explicitly represents small-scale surface elevation changes. By coupling the HH model with a model for soil methane processes, we are able to model the effects of micro-topography on hydrology and methane emissions in a typical boreal peatland. We also identify potential biases that models without a micro-topographic representation can introduce in large-scale models.
M. Vanselow-Algan, S. R. Schmidt, M. Greven, C. Fiencke, L. Kutzbach, and E.-M. Pfeiffer
Biogeosciences, 12, 4361–4371, https://doi.org/10.5194/bg-12-4361-2015, https://doi.org/10.5194/bg-12-4361-2015, 2015
Related subject area
Biogeochemistry: Greenhouse Gases
Carbon emission and export from the Ket River, western Siberia
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river
Effects of water table level and nitrogen deposition on methane and nitrous oxide emissions in an alpine peatland
Highest methane concentrations in an Arctic river linked to local terrestrial inputs
Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018
Trace gas fluxes from tidal salt marsh soils: implications for carbon–sulfur biogeochemistry
Spatial and temporal variation in δ13C values of methane emitted from a hemiboreal mire: methanogenesis, methanotrophy, and hysteresis
Intercomparison of methods to estimate gross primary production based on CO2 and COS flux measurements
Lateral carbon export has low impact on the net ecosystem carbon balance of a polygonal tundra catchment
The effect of static chamber base on N2O flux in drip irrigation
Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog
Episodic N2O emissions following tillage of a legume–grass cover crop mixture
Variation in CO2 and CH4 fluxes among land cover types in heterogeneous Arctic tundra in northeastern Siberia
Response of vegetation and carbon fluxes to brown lemming herbivory in northern Alaska
Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils
Data-based estimates of interannual sea–air CO2 flux variations 1957–2020 and their relation to environmental drivers
Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion
Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil
Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape
Low biodegradability of particulate organic carbon mobilized from thaw slumps on the Peel Plateau, NT, and possible chemosynthesis and sorption effects
Grazing enhances carbon cycling but reduces methane emission during peak growing season in the Siberian Pleistocene Park tundra site
Ideas and perspectives: Enhancing research and monitoring of carbon pools and land-to-atmosphere greenhouse gases exchange in developing countries
Quantification of potential methane emissions associated with organic matter amendments following oxic-soil inundation
Assessing the spatial and temporal variability of greenhouse gas emissions from different configurations of on-site wastewater treatment system using discrete and continuous gas flux measurement
Dimethylated sulfur compounds in the Peruvian upwelling system
Partitioning carbon sources between wetland and well-drained ecosystems to a tropical first-order stream – implications for carbon cycling at the watershed scale (Nyong, Cameroon)
Extreme events driving year-to-year differences in gross primary productivity across the US
Methane gas emissions from savanna fires: what analysis of local burning regimes in a working West African landscape tell us
Methane in Zackenberg Valley, NE Greenland: multidecadal growing season fluxes of a high-Arctic tundra
Field-scale CH4 emission at a subarctic mire with heterogeneous permafrost thaw status
Evaluation of denitrification and decomposition from three biogeochemical models using laboratory measurements of N2, N2O and CO2
Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst
Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China
Variability of North Atlantic CO2 fluxes for the 2000–2017 period estimated from atmospheric inverse analyses
Effects of clear-fell harvesting on soil CO2, CH4, and N2O fluxes in an upland Sitka spruce stand in England
Conventional subsoil irrigation techniques do not lower carbon emissions from drained peat meadows
Different responses of ecosystem CO2 and N2O emissions and CH4 uptake to seasonally asymmetric warming in an alpine grassland of the Tianshan
The role of termite CH4 emissions on the ecosystem scale: a case study in the Amazon rainforest
Biogeochemical and plant trait mechanisms drive enhanced methane emissions in response to whole-ecosystem warming
A decade of dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) measurements in the southwestern Baltic Sea
Methane dynamics in three different Siberian water bodies under winter and summer conditions
Topography-based statistical modelling reveals high spatial variability and seasonal emission patches in forest floor methane flux
Technical note: CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO2 in fresh water
Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil
Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration?
Intraseasonal variability of greenhouse gas emission factors from biomass burning in the Brazilian Cerrado
Evaluating stream CO2 outgassing via drifting and anchored flux chambers in a controlled flume experiment
Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022, https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Short summary
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4 fluxes in an Amazonian mangrove. Topography and seasonality had a contrasting influence when comparing the two gas fluxes: CO2 fluxes were greater in high topography in the dry period, and CH4 fluxes were greater in the rainy season in low topography. Only CO2 fluxes were correlated with soil organic matter, the proportion of carbon and nitrogen, and redox potential.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Wantong Zhang, Zhengyi Hu, Joachim Audet, Thomas A. Davidson, Enze Kang, Xiaoming Kang, Yong Li, Xiaodong Zhang, and Jinzhi Wang
Biogeosciences, 19, 5187–5197, https://doi.org/10.5194/bg-19-5187-2022, https://doi.org/10.5194/bg-19-5187-2022, 2022
Short summary
Short summary
This work focused on the CH4 and N2O emissions from alpine peatlands in response to the interactive effects of altered water table levels and increased nitrogen deposition. Across the 2-year mesocosm experiment, nitrogen deposition showed nonlinear effects on CH4 emissions and linear effects on N2O emissions, and these N effects were associated with the water table levels. Our results imply the future scenario of strengthened CH4 and N2O emissions from an alpine peatland.
Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger
Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, https://doi.org/10.5194/bg-19-5059-2022, 2022
Short summary
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Margaret Capooci and Rodrigo Vargas
Biogeosciences, 19, 4655–4670, https://doi.org/10.5194/bg-19-4655-2022, https://doi.org/10.5194/bg-19-4655-2022, 2022
Short summary
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences, 19, 4331–4349, https://doi.org/10.5194/bg-19-4331-2022, https://doi.org/10.5194/bg-19-4331-2022, 2022
Short summary
Short summary
The study uses the stable isotope 13C of carbon in methane to investigate the origins of spatial and temporal variation in methane emitted by a temperate wetland ecosystem. The results indicate that methane production is more important for spatial variation than methane consumption by micro-organisms. Temporal variation on a seasonal timescale is most likely affected by more than one driver simultaneously.
Kukka-Maaria Kohonen, Roderick Dewar, Gianluca Tramontana, Aleksanteri Mauranen, Pasi Kolari, Linda M. J. Kooijmans, Dario Papale, Timo Vesala, and Ivan Mammarella
Biogeosciences, 19, 4067–4088, https://doi.org/10.5194/bg-19-4067-2022, https://doi.org/10.5194/bg-19-4067-2022, 2022
Short summary
Short summary
Four different methods for quantifying photosynthesis (GPP) at ecosystem scale were tested, of which two are based on carbon dioxide (CO2) and two on carbonyl sulfide (COS) flux measurements. CO2-based methods are traditional partitioning, and a new method uses machine learning. We introduce a novel method for calculating GPP from COS fluxes, with potentially better applicability than the former methods. Both COS-based methods gave on average higher GPP estimates than the CO2-based estimates.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Shahar Baram, Asher Bar-Tal, Alon Gal, Shmulik P. Friedman, and David Russo
Biogeosciences, 19, 3699–3711, https://doi.org/10.5194/bg-19-3699-2022, https://doi.org/10.5194/bg-19-3699-2022, 2022
Short summary
Short summary
Static chambers are the most common tool used to measure greenhouse gas (GHG) fluxes. We tested the impact of such chambers on nitrous oxide emissions in drip irrigation. Field measurements and 3-D simulations show that the chamber base drastically affects the water and nutrient distribution in the soil and hence the measured GHG fluxes. A nomogram is suggested to determine the optimal diameter of a cylindrical chamber that ensures minimal disturbance.
Tracy E. Rankin, Nigel T. Roulet, and Tim R. Moore
Biogeosciences, 19, 3285–3303, https://doi.org/10.5194/bg-19-3285-2022, https://doi.org/10.5194/bg-19-3285-2022, 2022
Short summary
Short summary
Peatland respiration is made up of plant and peat sources. How to separate these sources is not well known as peat respiration is not straightforward and is more influenced by vegetation dynamics than previously thought. Results of plot level measurements from shrubs and sparse grasses in a woody bog show that plants' respiration response to changes in climate is related to their different root structures, implying a difference in the mechanisms by which they obtain water resources.
Alison Bressler and Jennifer Blesh
Biogeosciences, 19, 3169–3184, https://doi.org/10.5194/bg-19-3169-2022, https://doi.org/10.5194/bg-19-3169-2022, 2022
Short summary
Short summary
Our field experiment tested if a mixture of a nitrogen-fixing legume and non-legume cover crop could reduce nitrous oxide (N2O) emissions following tillage, compared to the legume grown alone. We found higher N2O following both legume treatments, compared to those without, and lower emissions from the cover crop mixture at one of the two test sites, suggesting that interactions between cover crop types and soil quality influence N2O emissions.
Sari Juutinen, Mika Aurela, Juha-Pekka Tuovinen, Viktor Ivakhov, Maiju Linkosalmi, Aleksi Räsänen, Tarmo Virtanen, Juha Mikola, Johanna Nyman, Emmi Vähä, Marina Loskutova, Alexander Makshtas, and Tuomas Laurila
Biogeosciences, 19, 3151–3167, https://doi.org/10.5194/bg-19-3151-2022, https://doi.org/10.5194/bg-19-3151-2022, 2022
Short summary
Short summary
We measured CO2 and CH4 fluxes in heterogenous Arctic tundra in eastern Siberia. We found that tundra wetlands with sedge and grass vegetation contributed disproportionately to the landscape's ecosystem CO2 uptake and CH4 emissions to the atmosphere. Moreover, we observed high CH4 consumption in dry tundra, particularly in barren areas, offsetting part of the CH4 emissions from the wetlands.
Jessica Plein, Rulon W. Clark, Kyle A. Arndt, Walter C. Oechel, Douglas Stow, and Donatella Zona
Biogeosciences, 19, 2779–2794, https://doi.org/10.5194/bg-19-2779-2022, https://doi.org/10.5194/bg-19-2779-2022, 2022
Short summary
Short summary
Tundra vegetation and the carbon balance of Arctic ecosystems can be substantially impacted by herbivory. We tested how herbivory by brown lemmings in individual enclosure plots have impacted carbon exchange of tundra ecosystems via altering carbon dioxide (CO2) and methane (CH4) fluxes. Lemmings significantly decreased net CO2 uptake while not affecting CH4 emissions. There was no significant difference in the subsequent growing season due to recovery of the vegetation.
Jenie Gil, Maija E. Marushchak, Tobias Rütting, Elizabeth M. Baggs, Tibisay Pérez, Alexander Novakovskiy, Tatiana Trubnikova, Dmitry Kaverin, Pertti J. Martikainen, and Christina Biasi
Biogeosciences, 19, 2683–2698, https://doi.org/10.5194/bg-19-2683-2022, https://doi.org/10.5194/bg-19-2683-2022, 2022
Short summary
Short summary
N2O emissions from permafrost soils represent up to 11.6 % of total N2O emissions from natural soils, and their contribution to the global N2O budget will likely increase due to climate change. A better understanding of N2O production from permafrost soil is needed to evaluate the role of arctic ecosystems in the global N2O budget. By studying microbial N2O production processes in N2O hotspots in permafrost peatlands, we identified denitrification as the dominant source of N2O in these surfaces.
Christian Rödenbeck, Tim DeVries, Judith Hauck, Corinne Le Quéré, and Ralph F. Keeling
Biogeosciences, 19, 2627–2652, https://doi.org/10.5194/bg-19-2627-2022, https://doi.org/10.5194/bg-19-2627-2022, 2022
Short summary
Short summary
The ocean is an important part of the global carbon cycle, taking up about a quarter of the anthropogenic CO2 emitted by burning of fossil fuels and thus slowing down climate change. However, the CO2 uptake by the ocean is, in turn, affected by variability and trends in climate. Here we use carbon measurements in the surface ocean to quantify the response of the oceanic CO2 exchange to environmental conditions and discuss possible mechanisms underlying this response.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Mika Korkiakoski, Tiia Määttä, Krista Peltoniemi, Timo Penttilä, and Annalea Lohila
Biogeosciences, 19, 2025–2041, https://doi.org/10.5194/bg-19-2025-2022, https://doi.org/10.5194/bg-19-2025-2022, 2022
Short summary
Short summary
We measured CH4 fluxes and production and oxidation potentials from irrigated and non-irrigated podzolic soil in a boreal forest. CH4 sink was smaller at the irrigated site but did not cause CH4 emission, with one exception. We also showed that under laboratory conditions, not only wet conditions, but also fresh carbon, are needed to make podzolic soil into a CH4 source. Our study provides important data for improving the process models describing the upland soil CH4 dynamics.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Henriikka Vekuri, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-69, https://doi.org/10.5194/bg-2022-69, 2022
Revised manuscript accepted for BG
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for two years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 20 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Sarah Shakil, Suzanne E. Tank, Jorien E. Vonk, and Scott Zolkos
Biogeosciences, 19, 1871–1890, https://doi.org/10.5194/bg-19-1871-2022, https://doi.org/10.5194/bg-19-1871-2022, 2022
Short summary
Short summary
Permafrost thaw-driven landslides in the western Arctic are increasing organic carbon delivered to headwaters of drainage networks in the western Canadian Arctic by orders of magnitude. Through a series of laboratory experiments, we show that less than 10 % of this organic carbon is likely to be mineralized to greenhouse gases during transport in these networks. Rather most of the organic carbon is likely destined for burial and sequestration for centuries to millennia.
Wolfgang Fischer, Christoph K. Thomas, Nikita Zimov, and Mathias Göckede
Biogeosciences, 19, 1611–1633, https://doi.org/10.5194/bg-19-1611-2022, https://doi.org/10.5194/bg-19-1611-2022, 2022
Short summary
Short summary
Arctic permafrost ecosystems may release large amounts of carbon under warmer future climates and may therefore accelerate global climate change. Our study investigated how long-term grazing by large animals influenced ecosystem characteristics and carbon budgets at a Siberian permafrost site. Our results demonstrate that such management can contribute to stabilizing ecosystems to keep carbon in the ground, particularly through drying soils and reducing methane emissions.
Dong-Gill Kim, Ben Bond-Lamberty, Youngryel Ryu, Bumsuk Seo, and Dario Papale
Biogeosciences, 19, 1435–1450, https://doi.org/10.5194/bg-19-1435-2022, https://doi.org/10.5194/bg-19-1435-2022, 2022
Short summary
Short summary
As carbon (C) and greenhouse gas (GHG) research has adopted appropriate technology and approach (AT&A), low-cost instruments, open-source software, and participatory research and their results were well accepted by scientific communities. In terms of cost, feasibility, and performance, the integration of low-cost and low-technology, participatory and networking-based research approaches can be AT&A for enhancing C and GHG research in developing countries.
Brian Scott, Andrew H. Baldwin, and Stephanie A. Yarwood
Biogeosciences, 19, 1151–1164, https://doi.org/10.5194/bg-19-1151-2022, https://doi.org/10.5194/bg-19-1151-2022, 2022
Short summary
Short summary
Carbon dioxide and methane contribute to global warming. What can we do? We can build wetlands: they store carbon dioxide and should cause global cooling. But when first built they produce excess methane. Eventually built wetlands will cause cooling, but it may take decades or even centuries. How we build wetlands matters. We show that a common practice, using organic matter, such as manure, can make a big difference whether or not the wetlands we build start global cooling within our lifetime.
Jan Knappe, Celia Somlai, and Laurence W. Gill
Biogeosciences, 19, 1067–1085, https://doi.org/10.5194/bg-19-1067-2022, https://doi.org/10.5194/bg-19-1067-2022, 2022
Short summary
Short summary
Two domestic on-site wastewater treatment systems have been monitored for greenhouse gas (carbon dioxide, methane and nitrous oxide) emissions coming from the process units, soil and vent pipes. This has enabled the net greenhouse gas per person to be quantified for the first time, as well as the impact of pre-treatment on the effluent before being discharged to soil. These decentralised wastewater treatment systems serve approx. 20 % of the population in both Europe and the United States.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Moussa Moustapha, Loris Deirmendjian, David Sebag, Jean-Jacques Braun, Stéphane Audry, Henriette Ateba Bessa, Thierry Adatte, Carole Causserand, Ibrahima Adamou, Benjamin Ngounou Ngatcha, and Frédéric Guérin
Biogeosciences, 19, 137–163, https://doi.org/10.5194/bg-19-137-2022, https://doi.org/10.5194/bg-19-137-2022, 2022
Short summary
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
Alexander J. Turner, Philipp Köhler, Troy S. Magney, Christian Frankenberg, Inez Fung, and Ronald C. Cohen
Biogeosciences, 18, 6579–6588, https://doi.org/10.5194/bg-18-6579-2021, https://doi.org/10.5194/bg-18-6579-2021, 2021
Short summary
Short summary
This work builds a high-resolution estimate (500 m) of gross primary productivity (GPP) over the US using satellite measurements of solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) between 2018 and 2020. We identify ecosystem-specific scaling factors for estimating gross primary productivity (GPP) from TROPOMI SIF. Extreme precipitation events drive four regional GPP anomalies that account for 28 % of year-to-year GPP differences across the US.
Paul Laris, Moussa Koné, Fadiala Dembélé, Christine M. Rodrigue, Lilian Yang, Rebecca Jacobs, and Quincy Laris
Biogeosciences, 18, 6229–6244, https://doi.org/10.5194/bg-18-6229-2021, https://doi.org/10.5194/bg-18-6229-2021, 2021
Short summary
Short summary
Savanna fires play a key role in the global carbon cycle because they release methane. Although it burns the most, there are few studies from West Africa. We conducted 36 experimental fires according to local practice to collect smoke samples. We found that fires set early in the season had higher methane emissions than those set later, and head fires had double the emissions of backfires. We conclude policies to reduce emissions will not have the desired effects if fire type is not considered.
Johan H. Scheller, Mikhail Mastepanov, Hanne H. Christiansen, and Torben R. Christensen
Biogeosciences, 18, 6093–6114, https://doi.org/10.5194/bg-18-6093-2021, https://doi.org/10.5194/bg-18-6093-2021, 2021
Short summary
Short summary
Our study presents a time series of methane emissions in a high-Arctic-tundra landscape over 14 summers, which shows large variations between years. The methane emissions from the valley are expected to more than double in the late 21st century. This warming increases permafrost thaw, which could increase surface erosion in the valley. Increased erosion could offset some of the rise in methane fluxes from the valley, but this would require large-scale impacts on vegetated surfaces.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, and John T. Walker
Biogeosciences, 18, 5291–5311, https://doi.org/10.5194/bg-18-5291-2021, https://doi.org/10.5194/bg-18-5291-2021, 2021
Short summary
Short summary
Human-made reservoirs impact the carbon cycle. In particular, the breakdown of organic matter in reservoir sediments can result in large emissions of greenhouse gases (especially methane) to the atmosphere. This study takes an intensive look at the patterns in greenhouse gas emissions from a single reservoir in Ohio (United States) and the role of water temperature, precipitation, and algal blooms in emissions. We saw a "spring burst" of elevated emissions that challenged our assumptions.
Xinyu Liu, Xixi Lu, Ruihong Yu, Heyang Sun, Hao Xue, Zhen Qi, Zhengxu Cao, Zhuangzhuang Zhang, and Tingxi Liu
Biogeosciences, 18, 4855–4872, https://doi.org/10.5194/bg-18-4855-2021, https://doi.org/10.5194/bg-18-4855-2021, 2021
Short summary
Short summary
Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. We analyzed the emissions of CO2, CH4, and N2O from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas emissions. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect greenhouse gas emissions.
Zhaohui Chen, Parvadha Suntharalingam, Andrew J. Watson, Ute Schuster, Jiang Zhu, and Ning Zeng
Biogeosciences, 18, 4549–4570, https://doi.org/10.5194/bg-18-4549-2021, https://doi.org/10.5194/bg-18-4549-2021, 2021
Short summary
Short summary
As the global temperature continues to increase, carbon dioxide (CO2) is a major driver of this global warming. The increased CO2 is mainly caused by emissions from fossil fuel use and land use. At the same time, the ocean is a significant sink in the carbon cycle. The North Atlantic is a critical ocean region in reducing CO2 concentration. We estimate the CO2 uptake in this region based on a carbon inverse system and atmospheric CO2 observations.
Sirwan Yamulki, Jack Forster, Georgios Xenakis, Adam Ash, Jacqui Brunt, Mike Perks, and James I. L. Morison
Biogeosciences, 18, 4227–4241, https://doi.org/10.5194/bg-18-4227-2021, https://doi.org/10.5194/bg-18-4227-2021, 2021
Short summary
Short summary
The effect of clear-felling on soil greenhouse gas (GHG) fluxes was assessed in a Sitka spruce forest. Measurements over 4 years showed that CO2, CH4, and N2O fluxes responded differently to clear-felling due to significant changes in soil biotic and abiotic factors and showed large variations between years. Over 3 years since felling, the soil GHG flux was reduced by 45% due to a much larger reduction in CO2 efflux than increases in N2O (up to 20%) and CH4 (changed from sink to source) fluxes.
Stefan Theodorus Johannes Weideveld, Weier Liu, Merit van den Berg, Leon Peter Maria Lamers, and Christian Fritz
Biogeosciences, 18, 3881–3902, https://doi.org/10.5194/bg-18-3881-2021, https://doi.org/10.5194/bg-18-3881-2021, 2021
Short summary
Short summary
Raising the groundwater table (GWT) trough subsoil irrigation does not lead to a reduction of carbon emissions from drained peat meadows, even though there was a clear increase in the GWT during summer. Most likely, the largest part of the peat oxidation takes place in the top 70 cm of the soil, which stays above the GWT with the use of subsoil irrigation. We conclude that the use of subsoil irrigation is ineffective as a mitigation measure to sufficiently lower peat oxidation rates.
Yanming Gong, Ping Yue, Kaihui Li, Anwar Mohammat, and Yanyan Liu
Biogeosciences, 18, 3529–3537, https://doi.org/10.5194/bg-18-3529-2021, https://doi.org/10.5194/bg-18-3529-2021, 2021
Short summary
Short summary
At present, data on the influence of asymmetric warming on the GHG flux on a temporal scale are scarce. GHG fluxes were measured using static chambers and a gas chromatograph. Our study showed that the effect of seasonally asymmetrical warming on CO2 flux was obvious, with the GHG flux being able to adapt to continuous warming. Warming in the non-growing season increased the temperature dependence of GHG flux.
Hella van Asperen, João Rafael Alves-Oliveira, Thorsten Warneke, Bruce Forsberg, Alessandro Carioca de Araújo, and Justus Notholt
Biogeosciences, 18, 2609–2625, https://doi.org/10.5194/bg-18-2609-2021, https://doi.org/10.5194/bg-18-2609-2021, 2021
Short summary
Short summary
Termites are insects that are highly abundant in tropical ecosystems. It is known that termites emit CH4, an important greenhouse gas, but their absolute emission remains uncertain. In the Amazon rainforest, we measured CH4 emissions from termite nests and groups of termites. In addition, we tested a fast and non-destructive field method to estimate termite nest colony size. We found that termites play a significant role in an ecosystem's CH4 budget and probably emit more than currently assumed.
Genevieve L. Noyce and J. Patrick Megonigal
Biogeosciences, 18, 2449–2463, https://doi.org/10.5194/bg-18-2449-2021, https://doi.org/10.5194/bg-18-2449-2021, 2021
Short summary
Short summary
Methane (CH4) is a potent greenhouse gas that contributes to global radiative forcing. A mechanistic understanding of how wetland CH4 cycling will respond to global warming is crucial for improving prognostic models. We present results from the first 4 years of a novel whole-ecosystem warming experiment in a coastal wetland, showing that warming increases CH4 emissions and identifying four potential mechanisms that can be added to future modeling efforts.
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
Ingeborg Bussmann, Irina Fedorova, Bennet Juhls, Pier Paul Overduin, and Matthias Winkel
Biogeosciences, 18, 2047–2061, https://doi.org/10.5194/bg-18-2047-2021, https://doi.org/10.5194/bg-18-2047-2021, 2021
Short summary
Short summary
Arctic rivers, lakes, and bays are affected by a warming climate. We measured the amount and consumption of methane in waters from Siberia under ice cover and in open water. In the lake, methane concentrations under ice cover were much higher than in summer, and methane consumption was highest. The ice cover leads to higher methane concentration under ice. In a warmer Arctic, there will be more time with open water when methane is consumed by bacteria, and less methane will escape into the air.
Elisa Vainio, Olli Peltola, Ville Kasurinen, Antti-Jussi Kieloaho, Eeva-Stiina Tuittila, and Mari Pihlatie
Biogeosciences, 18, 2003–2025, https://doi.org/10.5194/bg-18-2003-2021, https://doi.org/10.5194/bg-18-2003-2021, 2021
Short summary
Short summary
We studied forest floor methane exchange over an area of 10 ha in a boreal pine forest. The results demonstrate high spatial variability in soil moisture and consequently in the methane flux. We detected wet patches emitting high amounts of methane in the early summer; however, these patches turned to methane uptake in the autumn. We concluded that the small-scale spatial variability of the boreal forest methane flux highlights the importance of soil chamber placement in similar studies.
Matthias Koschorreck, Yves T. Prairie, Jihyeon Kim, and Rafael Marcé
Biogeosciences, 18, 1619–1627, https://doi.org/10.5194/bg-18-1619-2021, https://doi.org/10.5194/bg-18-1619-2021, 2021
Short summary
Short summary
The concentration of carbon dioxide (CO2) in water samples is often measured using a gas chromatograph. Depending on the chemical composition of the water, this method can produce wrong results. We quantified the possible error and how it depends on water composition and the analytical procedure. We propose a method to correct wrong results by additionally analysing alkalinity in the samples. We provide an easily usable computer code to perform the correction calculations.
Julia Drewer, Melissa M. Leduning, Robert I. Griffiths, Tim Goodall, Peter E. Levy, Nicholas Cowan, Edward Comynn-Platt, Garry Hayman, Justin Sentian, Noreen Majalap, and Ute M. Skiba
Biogeosciences, 18, 1559–1575, https://doi.org/10.5194/bg-18-1559-2021, https://doi.org/10.5194/bg-18-1559-2021, 2021
Short summary
Short summary
In Southeast Asia, oil palm plantations have largely replaced tropical forests. The impact of this shift in land use on greenhouse gas fluxes and soil microbial communities remains uncertain. We have found emission rates of the potent greenhouse gas nitrous oxide on mineral soil to be higher from oil palm plantations than logged forest over a 2-year study and concluded that emissions have increased over the last 42 years in Sabah, with the proportion of emissions from plantations increasing.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Roland Vernooij, Marcos Giongo, Marco Assis Borges, Máximo Menezes Costa, Ana Carolina Sena Barradas, and Guido R. van der Werf
Biogeosciences, 18, 1375–1393, https://doi.org/10.5194/bg-18-1375-2021, https://doi.org/10.5194/bg-18-1375-2021, 2021
Short summary
Short summary
We used drones to measure greenhouse gas emission factors from fires in the Brazilian Cerrado. We compared early-dry-season management fires and late-dry-season fires to determine if fire management can be a tool for abating emissions.
Although we found some evidence of increased CO and CH4 emission factors, the seasonal effect was smaller than that found in previous studies. For N2O, the third most important greenhouse gas, we found opposite trends in grass- and shrub-dominated areas.
Filippo Vingiani, Nicola Durighetto, Marcus Klaus, Jakob Schelker, Thierry Labasque, and Gianluca Botter
Biogeosciences, 18, 1223–1240, https://doi.org/10.5194/bg-18-1223-2021, https://doi.org/10.5194/bg-18-1223-2021, 2021
Short summary
Short summary
Flexible foil chamber design and the anchored deployment might be useful techniques to enhance the robustness and the accuracy of CO2 measurements in low-order streams. Moreover, the study demonstrates the value of analytical and numerical techniques for the estimation of gas exchange velocities. These results may contribute to the development of novel procedures for chamber data analysis which might improve the robustness and reliability of chamber-based CO2 measurements in first-order streams.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela
Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, https://doi.org/10.5194/bg-18-873-2021, 2021
Short summary
Short summary
We studied ecosystem- and plant-community-level carbon (C) exchange between subarctic mire and the atmosphere during 2017–2018. We found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by a later drought period. Variation in water table level, soil temperature and vegetation explained most of the variation in ecosystem-level C exchange.
Cited articles
Andresen, C. G. and Lougheed, V. L.: Disappearing Arctic tundra ponds:
Fine-scale analysis of surface hydrology in drained thaw lake basins over a
65 year period (1948–2013), J. Geophys. Res.-Biogeo.,
120, 466–479, https://doi.org/10.1002/2014jg002778, 2015. a
Andresen, C. G., Lara, M. J., Tweedie, C. E., and Lougheed, V. L.: Rising
plant-mediated methane emissions from arctic wetlands, Glob. Change
Biol., 120.3, 466–479, https://doi.org/10.1111/gcb.13469, 2017. a
Beckebanze, L., Rehder, Z., Norman, R., Holl, D., Mirbach, C., Wille, C., and Kutzbach, L.: Eddy-covariance and meteorological measurements of large pond and polygonal tundra in Lena River Delta, Siberia (summer 2019), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937594, 2021. a
Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie,
Y. T., Merante, A., and Derry, A. M.: Oxic water column methanogenesis as a
major component of aquatic CH4 fluxes, Nat. Commun.,
5, 5350, https://doi.org/10.1038/ncomms6350, 2014. a
Boike, J., Grüber, M., Langer, M., Piel, K., and Scheritz, M.:
Orthomosaic of Samoylov Island, Lena Delta, Siberia, PANGAEA,
https://doi.org/10.1594/PANGAEA.786073, 2012. a
Boike, J., Georgi, C., Kirilin, G., Muster, S., Abramova, K.,
Fedorova, I., Chetverova, A., Grigoriev, M. N., Bornemann, N., and
Langer, M.: Temperature, water level and bathymetry of thermokarst lakes
in the continuous permafrost zone of northern Siberia – Lena River Delta,
Siberia, PANGAEA, https://doi.org/10.1594/PANGAEA.846525, 2015a. a, b, c
Boike, J., Veh, G., Stoof, G., Grüber, M., Langer, M., and
Muster, S.: Visible and near-infrared orthomosaic and orthophotos of
Samoylov Island, Siberia, summer 2008, with links to data files, PANGAEA,
https://doi.org/10.1594/PANGAEA.847343, 2015b. a, b
Boike, J., Veh, G., Viitanen, L.-K., Bornemann, N., Stoof, G., and
Muster, S.: Visible and near-infrared orthomosaic of Samoylov Island,
Siberia, summer 2015 (5.3 GB), PANGAEA, https://doi.org/10.1594/PANGAEA.845724,
2015c. a, b
Boike, J., Nitzbon, J., Anders, K., Grigoriev, M. N., Bolshiyanov,
D. Y., Langer, M., Lange, S., Bornemann, N., Morgenstern, A.,
Schreiber, P., Wille, C., Chadburn, S., Gouttevin, I., and
Kutzbach, L.: Meteorologic data at station Samoylov (2002–2018, level 2,
version 201908), PANGAEA, https://doi.org/10.1594/PANGAEA.905232,
2019. a
Borrel, G., Jézéquel, D., Biderre-Petit, C., Morel-Desrosiers, N.,
Morel, J.-P., Peyret, P., Fonty, G., and Lehours, A.-C.: Production and
consumption of methane in freshwater lake ecosystems, Res.
Microbiol., 162, 832–847, https://doi.org/10.1016/j.resmic.2011.06.004, 2011. a
Bouchard, F., Laurion, I., Preskienis, V., Fortier, D., Xu, X., and Whiticar,
M. J.: Modern to millennium-old greenhouse gases emitted from ponds and
lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut),
Biogeosciences, 12, 7279–7298, https://doi.org/10.5194/bg-12-7279-2015, 2015. a, b, c, d
Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mard, J., Mernild, S. H.,
Prowse, T., Semenova, O., Stuefer, S. L., and Woo, M. K.: Arctic terrestrial
hydrology: A synthesis of processes, regional effects, and research
challenges, J. Geophys. Res.-Biogeo., 121, 621–649,
https://doi.org/10.1002/2015jg003131, 2016. a
Burba, G., Schmidt, A., Scott, R. L., Nakai, T., Kathilankal, J., Fratini, G.,
Hanson, C., Law, B., Mcdermitt, D. K., Eckles, R., Furtaw, M., and
Velgersdyk, M.: Calculating CO2 and H2O eddy covariance fluxes from an
enclosed gas analyzer using an instantaneous mixing ratio, Glob. Change
Biol., 18, 385–399, https://doi.org/10.1111/j.1365-2486.2011.02536.x, 2012. a
Conrad, R.: Contribution of hydrogen to methane production and control of
hydrogen concentrations in methanogenic soils and sediments, FEMS
Microbiol. Ecol., 28, 193–202, https://doi.org/10.1016/S0168-6496(98)00086-5,
1999. a
Donis, D., Flury, S., Stöckli, A., Spangenberg, J. E., Vachon, D., and
McGinnis, D. F.: Full-scale evaluation of methane production under oxic
conditions in a mesotrophic lake, Nat. Commun., 8, 1661,
https://doi.org/10.1038/s41467-017-01648-4, 2017. a
Ducharme-Riel, V., Vachon, D., del Giorgio, P. A., and Prairie, Y. T.: The
relative contribution of winter under-ice and summer hypolimnetic CO2
accumulation to the annual CO2 emissions from northern lakes, Ecosystems,
18, 547–559, https://doi.org/10.1007/s10021-015-9846-0, 2015. a
Edgington, E. and Onghena, P.: Randomization tests, CRC Press, ISBN 9780367577711, 2007. a
Ellis, C. J., Rochefort, L., Gauthier, G., and Pienitz, R.: Paleoecological
evidence for transitions between contrasting landforms in a polygon-patterned
high arctic wetland, Arct. Antarct. Alp. Res., 40, 624–637,
https://doi.org/10.1657/1523-0430(07-059)[ELLIS]2.0.CO;2, 2008. a
Encinas Fernández, J., Peeters, F., and Hofmann, H.: On the methane
paradox: Transport from shallow water zones rather than in situ
methanogenesis is the major source of CH4 in the open surface
water of lakes, J. Geophys. Res.-Biogeo., 121,
2717–2726, https://doi.org/10.1002/2016JG003586, 2016. a
Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wüest, A., MacIntyre,
S., and Chapin, F. S.: CO2 exchange between air and water in an Arctic
Alaskan and midlatitude Swiss lake: Importance of convective mixing, J. Geophys. Res.-Atmos., 108, 4362, https://doi.org/10.1029/2002JD002653, 2003. a, b, c
Fan, S.-M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., and Fitzjarrald, D. R.:
Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon
Forest, J. Geophys. Res.-Atmos., 95, 16851–16864,
https://doi.org/10.1029/JD095iD10p16851, 1990. a
Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D.: Relative
humidity effects on water vapour fluxes measured with closed-path
eddy-covariance systems with short sampling lines, Agr. Forest
Meteorol., 165, 53–63, https://doi.org/10.1016/j.agrformet.2012.05.018, 2012. a
Gash, J. H. C. and Culf, A. D.: Applying a linear detrend to eddy correlation
data in realtime, Bound.-Lay. Meteorol., 79, 301–306,
https://doi.org/10.1007/bf00119443, 1996. a
Günthel, M., Klawonn, I., Woodhouse, J., Bižić, M., Ionescu, D.,
Ganzert, L., Kümmel, S., Nijenhuis, I., Zoccarato, L., Grossart, H.-P.,
and Tang, K. W.: Photosynthesis-driven methane production in oxic lake water
as an important contributor to methane emission, Limnol. Oceanogr.,
65, 2853–2865, https://doi.org/10.1002/lno.11557, 2020. a
Hedderich, R. and Whitman, W. B.: Physiology and biochemistry of the
methane-producing Archaea, Springer New York, New York, NY,
1050–1079, https://doi.org/10.1007/0-387-30742-7_34, 2006. a, b
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water
CO2 and CH4 emissions from very small ponds,
Nat. Geosci., 9, 222–226, https://doi.org/10.1038/ngeo2654, 2016. a, b, c
Holl, D., Pancotto, V., Heger, A., Camargo, S. J., and Kutzbach, L.: Cushion
bogs are stronger carbon dioxide net sinks than moss-dominated bogs as
revealed by eddy covariance measurements on Tierra del Fuego, Argentina,
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, 2019. a
Ibrom, A., Dellwik, E., Flyvbjerg, H., Jensen, N. O., and Pilegaard, K.: Strong
low-pass filtering effects on water vapour flux measurements with closed-path
eddy correlation systems, Agr. Forest Meteorol., 147, 140–156, https://doi.org/10.1016/j.agrformet.2007.07.007, 2007a. a
Ibrom, A., Dellwik, E., Larsen, S. E., and Pilegaard, K.: On the use of the
Webb-Pearman-Leuning theory for closed-path eddy correlation measurements,
Tellus B, 59, 937–946,
https://doi.org/10.1111/j.1600-0889.2007.00311.x, 2007b. a
Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., Itoh, M., and Iizuka, K.:
Partitioning eddy-covariance methane fluxes from a shallow lake into
diffusive and ebullitive fluxes, Bound.-Lay. Meteorol., 169, 413–428,
https://doi.org/10.1007/s10546-018-0383-1, 2018. a
Jansen, J., Thornton, B. F., Jammet, M. M., Wik, M., Cortés, A., Friborg,
T., MacIntyre, S., and Crill, P. M.: Climate-sensitive controls on large
spring emissions of CH4 and CO2 from northern lakes, J.
Geophys. Res.-Biogeo., 124, 2379–2399,
https://doi.org/10.1029/2019JG005094, 2019. a, b
Jonsson, A., Åberg, J., Lindroth, A., and Jansson, M.: Gas transfer rate
and CO2 flux between an unproductive lake and the atmosphere
in northern Sweden, J. Geophys. Res.-Biogeo., 113,
1–13, https://doi.org/10.1029/2008JG000688, 2008. a, b
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows: their
structure and measurement, Oxford University Press, https://doi.org/10.1093/oso/9780195062397.001.0001, 1994. a
Kartoziia, A.: Assessment of the ice wedge polygon current state by means of
UAV imagery analysis (Samoylov Island, the Lena Delta), Remote Sens., 11,
1627, https://doi.org/10.3390/rs11131627, 2019. a
Kling, G. W., Kipphut, G. W., and Miller, M. C.: The flux of CO2 and CH4
from lakes and rivers in arctic Alaska, Hydrobiologia, 240, 23–36,
https://doi.org/10.1007/BF00013449, 1992. a
Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., and Pfeiffer, E. M.:
Regulation of methane production, oxidation, and emission by vascular plants
and bryophytes in ponds of the northeast Siberian polygonal tundra, J. Geophys. Res.-Biogeo., 120, 2525–2541,
https://doi.org/10.1002/2015jg003053, 2015. a
Kormann, R. and Meixner, F. X.: An analytical footprint model for non-neutral
stratification, Bound.-Lay. Meteorol., 99, 207–224,
https://doi.org/10.1023/A:1018991015119, 2001. a, b, c, d
LI-COR: EddyPro Version 7.0.6, https://www.licor.com/env/support/EddyPro/home.html (last access: 10 June 2020), 2019. a
Liss, P. S. and Slater, P. G.: Flux of gases across the Air-Sea interface,
Nature, 247, 181–184, https://doi.org/10.1038/247181a0, 1974. a
Lundin, E. J., Giesler, R., Persson, A., Thompson, M. S., and Karlsson, J.:
Integrating carbon emissions from lakes and streams in a subarctic
catchment, J. Geophys. Res.-Biogeo., 118, 1200–1207,
https://doi.org/10.1002/jgrg.20092, 2013. a
Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy
covariance software package TK2, Univ, Bayreuth, Abt. Mikrometeorol., Universität Bayreuth, Abt. Mikrometeorologie, ISSN 161489166.26, 26–42, 2004. a
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E.,
Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin,
P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic
tundra: Comparisons among observations, process models, and atmospheric
inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012,
2012. a
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging,
detrending, and filtering of eddy covariance time series, in: Handbook of
micrometeorology, Springer, 7–31, https://doi.org/10.1007/1-4020-2265-4_2, 2004. a
Muster, S., Roth, K., Langer, M., Lange, S., Cresto Aleina, F., Bartsch, A.,
Morgenstern, A., Grosse, G., Jones, B., Sannel, A. B. K., Sjöberg, Y.,
Günther, F., Andresen, C., Veremeeva, A., Lindgren, P. R., Bouchard,
F., Lara, M. J., Fortier, D., Charbonneau, S., Virtanen, T. A., Hugelius, G.,
Palmtag, J., Siewert, M. B., Riley, W. J., Koven, C. D., and Boike, J.:
PeRL: a circum-Arctic Permafrost Region Pond and Lake database, Earth
Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, 2017. a
Neff, J. C. and Asner, G. P.: Dissolved organic carbon in terrestrial
ecosystems: Synthesis and a model, Ecosystems, 4, 29–48,
https://doi.org/10.1007/s100210000058, 2001. a
Peeters, F., Encinas Fernandez, J., and Hofmann, H.: Sediment fluxes rather
than oxic methanogenesis explain diffusive CH4 emissions from
lakes and reservoirs, Sci. Rep., 9, 243,
https://doi.org/10.1038/s41598-018-36530-w, 2019. a
Ramsar Convention Secretariat: An introduction to the ramsar convention on
wetlands (previously The Ramsar Convention Manual), Ramsar Convention
Secretariat, Gland, Switzerland, https://www.ramsar.org/sites/default/files/documents/library/handbook1_5ed_introductiontoconvention_e.pdf (last access: 22 February 2022), 2016. a
Repo, M. E., Huttunen, J. T., Naumov, A. V., Chichulin, A. V., Lapshina, E. D.,
Bleuten, W., and Martikainen, P. J.: Release of CO2 and
CH4 from small wetland lakes in western Siberia, Tellus B, 59, 788–796,
https://doi.org/10.1111/j.1600-0889.2007.00301.x, 2007. a
Rößger, N., Wille, C., Holl, D., Göckede, M., and Kutzbach, L.:
Scaling and balancing carbon dioxide fluxes in a heterogeneous tundra
ecosystem of the Lena River Delta, Biogeosciences, 16, 2591–2615,
https://doi.org/10.5194/bg-16-2591-2019, 2019a. a, b
Rößger, N., Wille, C., Veh, G., Boike, J., and Kutzbach, L.: Scaling
and balancing methane fluxes in a heterogeneous tundra ecosystem of the Lena
River Delta, Agr. Forest Meteorol., 266/267, 243–255,
https://doi.org/10.1016/j.agrformet.2018.06.026, 2019b. a, b
Runkle, B. R., Sachs, T., Wille, C., Pfeiffer, E. M., and Kutzbach, L.: Bulk
partitioning the growing season net ecosystem exchange of CO2 in Siberian
tundra reveals the seasonality of it carbon sequestration strength,
Biogeosciences, 10, 1337–1349, https://doi.org/10.5194/bg-10-1337-2013, 2013. a
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S.,
and Thalasso, F.: Methane and carbon dioxide emissions from 40 lakes along a
north-south latitudinal transect in Alaska, Biogeosciences, 12, 3197–3223,
https://doi.org/10.5194/bg-12-3197-2015, 2015. a, b, c
Sieczko, A. K., Duc, N. T., Schenk, J., Pajala, G., Rudberg, D., Sawakuchi,
H. O., and Bastviken, D.: Diel variability of methane emissions from lakes,
P. Natl. Acad. Sci. USA, 117, 21488–21494,
https://doi.org/10.1073/pnas.2006024117, 2020. a, b
Squires, M. M. and Lesack, L. F.: The relation between sediment nutrient
content and macrophyte biomass and community structure along a water
transparency gradient among lakes of the Mackenzie Delta, Can. J. Fish. Aquat. Sci., 60, 333–343, https://doi.org/10.1139/f03-027, 2003. a
Treat, C. C., Marushchak, M. E., Voigt, C., Zhang, Y., Tan, Z., Zhuang, Q.,
Virtanen, T. A., Räsänen, A., Biasi, C., Hugelius, G., Kaverin,
D., Miller, P. A., Stendel, M., Romanovsky, V., Rivkin, F., Martikainen,
P. J., and Shurpali, N. J.: Tundra landscape heterogeneity, not interannual
variability, controls the decadal regional carbon balance in the Western
Russian Arctic, Glob. Change Biol., 24, 5188–5204,
https://doi.org/10.1111/gcb.14421, 2018. a, b, c
Tuovinen, J.-P., Aurela, M., Hatakka, J., Räsänen, A., Virtanen, T.,
Mikola, J., Ivakhov, V., Kondratyev, V., and Laurila, T.: Interpreting eddy
covariance data from heterogeneous Siberian tundra: land-cover-specific
methane fluxes and spatial representativeness, Biogeosciences, 16, 255–274,
https://doi.org/10.5194/bg-16-255-2019, 2019. a, b
Earth Resources Observation and Science (EROS) Center: USGS EROS Archive – Declassified Data – Declassified Satellite Imagery – 1, https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#science (last access: 15 June 2020), 2018. a
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for
tower and aircraft data, J. Atmos. Ocean. Technol., 14,
512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997. a
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F.,
Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M.,
Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J.,
Macmillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.:
Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic
ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015,
2015. a, b
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin, F. S.:
Methane bubbling from Siberian thaw lakes as a positive feedback to climate
warming, Nature, 443, 71–75, https://doi.org/10.1038/nature05040, 2006. a, b
Walter Anthony, K. M. and Anthony, P.: Constraining spatial variability of
methane ebullition seeps in thermokarst lakes using point process models,
J. Geophys. Res.-Biogeo., 118, 1015–1034,
https://doi.org/10.1002/jgrg.20087, 2013. a
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements
for density effects due to heat and water vapour transfer, Quarterly J. Roy. Meteorol. Soc., 106, 85–100,
https://doi.org/10.1002/qj.49710644707, 1980.
a
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of...
Altmetrics
Final-revised paper
Preprint